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Aligning Sentences in a Paragraph-Paraphrased Corpus

with New Embedding-based Similarity Measures

Aleksandra Smolka*, Hsin-Min Wang*,

Jason S. Chang*, and Keh-Yih Su*

Abstract

To better understand and utilize lexical and syntactic mapping between various
language expressions, it is often first necessary to perform sentence alignment on the
provided data. Up until now, the character trigram overlapping ratio was considered
to be the best similarity measure on the text simplification corpus. In this paper, we
aim to show that a newer embedding-based similarity metric will be preferable to
the traditional SOTA metric on the paragraph-paraphrased corpus. We report a series
of experiments designed to compare different alignment search strategies as well as
various embedding- and non-embedding-based sentence similarity metrics in the
paraphrased sentence alignment task. Additionally, we explore the problem of
aligning and extracting sentences with imposed restrictions, such as controlling
sentence complexity. For evaluation, we use paragraph pairs sampled from the
Webis-CPC-11 corpus containing paraphrased paragraphs. Our results indicate that
modern embedding-based metrics such as those utilizing SentenceBERT or
BERTScore significantly outperform the character trigram overlapping ratio in the

sentence alignment task in the paragraph-paraphrased corpus.
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1. Introduction

Monolingual text matching is necessary for many downstream applications, such as Paraphrase
Identification and Extraction (Qiu ef al., 2006), Question Answering (Weiss et al., 2021),
Natural Language Inference (MacCartney & Manning, 2008), and Text Generation (Barzilay &
McKeown, 2005). Take the QA task as an example, identifying the text fragments that match

the given question within the associated passage is often required for locating the desired answer.

However, modern neural network (NN) approaches to text matching often suffer from
certain limitations when two sequences contain considerably different lexicons or diverse
grammatical structures (McCoy et al., 2019). For example, when the verb “decide” in the
sentence “They decided to go” is nominalized to the noun “decision” in its paraphrase “They
made a decision to go”, the popular word embedding similarity approach might fail as the
embedding-vectors of “decide” and “decision” are quite different!. Another example is a pair
of sentences “A cat is chasing a dog.” and “A dog is chasing a cat.”, which contain the same

set of lexicons and syntactic structure but with opposite meanings.

Furthermore, the NN approaches frequently fail when the matching involves multi-word
expressions, or when expressions require compositionality handling (Blevins et al., 2018;
Hupkes et al., 2020; Zhou et al., 2020). For example, it is difficult to match expressions “put
off” and “procrastinate” using basic word embeddings, as the real meaning of the idiom “put

off” is not the sum of the meanings of its tokens.

We found that the limitations of NN models in text matching could be greatly alleviated
by utilizing lexico-syntactic paraphrasing patterns such as [yp/ven/see/np[X1]]] >
[s[ne[X1]ve[vep[be]vp[observe]]], which denotes the conversion from active to passive voice
for the phrase pair “see the lion” and “the lion is observed”. Since some key lexicons are
involved in the pattern, it would be difficult to exhaustively list such patterns by a human. It is
preferable to automatically extract them from a large paraphrase corpus.

To collect such lexico-syntactic patterns, a high-quality paraphrased sentence pair dataset
is essential. Unfortunately, current sentence-aligned paraphrase datasets (e.g., MRPC (Dolan &
Brockett, 2005), PPDB (Ganitkevitch et al., 2013), and QQP (Aghaebrahimian, 2017)) are too
trivial for this task, as they mainly contain lexical paraphrases that could be easily handled by
a NN. On the other hand, some paragraph-aligned paraphrase corpora, containing different

human translations from the same source text, fit our needs well. To utilize those paragraph-

I The nearest semantic associates of the verb decide based on the cosine similarity between the word2vec
vectors (trained on English Wikipedia) are those verbs such as: choose (0.64), opt (0.62), persuade
(0.61), want (0.58), refuse (0.57), insist (0.56). However, the noun decision only has a similarity score
0.512, which means that its similarity to the verb decide is even less than that between decide and its

quasi-antonymous refuse.
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aligned paraphrase corpora, monolingual sentence alignment is the first step in retrieving the

desired patterns.
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f PARAGRAPH 1 \ PARAGRAPH 2 \

Thad, of course. N )
~  Naturally, Thad and also Bill,

And, Bill, we're going to get ‘__________.-}-’ whom we'll get after a while.
him, sooner or later. :
Mr. Hooper won't let this go on

I
Mr. Hooper won't want to stand=—| for long.

this sort of thing forever. .
I'm guessing we won't be done

I've got a hunch that we're not """),"H_ for some time. /

\_ through with that game vet. / /
N e a4 'y

Figure 1. Sentence alignment for extracting paraphrased sentence pairs. Sentence
pairs in green are those we want to extract; sentences in red are in multi-
to-one relation and do not constitute sentential paraphrases. Figure
adopted from Smolka et al. (2022).

Figure 1 shows how a correct sentence alignment could help extract paraphrased sentence
pairs from longer paraphrased texts. Unless we correctly identify which sentences are in 1-to-1
relationships (green in the figure), we cannot correctly identify the desired paraphrased pattern.

Monolingual sentence alignment approaches could be classified into two categories:
model-based approaches (e.g., Jiang et al., 2020), which adopt specific models to encode the
input sentences and perform alignment, and model-agnostic approaches (Stajner et al., 2018),
which can be directly applied to the selected dataset, without the necessity of training a neural
model in advance. In our work, we focus on model-agnostic approaches, as they do not require

additional labeled data to train the model.

The downside of previous model-agnostic approaches (Stajner ef al., 2017; 2018) is that
they only test the early word2vec word embeddings, and do not explore those more advanced
NN approaches such as Sentence-BERT (Reimers & Gurevych, 2019) and BERTScore (Zhang
et al., 2020). Also, they are mainly evaluated on Text Simplification (TS) datasets, which are

different from our paraphrasing datasets.

In the TS dataset, the original and the simplified text often share a considerable number of
keywords, which remain unchanged and are rarely substituted with synonyms. However, this
property does not hold in our paraphrasing corpus, as its paraphrasing expressions usually

possess diverse syntactic structures with many different lexical items.



4 Aleksandra Smolka et al.

Therefore, we suspect that the character trigram overlapping ratio, reported as the best for
monolingual sentence alignment in previous works (Stajner et al., 2017; 2018), would not
perform best on our data. Since our paraphrasing corpus contains considerably different
lexicons and word order, the string-based method such as character ngram similarity would lose
its edge. Previously reported text similarity measures thus should be re-evaluated for our task,

and more advanced NN approaches should be explored.

In this work, we not only compare various previously reported text similarity measures on
a paraphrased paragraph corpus but also additionally test some new measures based on the most
recent NN sentence embedding methods. We utilize those above measures with two sentence
alignment approaches: simple greedy match (e.g., Stajner et al. 2018) and sequence match (Gale
& Church, 1993; Barzilay & McKeown, 2001). We conduct the evaluation on a manually
annotated sentence-aligned dataset with 400 paraphrased paragraph pairs randomly sampled
from the multiple translation corpus Webis-CPC-11 (Burrows et al., 2013).

Our contributions include:

(1) To the best of our knowledge, we present the first study on aligning sentences on a
paragraph-paraphrased corpus;

(2) We show that character trigram similarity is not the best measure for aligning paraphrasing
corpora. Instead, BERT-based embedding methods achieve significantly better results

even without fine-tuning on the target dataset;

(3) We test several NN-related sentence similarity measures (other than word2vec) that have

not been evaluated before for model-agnostic monolingual sentence alignment;

(4) We confirm and expand the observation of Choi et al., (2021), showing that [CLS] token
representation is not necessarily superior to averaging individual word vectors for

sentence representation while aligning paraphrased text under BERT.

(5) We compare the sentence alignment methods when an additional sentence length

limitation is imposed on the data.

This publication is an extension of our previous conference paper on the same topic
(Smolka et al., 2022). In comparison to our conference publication, we have added a new data
collection method for composing a dataset with sentence length limitation and introduced a new
series of experiments performed on this new data (Section 3.4.2). We also extend the previous
comparison of different methods of obtaining sentence representations using the BERT model
(Section 3.4.3), and add a new discussion section to report our observations (Section 5). Finally,
we extend some of the previously existing sections by additionally illustrating our search
mechanisms (Section 2.1, Figure 2), showing an example of a non-paraphrased paragraph pair

(Section 3.5, Figure 5), and a new error example in the error analysis (Section 4, Table 12).
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2. Sentence Alignment Procedure

The proposed sentence alignment procedure is based on two basic elements, which we combine
to test different experimental configurations. Those elements include: (1) search mechanism,
which specifies the method used to search the sentence pairs that possess similar meaning; (2)
similarity measure, which defines the method of calculating the similarity value among two

given sentences (to be used during the search procedure).

2.1 Search Mechanisms

We implement two search mechanisms for aligning sentences among two paraphrased
paragraphs: (1) Directional Best Match, which aligns each sentence in the paragraph separately
(it also has two variations: uni-directional, which matches sentences from the first paragraph to
the second one only, and bi-directional, which matches sentences in both directions), and (2)
Sequence Match, which looks for the best alignment scheme for a paragraph as a whole. Figure
2 schematically illustrates the difference in how the sentence pairs are formed in the different

search mechanism approaches, which we describe in the next two subsections.

@ UNIDIRECTIONAL = e
BEST MATCH >

L Y,
a ~
(k) BIDIRECTIONAL o

BEST MATCH ————

N J
-

() SEQUENCE -
MATCH

Il

N

Figure 2. Schematic comparison of the different search mechanisms, illustrating
the direction in which sentences are paired. (a) Uni-directional Best
Match; (b) Bi-directional Best Match; (c) Sequence Match.
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2.1.1 Directional Best Match

Directional Best Match is a simple greedy approach that relies on local judgments to create the
alignments. This approach assumes that information such as adjacency and dependency
information within sentences is negligible during matching. In our implementation, we follow
the adopted SOTA approach (Stajner et al., 2018). However, Stajner et al. (2018) only
experimented with a uni-directional approach, which maps the original passages to the
corresponding simplified passages. We believe that the bi-directional approach would be better
applicable to our data since it is symmetric, unlike the dataset used by Stajner et al. (2018).
Therefore, we additionally extend the Best Match method to a bi-directional approach.

Regardless of the above variation, we first calculate the associated similarity for each
sentence pair that can be formed between the two given input paragraphs. Then, for each
sentence in one paragraph, we select the sentence in another paragraph that has the highest
similarity measure obtained above. For the uni-directional version, we directly take those pairs

as the final alignments.

The bi-directional version follows the same steps, but we additionally repeat them in the
opposite direction, i.e., matching sentences from the second paragraph to the first one. The final

aligned pairs are obtained by taking the intersection of the two sets of aligned sentence pairs.

2.1.2 Sequence Match

Our sequence match adopts the dynamic programming searching algorithm to look for the best
alignment path (among the two given paragraphs). Our implementation follows the common
approach described in previous works (Gale & Church, 1993; Barzilay & McKeown, 2001). In
this method, each alignment type (e.g., one-to-one and one-to-two) is associated with a different
weight indicating the type probability estimated from the development set. The weights are then
combined with the above similarity measures to find the best alignment path for the whole
paragraph.

2.2 Similarity Measures

The text similarity measures adopted in our experiments fall into two main categories: (a) unit-
overlap-based approaches, in which the similarity measure is based on the overlapping ratio of
either ngrams or tokens between the sentences; (b) sentence-vector-based approaches, in which
a neural model is first used to convert each sentence into its corresponding embedding-vector,
and then the cosine similarity between these two sentence embedding-vectors is taken as the

sentence similarity.
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2.2.1 Unit-Overlap-Based Sentence Similarity

We adopt two different overlapping ratios: (1) Character ngram, which is reported as the state-
of-art on the text simplification corpus (Stajner, 2018), and (2) token, which is commonly used
in sentence alignment tasks (e.g., Barzilay & McKeown, 2001).

Character Ngram

We follow Stajner et al. (2018) to calculate the ngram similarity based on the Character Ngram
Similarity model with tf-idf weighting (adapted from McNamee & Mayfield (2004)). We
experiment with five different ngram sizes (1 to 5) and use NGRAM to refer to this measure.
We add Laplace smoothing to account for those unseen ngrams in the test set. The final
similarity is calculated by taking cosine similarity (Stajner et al., 2018).

Token

For calculating token-based sentence similarity, we use the following token overlap formula:

.. . tokensiNtokens

Slmllantywken - |L0ken511|+|token;zl| O
where tokens; is the set of tokens in the first sentence, tokens, is the set of tokens in the
second sentence, and the function | | specifies the cardinality of the token set. We consider two
different normalization mechanisms for comparing two tokens: (1) converting the strings into
their associated lemmas before comparison (abbreviated as TOKENstring); (2) also taking
synonyms as exactly matched lemmas during comparison (abbreviated as TOKENsyn). Token
lemmas for each sentence are retrieved using an automatic tokenizer and lemmatizer (Qi et al.,
2020). Synonymic relationships are taken from WordNet (Fellbaum, 1998).

2.2.2 Sentence-Vector- Based Sentence Similarity

This category includes similarity measures that utilize cosine vector similarity in some forms:
(1) word-embedding based, where we first look up the word embedding-vector for every token
in each sentence from a pretrained model, and then combine them into their associated sentence
embedding-vector by vector averaging (Putra & Tokunaga, 2017). Afterward, we calculate the
similarity between the two obtained sentence embedding vectors. (2) sentence-embedding based,
where we use a model, such as BERT (Devlin et al., 2019) or Sentence-BERT (Reimers &
Gurevych, 2019), to directly embed a sentence into its associated sentence-embedding. We then
calculate the similarity between these two sentence embedding vectors. (3) BERTScore (Zhang
et al.,2020), which uses BERT to directly generate the similarity value between two sentences.

Word-embedding Similarity

For directly retrieving the token-associated embedding vector from a pretrained embedding
lookup table, we test both word2vec (Mikolov et al., 2013) and Glove (Pennington ef al., 2014)
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embeddings. Additionally, we also test contextualized word embeddings retrieved from BERT
(Devlin et al., 2019).

Moreover, while it is common to use the [CLS] token yielded by the BERT encoder to
represent the whole encoded sentence, recent works note that this might not be the best solution
for different downstream tasks (Choi et al., 2021). We therefore additionally test the following
approach: generate the sentence embedding via averaging the contextual word embeddings
retrieved from the BERT model.

Regardless of the way of selecting word embedding, we combine the associated embedding
vectors into the corresponding sentence representation by taking an average over them (Putra
& Tokunaga, 2017). The sentence similarity is then calculated as the cosine similarity between

the two sentence embedding vectors.

Among various types of word embeddings, only word2vec is tested by Stajner et al. (2018).
However, it was not reported as the best one in their experiments (the best one is the character
trigram in their task).

Sentence-embedding Similarity

Another way to generate the sentence-embedding is to adopt BERT to transform all its
associated token-embeddings into it. We test two methods of obtaining sentence representation
via BERT. First, we take the [CLS] token from the BERT to represent the whole sentence.
Alternatively, we use Sentence-BERT (Reimers & Gurevych, 2019), which is an alternative
method of obtaining sentence representation from BERT-type models, suggested as a better
alternative for directly adopting [CLS] token embedding. We use Sentence-BERT to separately
obtain a single embedding for each sentence in the pair. The sentence similarity is then

calculated between two obtained sentence embedding vectors.
BERTScore

Last, we can directly generate the desired similarity value among two sentences by adopting the
BERTScore (Zhang et al., 2020) approach, which is originally developed as an automatic
evaluation metric for comparing various text generation systems. This approach first uses BERT
to obtain the word embeddings of all input tokens. The pairwise similarity is then calculated for
each possible token pair. Afterward, for each token from the first input sequence (i.e., the
sentence from the “original” paragraph), BERTScore finds its matching token in the second
sequence (i.e., the sentence from the “paraphrased” paragraph) via greedy search. Last, it

calculates both precision and recall based on the matching result.

As BERTScore is designed to evaluate the similarity between the ground truth and the
generated text, we thought it should be also suitable for measuring the sentence similarity for
our task. Typically, BERTScore will report precision, recall, and F1-score at the same time. We

take each of these values to represent a specific sentence pair similarity measure; and we refer
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to them as BERTprec, BERTrec, and BERT{1, respectively.

2.3 Similarity Score Thresholding

Regardless of the selected combination of search mechanism and similarity measure, we
additionally impose a similarity score thresholding on the aligned sentences. In the final stage
of the alignment procedure, we filter out sentence pairs that have similarity values below the
experimentally selected threshold. This helps us further improve the overall test-set results and

allows for a precision-recall trade-off if desired.

3. Experiments

Figure 3 shows the operation flow adopted in the experiments. We first take a pair of
paraphrased paragraphs as input, clean the text in each paragraph, and split it into individual
sentences. Then, we use the sentence alignment module with the selected search mechanism
and similarity measure to generate the desired sentence alignments. Those one-to-one sentence

alignments are then extracted and output as the answer.

paraphrased paragraph

PARAGRAPH #1 PARAGRAPH #2 pair

J oL

l l

‘ AUTOMATIC SENTENCE SEGMENTING MODULE ‘

| ]

I
I
I
| uses open-source
I
I
( ) I
) I
I
I
I
I
I
I

sentence segmenter

SENTENCELIST#1 | | SENTENCE LIST #2
] l
‘ SENTENCE ALIGNMENT MODULE ‘
]

[ ALIGNED ONE-TO-ONE SENTENCE PAIRS ]

uses selected search
mechanism and similarity
measure

paraphrased sentence
pairs

Figure 3. Operation flow for obtaining one-to-one sentence alignment within
paraphrased paragraph pairs. Figure adopted from Smolka et al. (2022).

The following subsections give details of the experiment setting and results.

3.1 Dataset
We randomly sampled 400 paragraph pairs from the Webis-CPC-11 corpus (out of which 7

were found to be incorrectly marked as paraphrases, and removed from the evaluation data).
The non-paraphrased pairs are excluded from the development and test data. However, we
reserve them for additional experiments where we test methods for automatically detecting such

undesired input from our data.

To evaluate the performance, we manually annotate the 400 paragraph pairs randomly
sampled from the Webis-CPC-11 corpus. The annotation process consists of several stages: (1)

Paragraph pre-processing, which is performed automatically and serves to clean the data and
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split each paragraph into its associated sentences; (2) Sentence alignment (marking both one-
to-one and one-to-many alignment configurations), in which we manually match the sentences

that have similar meanings.

After the paragraph pre-processing stage, the annotator receives two sets of sentences for
each paragraph pair and is requested to align sentences between them (including both one-to-
one and one-to-many mappings). The result of the manual annotation is a dataset in which each
paraphrased paragraph pair is associated with the aligned sentence pairs between them. If the
sample contains non-paraphrased paragraphs, the annotator is asked to simply mark them

without adding alignment annotation.

As all tested similarity measures are model-agnostic, we do not require a training set.
Therefore, we split all the aligned paragraph pairs (i.e., excluding those non-paraphrased pairs)
into the development set and the test set with a 1:7 ratio. As a result, we end up with 48
paragraph pairs in the development set and 345 paragraph pairs in the test set. We use the
development set for selecting hyper-parameters such as similarity cutting threshold and
alignment type probabilities for the Gale-Church algorithm (Gale & Church, 1993).

Table 1. Dataset Statistics (without non-paraphrase cases). #Min-#Max specifies the

range in paragraph range row. Also, 1-1 indicates the one-to-one mapping,
2-1 (1-2) indicates two-to-one and one-to-two mapping, and so on.

all dev test
#input paragraphs 393 48 345
#input non-paraphrased pairs (dataset errors) 7 2 5
avg. paragraph length (#sentences) 2.3 2.4 2.3
avg. sentence length (#tokens) 20.9 19.3 21.1
paragraph range (# sentences) 1-7 1-6 1-7
all 822 87 735
(100%) (100%) (100%)
1-1 633 67 566
(ground truth) (77%) (77%) (77%)
% of alignment types 2-1(1-2) (116302/0) (1;@ (1161‘?/0)
i wo | aw | aw
Other 49 4 45
(2-3,1-4,etc.) (6%) (4%) (6%)
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Table 1 gives the associated dataset statistics. Within them, 566 1-to-1 paraphrased
sentence pairs (77% among all aligned passage pairs) exist in the test set. This set of 1-to-1
sentence pairs (i.e., sentential paraphrases) is the desired output in our task, and thus becomes

the ground truth for our evaluation.

3.2 Pre-processing

Because the Webis-CPC dataset only contains un-segmented paragraphs, it must be first
converted into a collection of sentences. We use an off-the-shelf sentence segmenter (Qi et al.,
2020) to split each paragraph into sentences. The output is thus two sets of sentences, one for

each of the paragraphs.

3.3 Experimental Setting
For our baseline, we re-implement the SOTA approach proposed by Stajner et al. (2018), as

there is no easily applicable code released by the authors. Therefore, we follow the descriptions
in the original paper to implement the ngram character similarity. Our implementation has not
been tested on the data adopted in the work of Stajner et al. (2018) because it lacks the
annotations that are necessary for automatic evaluation. Furthermore, the original work
introducing SOTA character trigram metrics used only human evaluation, which makes a direct

comparison of our method with their results impossible.

When it comes to the pretrained models used for conducting the embedding-based
similarity calculations, we select the models based on their open-source availability. For
example, for getting the BERT word-averaging and [CLS]-token representation, we use the
BERT-base model (Devlin et al., 2019). When it comes to Sentence-BERT, three different
pretrained models were tested, including BERT-base (Devlin et al., 2019; abbreviated as
SBERTbert), ALBERT-mini (Lan et al., 2020; abbreviated as SBERTalbert), and MiniLM
(Wang et al.,, 2020; abbreviated as SBERTmini). The training data for those three
SentenceBERT models varied and depended on the original open-source model released.?
Among them, SBERTbert was trained with various Natural Language Inference data sets;
SBERTalbert and SBERTmini were trained on various paraphrasing datasets.? Finally, the
BERTScore open-source implementation uses ROBERTA-Large (Liu et al., 2019).

3.4 Various Experiments

In our experiments, we test various combinations of the two alignment strategies with different

similarity measures. We take precision, recall, and F1-score as the evaluation metrics. Moreover,

2 https://huggingface.co/sentence-transformers
3 The list of specific datasets used was not published by the open-source authors.
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for each set of results, we apply the McNemar test (Dietterich, 1998) to check whether the
performance improvement is statistically significant (with p<0.05 as the significance test
threshold).

In our experiments, we test similarity measures based on: (1) Unit-Overlap-Ratio,
including character ngram overlap-ratio with »n ranging from 1 to 5 (NGRAM), and token
overlap-ratio calculated with either token strings (TOKENSstring) or token synonyms
(TOKENsyn); (2) Sentence-Vector-Similarity, including (a) word-embedding-based
similarity measures calculated with word2vec (W2V), Glove (GLOVE) and BERTbase
(BERTword) embeddings; (b) sentence-embedding-based similarity measures which consist
of: (i) using [CLS] token yielded by BERTbase model (BERTcls), and (ii) Sentence-BERT
embeddings with three different pretraining models (SBERTbert, SBERTalbert, and
SBERTmini); (¢) BERTScore with precision (BERTprec), recall (BERTrec), and Fl-score
(BERTTf1).

3.4.1 Sentence Alignment Results on the Full Dataset

Tables 2-4 compare various similarity measures under the Best Match (Uni- and Bi-directional,
separately) strategy and the Sequence Match strategy, respectively. For each measure, we only
report the results with the best threshold value, which is selected on the development set based
on the F1 value. The threshold for each specific similarity measure is different and is noted in
the corresponding table. Measures that outperform the character trigram baseline in a significant

manner are marked with the asterisk *.

Overall, comparing the best result of each approach, the sequence match approach (with
the best F1-score equaling 88.8%) outperforms both best match approaches (the best F1-score
of 85.1% is from the bi-directional mode). We conjecture that the sequence match performs the
best as it additionally considers the adjacency and dependency information within sentences
during matching.

Moreover, the Uni-directional Best Match approach performed the worst (only with 82.5%
best F1) as expected. Since our data is symmetric, the matching results would be more reliable

if the alignment is considered from both directions.

Furthermore, the best similarity measure varies under different search mechanisms. In the
sequence match approach, three BERT-type measures (i.e., SBERTbert (88.8% F1), BERTrec
(88.7% F1), and BERTfl (88.7% F1)) significantly outperform the baseline. The
SentenceBERT measure performs best, surpassing the character-trigram baseline method by
1.9% (88.8% vs. 86.9%) because it is trained to encode the overall sentence meaning, not the
specific meaning of individual tokens, which fits our task well. Similarly, BERTScore also

delivers good results because it is directly trained to measure the similarity between two
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sequences.

Table 2. Alignment results by adopting the uni-directional Best Match strategy on the
full dataset. TH indicates the adopted threshold value. The asterisk * marks
the measures that outperform NGRAM baseline (n=3) with p < 0.05. Table
adopted from Smolka et al. (2022).

% on the test set
measure Best TH
prec rec F1

NGRAM(n=1)* 77.8 82.2 79.9 0.3
NGRAM(n=2)* 77.8 82.2 79.9 0.3
NGRAM(n=3) 79.9 72.5 76.1 0.3
NGRAM(n=4)* 77.8 82.2 79.9 0.3
NGRAM(n=5)* 77.8 82.2 79.9 0.3
TOKENString* 83.7 73.1 78.1 0.2
TOKENsyn 77.1 71.5 74.2 0.1
w2v 79.7 74.5 77.0 0.8
GLOVE 73.5 81.2 77.1 0.95
BERTword* 78.5 87.0 82.5 0.75
BERTcls 81.9 67.9 74.3 0.9
SBERTbert 75.2 90.8 82.3 0.6
SBERTalbert 82.9 70.7 76.9 0.35
SBERTmini* 78.4 85.2 81.6 0.6
BERTprec* 86.5 72.9 79.1 0.9
BERTrec* 83.5 74.9 80.4 0.9
BERT{1* 86.8 74.9 80.4 0.9

On the other hand, in the bi-directional best match approach, the best result is again
obtained by the Sentence-BERT measure (SBERTmini) with the best Fl-score 85.1%,
significantly outperforming the character ngram similarity measure at 82.7%. Also, both
SBERTalbert and BERTf1 measures outperform the baseline with p<0.06. We believe that the

above reasons given for the sequence match approach also apply here.
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Table 3. Alignment results by adopting bi-directional Best Match strategy on full
dataset. TH indicates the adopted threshold value. The asterisk * marks the
measures that outperform NGRAM baseline (n=3) with p < 0.05. Table
adopted from Smolka et al. (2022).

% on the test set
measure Best TH
prec rec F1

NGRAM(n=1) 80.5 81.8 81.1 0.3
NGRAM(n=2) 80.5 81.8 81.1 0.3
NGRAM(n=3) 78.9 87.0 82.7 0.1
NGRAM(n=4) 80.5 81.8 81.1 0.3
NGRAM(n=5) 80.5 81.8 81.1 0.3
TOKENSstring 84.7 73.1 78.5 0.2
TOKENsyn 78.6 81.8 80.2 0.05
w2V 81.1 87.6 84.2 0.6
GLOVE 79.7 78.0 78.8 0.95
BERTword 82.3 86.4 84.3 0.75
BERTcls 86.2 66.5 75.1 0.9
SBERTbert 79.1 88.6 83.6 0.6
SBERTalbert 80.6 89.8 84.9 0.25
SBERTmini* 80.7 90.2 85.1 0.25
BERTprec 80.9 88.2 84.4 0.85
BERTrec 79.7 88.2 83.7 0.85
BERT{l1 79.9 90.8 85.0 0.9

Last, in the uni-directional best match approach, several tested measures significantly
outperform the baseline (76.1%), including BERTword (82.5%), SBERTbert (82.3%),
SBERTmini (81.6%), BERTf1(80.4%), NGRAM with n#3 (79.9%), BERTrec (79.7%),
BERTprec (79.1%), and TOKENSstring (78.1%). The measures that perform best in this search
mechanism are again mostly those that encode the sentence as a whole, similar to other search

mechanisms.
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Table 4. Alignment results by adopting Sequence Match strategy on the full dataset.
TH indicates the adopted threshold value. The asterisk * marks the measures
that outperform NGRAM baseline (n=3) with p < 0.05. Table adopted from
Smolka et al. (2022).

% on the test set
measure Best TH
prec rec F1
NGRAM(n=1) 89.1 83.4 86.1 0.2
NGRAM(n=2) 89.1 83.4 86.1 0.2
NGRAM(n=3) 89.7 84.2 86.9 0.1
NGRAM(n=4) 89.1 83.4 86.1 0.2
NGRAM(n=5) 89.1 83.4 86.1 0.2
TOKENSstring 92.7 81.6 86.8 0.15
TOKENsyn 86.2 86.9 86.3 0

w2V 87.6 87.6 87.6 0.45
GLOVE 87.3 85.2 86.2 0.9
BERTword 91.5 82.2 86.6 0.75
BERTcls 92.3 81.4 86.5 0.85
SBERTDbert* 89.8 87.8 88.8 0.6
SBERTalbert 91.1 85.8 88.3 0.25
SBERTmini 87.8 86.8 87.3 0.25
BERTprec 90.0 86.8 88.4 0.85
BERTrec* 89.9 87.6 88.7 0.85
BERT({1* 90.1 87.4 88.7 0.85

3.4.2 Alignment Results on Sentences with Limited Length

The above experiments are conducted without limiting the lengths of those input sentences.
However, in our another study, we have found that it is difficult to extract appropriate lexico-
syntactic patterns from sentences containing more than two clauses, as selecting the desired
candidates will become much more confusing. As a result, the precision rate of extracting high-
quality patterns would be lower. To ensure the quality of extracted templates, we thus conducted
an additional set of experiments on those input sentences with limited length. Below, we first
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describe how to find out a reasonable way to filter out those sentences that would be too
complicated/long for our purpose. Afterward, we repeat the above experiments on this new
dataset to check if it would significantly change the alignment performance.

3.4.2.1 Finding the Appropriate Criterion to Filter out Long Sentences

To limit the degree of confusion in selecting the desired candidates, we would like to only use
sentences with no more than two clauses to extract the desired templates. To automatically filter
out those sentence pairs that might contain more than two clauses, we need to first find out a
suitable criterion. For simplicity, we opt to use sentence length as the filtering criterion, because
this value not only is highly correlated with the number of associated clauses but also could be

easily measured.
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Figure 4. Finding the upper-limit sentence length from smoothed probability
distributions (X-axis: sentence length in tokens). The blue curve is for the
sentences with maximum two clauses, and the green curve is for the cases
with more than two clauses. The red vertical line marks the intersection
between the two distributions.

Figure 4 illustrates how we find the upper-limit sentence length. We first manually
generate two smoothed probability distributions in Figure 4: The blue curve is for the sentences
with two clauses at most (which we consider appropriate for our task), and the green curve is
for the cases with more than two clauses (which we consider are too difficult). Those two
smoothed probability distributions are constructed from 100 sentences in each group, which are
randomly selected from the Webis-CPC-11 dataset and then manually checked to fit this target
number. The smoothed probability distributions are calculated using kernel density estimation
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(Rosenblatt, 1956). We then find the integer value that is closest to the intersection point
between the two distributions (indicated by the red vertical line in Figure 4), which is 22. This
value indicates that if the sentence has a length below it, it is more likely to belong to the
“appropriate” category. On the contrary, a sentence is more likely to be too difficult for our

purpose, if its length is above this value.

Table 5 gives the details of the newly constructed dataset. The main difference from the
full dataset used in the previous experiments lies in the golden answers. In the new dataset, the
benchmark consists of only 367 aligned sentence pairs that are shorter than 22 tokens (versus
633 sentence pairs in the original dataset, Table 1).

Table 5. Statistics for the dataset that considers sentence-length constraint. #Min-
#Max specifies the range in “paragraph range” row. Also, 1-1 indicates the
one-to-one mapping, 2-1 (1-2) indicates two-to-one and one-to-two
mapping, and so on.

all dev test
#input paragraphs 393 48 345
#input non-paraphrased pairs (dataset errors) 7 2 5
avg. paragraph length (#sentences) 23 2.4 23
avg. sentence length (#tokens) 20.9 19.3 21.1
paragraph range (# sentences) 1-7 1-6 1-7
all 822 87 735
(100%) (100%) (100%)
1-1 (alh (767303/0) (722/0) (7576%)
% of alignment types 2-1(1-2) (1163"2A) ) (113;)) (1161"2)
- o | aw | %
other 49 4 45
(2-3,1-4,etc.) (6%) (4%) (6%)
Evaluation 1-1 (<22 tokens, golden 367 50 317
Benchmark answers) 45%) (57%) (43%)

3.4.2.2 Experimental Results on Sentences with Limited Length

Tables 6-8 compare all similarity measures under the Best Match strategy (Uni- and Bi-
directional, separately) and the Sequence Match strategy, respectively for the dataset containing
only sentences shorter than 22 tokens. We follow the same scheme adopted in the previous

experiments to report the new results.
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Table 6. Alignment results on sentences shorter than 22 tokens for the uni-directional
Best Match strategy. TH indicates the threshold value. The asterisk * marks
the metrics that outperforms NGRAM baseline (n=3) with p < 0.05.

% on the test set
measure Best TH
prec rec F1
NGRAM(n=1)* 73.3 77.9 75.5 0.3
NGRAM(n=2)* 73.3 77.9 75.5 0.3
NGRAM(n=3) 74.4 65.9 69.6 0.3
NGRAM(n=4)* 73.3 77.9 75.5 0.3
NGRAM(n=5)* 73.3 77.9 75.5 0.3
TOKENstring* 77.7 70.3 73.8 0.2
TOKENsyn 71.3 65.9 68.5 0.1
w2V 74.6 65.9 70.0 0.8
GLOVE 65.7 74.4 69.8 0.95
BERTword* 73.9 83.9 78.6 0.75
BERTcls 78.2 66.9 72.1 0.9
SBERTbert* 70.3 90.2 79.0 0.6
SBERTalbert 76.9 70.3 73.5 0.35
SBERTmini* 74.2 85.2 79.3 0.35
BERTprec* 77.6 70.0 74.1 0.9
BERTrec* 81.5 73.8 77.5 0.9
BERTf1* 80.9 72.2 76.3 0.9

Overall, the performances (in terms of F1 scores) on those length-limited sentences are
lower than that on the full dataset (Table 2-4). The drop in F1 score ranges from 2.4% (bi-
directional Best Match; 85.1% vs. 82.7%) to 6.1% (Sequence Match; 88.8% vs. 82.7%). One
reason for causing the drops is that it implicitly removes the simplest alignment cases after
filtering out those longer sentences, where the whole paragraph just consists of one single
sentence. Another reason is that shorter sentences are easier to be mistakenly linked because
they have less distinctive tokens. Detailed explanation will be delayed to the discussion section
(Section 5).
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Table 7. Alignment results on sentences shorter than 22 tokens for the bi-directional
Best Match strategy. TH indicates the threshold value. The asterisk * marks
the metrics that outperforms NGRAM baseline (n=3) with p < 0.05.

% on the test set
measure Best TH
prec rec F1

NGRAM(n=1) 71.7 77.9 77.8 0.3
NGRAM(n=2) 77.7 77.9 77.8 0.3
NGRAM(n=3) 74.7 83.9 79.0 0.1
NGRAM(n=4) 71.7 77.9 77.8 0.3
NGRAM(n=5) 71.7 77.9 77.8 0.3
TOKENSstring 79.4 70.3 74.6 0.2
TOKENsyn 73.6 76.3 74.9 0.05
W2V* 78.4 84.5 81.3 0.6
GLOVE 72.9 68.8 70.8 0.95
BERTword* 78.6 83.3 80.9 0.75
BERTcls 83.7 64.7 73.0 0.9
SBERTbert* 75.0 87.1 80.6 0.6
SBERTalbert* 77.1 89.3 82.7 0.25
SBERTmini* 76.0 89.0 82.0 0.25
BERTprec* 75.7 86.4 80.7 0.85
BERTrec* 76.2 82.0 81.3 0.85
BERT{l1 81.8 72.2 76.7 0.9

Unlike in the experiments on the full dataset, two of the alignment strategies — Bi-
directional Best Match and Sequence Match obtain the same F1 score (82.7%) with the
SBERTalbert metric. This might indicate that the adjacency and dependency information used
in Sequence Match (but not Best Match) is not as important for aligning sentences with limited

length.
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Table 8. Alignment results on sentences shorter than 22 tokens for the Sequence
Match Best Match strategy. TH indicates the threshold value. The asterisk *
marks the metrics that outperforms NGRAM baseline (n=3) with p < 0.05.

% on the test set
measure Best TH
prec rec F1

NGRAM(n=1) 76.5 82.3 79.3 0.2
NGRAM(n=2) 76.5 82.3 79.3 0.2
NGRAM(n=3) 74.7 83.9 79.0 0.1
NGRAM(n=4) 76.5 82.3 79.3 0.2
NGRAM(n=5) 76.5 82.3 79.3 0.2
TOKENSstring 76.5 83.3 79.8 0.15

TOKENsyn 73.4 78.2 75.7 0
W2V* 78.2 84.9 81.4 0.45
GLOVE 72.8 72.6 72.7 0.9
BERTword* 78.6 83.3 80.9 0.75
BERTcls 77.5 78.2 75.7 0.85
SBERTbert* 75.0 87.1 80.6 0.6
SBERTalbert* 77.1 89.3 82.7 0.25
SBERTmini* 76.0 89.0 82.0 0.25
BERTprec* 75.7 86.4 80.7 0.85
BERTrec 74.9 84.5 79.4 0.85
BERT{1* 76.1 90.5 82.7 0.85

Furthermore, just as on the full dataset, the best similarity measure varies under different
search mechanisms. In the sequence match approach, two BERT-type measures (i.e., all
SentenceBERT variants with the best being BERTalbert (82.7% F1 score)), and two of
BERTScore variants (i.e., BERTprec with 80.7% F1 score and BERTf1 with 82.7% F1 score)
and word2vec metric (i.e., W2V, 81.4% F1 score) significantly outperform the baseline. The
SentenceBERT and BERTScore measure performs best, surpassing the character-trigram
baseline method by 3.7% (82.7% vs. 79.0%).

Similarly, in the bi-directional best match approach, the best result is again obtained by
the SentenceBERT measure (i.e., SBERTalbert) with the best F1-score of 82.7%, significantly
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outperforming the character ngram similarity measure at 79.0%. This confirms the observation
from previous experiments regarding the high suitability of sentence-embedding-based

approaches in our task.

Last, in the uni-directional best match approach, several tested measures significantly
outperform the baseline (69.6%), including SBERTmini (79.3%), SBERTbert (79.0%),
BERTword (78.6%), BERTrec (77.5%), BERTf1(76.3%), NGRAM with n#3 (75.5%),
BERTprec (74.1%) and TOKENstring (73.8%). The measures that perform best in this search
mechanism are again mostly those that encode the sentence as a whole, similar to other search

mechanisms.

In comparison with the alignment results obtained from those sentences without length
limitation, the F1-scores measures on length-limited sentences are lower (see the last item in
Section 5). Although the performance of alignment of sentences with limited length is overall
lower than on full data, we still prefer to impose the sentence length limitation, because it only
slightly lowers the alignment performance but will offer considerable benefit while extracting

the lexico-syntactic templates later.

3.43 Comparison of BERT Word-averaging and [CLS] Token Sentence
Representation
Table 9. Comparison of results of BERT word-averaging and BERT [CLS] token-
based similarity metrics on the full dataset. SM indicates Search Mechanism.

The asterisk * indicates cases where the difference between two measures is
statistically significant with p < 0.05.

% on the test set
SM measure
prec rec F1

Sequence BERTword 91.5 82.2 86.6
Search BERTcls 92.3 81.4 86.5
BERTword* 78.5 87.0 82.5

Best Match (uni)
BERTcls 81.9 67.9 74.3
BERTword* 82.3 86.4 84.3

Best Match (bi)
BERTcls 86.2 66.5 75.1

Comparing the performance of the methods using BERTword (i.e., word-averaging of BERT
token embeddings) and the BERT [CLS] token, we observe that the BERTword achieves better
performance regardless of the adopted search mechanism. Table 9 and Table 10 show how
BERTword performs significantly better (p<0.05) than BERTcls regardless of the search
mechanism for the dataset with sentence length constraint. The BERTword results are up to
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6.5% higher, depending on the search mechanism (80.9% vs. 75.7% for sequence match; 80.9%
vs. 73.0%, and 78.6% vs. 72.1% for bi- and uni-directional, respectively). For the full dataset,
a noticeable difference can be observed for both versions of the Best Match approach with up
to a 9.2% difference (84.3% vs. 75.1% and 82.5% vs. 74.3% for bi- and uni-directional,
respectively). This is in line with the observation from Choi et al. (2021), who noted that
interpreting the [CLS] token embedding as the sentence representation might be inferior to
combining the individual sub-word embeddings obtained from BERT in some tasks.

Table 10. Comparison of results of BERT word-averaging and BERT [CLS] token-

based similarity metrics on sentences shorter than 22 tokens. SM indicates

Search Mechanism. The asterisk * indicates cases where the difference
between two measures is statistically significant with p < 0.5.

% on the test set
SM measure
prec rec F1

Sequence BERTword* 78.6 83.3 78.6
Search BERTcls 77.5 78.2 71.5
BERTword* 73.9 83.9 78.6

Best Match (uni)
BERTcls 78.2 66.9 72.1
BERTword* 78.6 83.3 80.9

Best Match (bi)
BERTcls 83.7 64.7 73.0

3.5 Exploring Features for Non-paraphrased Paragraph-pair Detection

As shown in Table 1, we have found that some of the paragraph pairs we sampled from the
Webis-CPC-11 were mislabeled as paraphrase-pairs, in which the meaning of the two
paragraphs is not similar. Figure 5 shows an example of such a non-paraphrased pair, where the
text fragments in red indicate two different meanings. In one paragraph the character “Sukey”
is said to have heard about some issues, whereas in the other paragraph it is indicated she has
no idea about them. In the 400 pairs with the positive labels that we sampled, 7 were not
paraphrases.

Although we have excluded those outlier pairs from our previous experiments, they are
manually detected, which would be too time-consuming to do so for a large corpus. Therefore,
we would like to check whether it is possible to detect such incorrectly labeled data
automatically. As the paragraph is just a longer passage in comparison with the sentence, we
expect that the measures adopted to calculate the sentence similarity could be also applied to
evaluate the paragraph similarity. We thus further test whether the measures adopted for

sentence alignment are discriminative enough to filter out those incorrectly annotated paragraph
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pairs (i.e., non-paraphrased pairs found).

I'/So you've heard about \'I / \

the new silk?' said Mrs. When Sukey saw the
Lawton. '"To be sure | unique white dress, she

have,' rejoined Sukey. claimed to have no idea
'Everybody's talking what it was made of. 'But

about it. Do show it to I‘told you about the new
me. Catharine- that's a silk yesterday."You really

didn't. T haven't heard a
dear.' The dress was ) :
. word about it.
brought forth from its
|\ envelope of white linen. | |

N N 4

Figure 5. Example of a non-paraphrased paragraph pair (outlier) from the Webis-
CPC-11 dataset. Red marks text fragments with opposite meanings.

To detect the outliers, we first calculate the paragraph similarity using the same similarity
measures adopted in the previous experiments, but taking paragraphs, not sentences, as the input.
We include the following similarity measures in the experiment: (1) based on the unit-overlap-
ratio (including: NGRAM(n=3), TOKENSstring, TOKENsyn); based on the sentence-vector-
similarity (including SentenceBERT and BERTScore). We model the similarity values from all
paraphrased paragraph pairs for each measure with a specific normal distribution and then
calculate its 0.95 confidence interval to check whether the non-paraphrased paragraphs can be

detected as outliers outside this interval.

Table 11 shows the percentage of non-paraphrased pairs that fall below the left boundary
value of the 0.95 Confidence Interval for each of the adopted similarity measures. The best
result is achieved using BERTprec, with which we can detect all outlier pairs. This leads to the
conclusion that it is possible to automatically detect those non-paraphrased paragraph-pairs by

using BERTScore as a similarity measure.
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Table 11. Results of filtering out non-paraphrased paragraph pairs based on
the 0.95 confidence interval. Mean is the mean similarity value for
all (393) paraphrased paragraph pairs; L-CI is the left boundary of
the Confidence Interval, and #pairs is the number of non-paraphrased
pairs that fall outside the confidence interval (out of 7). Results with p <
0.05 are marked with the asterisk *. Table adopted from Smolka et al.

(2022).

measure mean L-CI (0.95) % pairs
NGRAM(n=3) 0.547 0.530 71%
TOKENSstring 0.221 0.214 57%
TOKENsyn 0.141 0.136 57%
SBERTbert 0.541 0.522 43%
SBERTalbert 0.411 0.391 43%
SBERTmini* 0.339 0.321 86%
BERTprec* 0.914 0.911 100%
BERTrec 0.917 0.914 71%
BERTf1* 0.915 0.913 71%

4. Error Analysis

We analyzed 50 errors generated by our best approach (i.e., Sequence Match with SBERTmini),
and categorized them based on their associated error sources: (1) mistaking 1-n mapping for 1-
1 (46%); (2) associated with incorrect sentence boundary (26%), in which the sentences are split
incorrectly before conducting alignment (e.g., a sentence is incorrectly split into two sequences
by the sentence segmenter); (3) paraphrased sentences take different sequence-orders within
two given paragraphs (16%); (4) others (12%), of which it is difficult to attribute each error to

a specific reason.

Table 12 shows an example of the first error category, which incorrectly marks a 1-n
alignment as 1-1. The source of this error is likely due to the following two reasons. First, those
proposed similarity measures are still incapable of truly reflecting the semantic similarity
between two sentences when they are paraphrased in an abstract way; as a result, they might
incorrectly convert a golden 1-n mapping into a 1-1 mapping. Second, because the alignment is
selected based on the sentence similarity and the probability of each alignment type is estimated
from the development set, the adopted model has a preference for extracting 1-1 alignments as

they are most common in the dataset (cf. Table 1).
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Table 12. An example which mis-interprets a one-to-many relationship as a 1-1
alignment. Gold sentence alignments (i.e., pairs “a”, “b”) are correctly
extracted; ""x"" is incorrectly extracted and “0” is an annotated 1-n
alignment which we do not want to extract.

PARAGRAPH #1

PARAGRAPH #2

MODEL INPUT (FULL
PARAGRAPHS)

Thad, of course. And, Bill,
we're going to get him,
sooner or later. Mr. Hooper
won't want to stand this sort of
thing forever. I've got a hunch
that we're not through with
that game yet.

Naturally, Thad and also
Bill, whom we'll get after
a while. Mr. Hooper won't
let this go on for long. I'm
guessing we won't be
done for some time.

ALIGNED SENTENCES

Thad, of course. And, Bill,
we're going to get him, sooner
or later.

Naturally, Thad and also
Bill, whom we'll get after
a while

Mr. Hooper won't want to

Mr. Hooper won't let this

(GOLDEN ANSWER) stand this sort of thing
go on for long.
forever.
I've got a hunch that we're not | I'm guessing we won't be
through with that game yet. done for some time.
. . . Naturally, Thad and also
Apd, Bill, we're going to get Bill, whom we'll get after
him, sooner or later. .
a while.
MODEL ANSWER Mr. Hooper won't want to Mr. Hooper won't let this

stand this sort of thing
forever.

go on for long.

I've got a hunch that we're not
through with that game yet.

I'm guessing we won't be
done for some time.

The second error category (i.e., with incorrect sentence boundary) occurs when the pre-
processing module incorrectly split the sentences within one of the input paragraphs. Finally,
the last type of error is caused by the sequence search mechanism, which assumes all
paraphrased passage pairs follow the same relative order within each paragraph. If this
assumption is violated in the given paragraph pair, it will always return an incorrect answer.

5. Discussion

Based on our results, we get the following observations:

e Among various sentence alignment strategies, Sequence Match tends to give the best and most
consistent results across all our experiments. The advantage of Sequence Match is that it

employs dynamic programming which makes it faster than the greedy approaches. It also
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performs well where the adjacency and dependency information between sentences is relevant
to the matching. However, it will not perform well when the sentences are in a different order
in the two paragraphs, in which case using the Best Match strategy would be preferable.
Furthermore, the bi-directional Best Match shows much better performance than the uni-
directional approach on both datasets we use, which can be explained by the symmetry in our
data, as described earlier in the introduction section.

In general, the measures that encode the sentence directly tend to perform better than those
that are based on individual token representations (either unit-overlap or token-embedding-
average). The only exception is the approach using the BERT [CLS] token. We believe it might
be because the [CLS] token is not explicitly trained to condense a long text sequence into a
vector, unlike SentenceBERT and BERTScore which are created specifically for doing so.

The method using averaged word vectors from BERT outperforms the method using the [CLS]
token in our task. The inferior performance of the method with [CLS] token representations
might be due to that the [CLS] token is trained on a much smaller amount of data; in contrast,

those individual token embeddings are trained from a much larger dataset.

Noticeably, the best thresholds of those non-embedding methods tend to be much lower than
those of the measures that utilize neural embeddings. We conjecture this is because the neural
models estimate similarity based on soft/fuzzy matching (which would result lower thresholds),
while string-based methods use hard/strict matching (which would result higher thresholds, as

it cannot distinguish the soft matching case from the un-matched case).

Finally, we have discovered that when the additional sentence length limitation is imposed,
the performance drops across all approaches, with the biggest difference for the Sequence
Matching approach. One possible explanation is that shorter sentences are easier to be
mistakenly linked because they have less distinctive tokens (e.g., when comparing short
sentences like “John Walker went.” and “John Walker came.”, the similarity between them will
be always high because there is only one distinguishing token; however, it would be a less
serious issue for the cases with longer sentences). Another reason might be that the sentence
length limitation implicitly removes the trivial cases from the dataset, i.e., those cases where
the whole paragraph only contains a single long sentence that will be automatically mapped to
its corresponding paragraph (and forms a 1-1 mapping). Such cases are more likely to appear
in the full dataset, which would make the overall result higher on this dataset.

Conclusions

We have presented the first comparison among various model-agnostic similarity measures used

for aligning sentences among paraphrased paragraphs. For most cases, we find that embedding-

based similarity measures outperform the string-based approaches (including the previous
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SOTA character trigram approach tested on the TS dataset), and sentence-embedding-based
methods are preferable to the word-embedding-based methods for most search mechanisms

except the uni-directional greedy matching.

Additionally, our results have shown that in calculating the similarity for sentence
alignment, word vector averaging is better than adopting the [CLS] token when retrieving a

representation of a whole sentence from a BERT-based model.
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Abstract

In this paper, we use several combinations of feature front-end modules and attention
mechanisms to improve the performance of our speaker verification system. An
updated version of ECAPA-TDNN is chosen as a baseline. We replace and integrate

different feature front-end and attention mechanism modules to compare and find
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the most effective model design, and this model would be our final system. We use
VoxCeleb 2 dataset as our training set, and test the performance of our models on
several test sets. With our final proposed model, we improved performance by 16%
over baseline on VoxSRC2022 valudation set, achieving better results for our
speaker verification system.

RESEEE : SHEEREE - pURERMLAE  JEE TP - RS RR

Keywords: Speaker Verification, Frontend Module, Attention Mechanism, Time
Delay Neural Network

1. &% (Introduction)

FEE AR HT AR RENBAMLERTFERMESET » BB
TR > (T EY) - BRI DS ETE T - B E L FER AT 5
& (1 AU AR A iy B B 22 [ B PR - BE DARE Ry R BV A sk iR R (T R -
PRI » & (A A 1S Sl e B A B AR S OB S B (BB A &0AY 808 ~ AL
HIE AL Ha i > Wi freg B B i &L 2 —(EIEE BUInEE -

FEE YR (E R H T — TR A AR AR B BB RV SR € 704 - FEHHIE TR
flr > FRAFT AT LURFE B AV SR BB R A A B E R B AR & » BBt E (E iR A A
AR ERIREEN S 7 EITHERD . DART B & s s R B -

AR BEF B ETEE G ARG AR RS s A SRS ET - R
S BB RS R A T MR ZE R 0 (502 DABF IEFHCAEEE ( Time Delay Neural Network,
TDNN) {E&FE: » W FHEPFS] AT Res2Net (Gao et al,, 2021) %437 #F54515H1 SENet
(Hu et al.,, 2018) X J7H#4%f) ECAPATDNN (Desplanques et al., 2020) SR AMELE — 4
GBS RS F Y ResNet (He er al., 2016a) » W& ERE AT Y E 2 Bnad i 28 h HUS 52
ARAYZRIR o MEET RTEE AR IS5 B S EFH IR » 7S RE 4 & & it 2
T (B B 3 B ZE R W B4 2K > Hisk 2 ECAPA CNNTDNN (Thienpondt et al., 2021) « 1F
ZfERIH > ResNet 451 5%51 5 ECAPA-TDNN HYRTRE B4R » AT R A S 1ERHE
FREREE AR VR - B GTEIR P EH R EE R EENE - 24 ER
FEPHIRSIERIARIR - W R sEE s AR B LR N T SRy AT AR I

TE AR & S Fef 8 H B X ECAPATDNN 22 % 3 17 20 #£ Y Improving
ECAPATDNN (Zhang et al., 2021) B EE » BB M5 4515 L2 ! IM ECAPA-TDNN
R AR AR - I ECAPA CNNTDNN HYZERREEEa T TNy - TRMevE
Ep el oy MR TR 7E AR B AT R R B AH DU E BT H E o B0 MR R A )
B AR ERIEEREETTIISE - 1T HAAAY CNN 585N » I SINEER T TESCERY CNN 45
LU B AW (B E B I MFA 15540 (Liu et al., 2022) - Z & IE HUE =405
RIS R R A F L T S AR 2 O - IR AHY SE A B CBAM 5
&H(Woo et al., 2018) LK GC 1#i4H(Cao et al., 2019) » FERAMIHIEAAELI G - (EH] T THH
JEHY 2D CNN (4R E By R e R4 DL fe. CBAM AR {E B LAY 2 01 - 7
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Voxceleb 1-O ~ Voxceleb 1-E ~ Voxceleb 1-H J VoxSRC2022 HiztEE FEE IR T EEER
AR AU AF AR -

R FZE o R TAEE Y - B8 Redtiahm 5 55 Z8h0 RR9T 5% > 0 48EHEIRY
BERIATE I 0% ~ AR  RiERT RS DU E B IS S =8n hE e E
SEHERATEHERERHE - S8EE DUGHERER]; SR B E AR - gthicr
(] A o B A AH B E B IR B R s AR IR E e aE AT o BT R o B LM By

e
\Z\\D af °©

2. %A (Research Methods)

e EEEIRMTR SR AR E BT BN &E DT 5 - B2 A S EETH
PR~ TFEPEAIZLREAREDN « A EIRTREEAH DU FE B IEHI0Y 48 - B R
{#H T VoxSRC ‘B )52 ALY %k T £ (Chung et al., 2020) {734k » i L IM ECAPA-
TDNN R BB > 7 45 & A BT R A DU B M 22 15 te pi B S Y
RUREFT SR s 2 -

2.1 EFIEIEE (Data Preprocessing)

By T e A 5 (R 14 DA R 3 o 72 A MR FEHERT (overfitting ) (HYR0N » FRPIFIF T EkHY
SEREY AR NI SRR 2R 1 o BB SRS R AN B PR A2 » BES A U A
RIGTZALRES) - FEHAEHRISENRFEIES - M EEERRERERE - 7
SE T IRFERET SR ENEER - BROTEAEEERE S B2 -

2.1.1 EE}E5E (Data Augmentation)

FeM{E A T RITE Y E R iR 0 B RHEE SR AP I SR E R T iRAE - B EEE
MUSAN &R} £E(Snyder et al., 2015) 5K Fslign A S RENIAR S » £ MUSAN ZEfpEE 1L
BT =AEE s 0 oy A FesE e (speech) ~ H4E (music) - DAKIEE (noise) - SEE D
HINE LR B AL G P R - G2 HEE AT DU ZE B B S P s
FEE > EEEEMOYEIE 12 EEESHK 0 PSRN A% BN
BETZEAERE - RIREL LA ESRRIRIVEDE ~ R ~ il ggs > tfF
TATRIREVE I ~ B3 ~ IEIa B eEE ) BB ASAIEE TR RS (0E5E
B FEMAEREE) DURERY (NEE - WE - giYRssE) > FREEtgAEE
SRR AR E o S5—(ERIZ A RIR (Room Impulse Response » ZEfEAREZLE ) &
HHEEKoeral., 2017) KEERENIAEZE (Reverberate) » {F RIR EORHE A HEH BUEHET
BEuErl > IMA G AR ER T ETE RS A -

it
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2.1.2 BLUSEHEEL (Acoustic Feature Extraction)

FefM{FH 80 4EAINGFEISEEE ( Mel-filter bankfeatures » FBank features ) {F ARy 3 2k
BILE i 2SR EI5ERE (45 (Mel-Frequency Cepstral Coefficients » MFCC ) &
i MRRER R R g A 408 DCT 4 (S HIRE T E MBIt E R e e
sEERE USRS R -

2.2 fEAEIZEEE (Model Architecture)

#£ ECAPA-TDNN 2 1% - 155N B T 2 Je i G ORI DU % RIEHF Beeta - Al
TS (EFEE B s B P U EF VR 7% AL DU R R R R R TR FRE Y
2B e AR ER SR LA ECAPA-TDNN  YEH) Improving ECAPA-TDNN  {F Ry S JEE »
Ao E e AT RREIT IR  [RE TR BR800 4R AT AR IR - PR ELIR AT
Hlap 44 Fs IM ECAPA-TDNN » 37 HAT B AR i SC P A BRI -

2.2.1 Improving ECAPA-TDNN

Improving ECAPA-TDNN 2% j/® ECAPATDNN A&ty —{E U ERRAS « fEZ A

Zhang et al. i T SE JEE SJ#HIEY SCBlock (Liu er al., 2020) HUX T JR4GZEHE L5
HgPEAEAY Res2Block » 3% SC-Block FrfiA Y AR E K47 B GIE A SERS B RN R
B (receptive field ) fz FTNICHYZERDEET] > DALE R EP A AZEE - WAE SC-
Block 1% [Hi#% | SE-Block » 7% ;% & 7 {E A XURHEE] (feature map ) 1 88 B A AMEAY
{45128 - Zhang et al. 3@ {T 8 —J@ SE-SC-Block 2 [ij#fi A B4 (aggregation) JEHY4EHE -

FAZIE A B 7 WAV R B R B S PR BREE By N — i@ SE-SC-Block HYfa ALKV © 13 265
&g R G ECAPA-TDNN W% @8 & )7 A4S R R—EME e (0 F & 45
it 2 S —/@ SE-SC-Block MigitHE & F o BE—BESEI# A » MlBIERE
IRV G TGS B a2 R [E S R R DURHCE B S & VIR A A & -

2.2.2 IM ECAPA-TDNN

MILL Improving ECAPA-TDNN {f B S HEFTIEEY » L A BBh (8 R AR FIRE T —
& TBAEHS - BLILFIR 55 T — @Y SESC-Block » 155—@ TDNN &5HysiH]
HfE B TS TR AR BRI BIOE | iR - RIVEEEES & AR
TR EANE G TDNN #iih e B — S 4T —JEi SE-SC-Block it a &
TR RS - DUBACTEEE 0352 5 MR, %% SE-SC-Block RRANH & /b —
L R R EE N 8 TDNN At B A B — % 8 &
A R R DRGSR - (e AR I LR R T BB L
SR RAIR AT 35 22 - 2R DL E IR - RPTEIEAAHT Improving ECAPA-TDNN #Ef T
{2 » BT A 4 B IM ECAPA-TDNN
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B 1. B2CHELHT IM ECAPA-TDNN B4 C ZonE8 0 T 2 SHE# -
S R AERE -
[Figure 1. The proposed IM ECAPA-TDNN. C denotes aschannels, T denotes as
frames, S denotes as numbersof speaker.]

2.3 R EIREEEL (Feature Preprocessing Modules)

£ ECAPA CNN-TDNN B2 S o » 20 i8R A 2 R R (U i ] e A i R B A
HEfTRMEER A » PR IR VR I 1 0 SR 4 P (flatten ) » fEHE(ER—f%
fifi A A\ ECAPA-TDNN {73/l SRAE 57 300V EE m AR > R MR (Esa A
FREHAIE T - FR{FI{E IM ECAPA-TDNN FIHEIE(E T 3 FEA [E4EREHY R B A 1T
B > B By iGR S Y 2D CNN B4 ~ OB TECE (pre-activation ) fEEXf1) 2D CNN
f54H > DURSIAW4ERERE ST MFA 584 -
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2.3.1 2D CNN ##4H (2D CNN Module)

FylF461E ECAPA CNN-TDNN Hrfr{si FHEYRTER B4 » 88— — 451551 ResNet
4ERER Y ResBlock #EfTAHATMEL > FEE M IR MEHFTE ResBlock HfjI A SE f54H » %
HE4EREANE 2 Fvr » N EBRIRELD LGSR ERZES & - i residual block Y
MBI R 64 DARRBIRIAN > [E0G 208 R AABR 3 e K 5 — (8 Ko 1% —(H — 45
TRAVAIE (stride) B Ky 2 AIUMETEZCE -

l 1 x80xT

Conv2D + ReLLU + BN ( £=3, 5=2)

Cx40 xT

\

Conv2D SE-ResBlock
Cx40 xT

Yy

Conv2D SE-ResBlock

Cx40 xT

A 4

Conv2D + ReLU + BN ( k=3, 5s=2)

(Cx20) x T (flatten)

[B 2. 2D CNN {54 - B C o 5E8 - T ZonEHes - MEE TPk H s
FNEEBANRE G RIE -
[Figure 2. 2D CNN module. C denotes as channels, T denotes as frames. k and s in
convolutions denote kernel size and stride.]

2.3.2 FEEUERT2D CNN f54H (Pre-activated 2D CNN Module)

HAI2E T (He et al, 2016b) FHEERGEREAVIFTEAEIR - fEZIHZE T RITELE ResBlock
AUREIL LS (shorteut connection) EHEfTE(T#A(F &) & R (RRALRYFRIT ¢ [FIlFE R
RIS SR B0E (post-activation ) BB THRUE (pre-activation) - BEH(H
FRAUEE R FIGR - WA AR S AR © FRRY EIERFEAE SR > FTis 2D CNN  f5
4" ResBlock FY4ERENFFHEIT %L - Hrat b B es S RELLEAIE 3 P -
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N
4

(a) original (b) pre-activation

B 3. JR#E SE-ResBlock HTERDTLAEZ LT - & Tt &5 BRI -
[Figure 3. Comparison between original and pre-activation SE-ResBlock.
@ denotes aselement-wise addition.]

2.3.3 MFA f54H (MFA Module)

MFA f54H/Z Liu er al /£ MFA-TDNN &g FAREU(L 2D CNN #2018 éhhE » H il
F 7 —{1& Res2Block SHG2KHU(T ResBlock » 72 {[# S HG 2 (EH 48 HY Res2Block HHE4#E T Wy
& 451 - tpt 2 M E 2 REE4H (dualpathway multi-scale module ) DUSFHHR Je i 260+
B 154 (frequency-channel attention module ) - FEAHEREANE 4 Fiiow o B E 20 RS
HINBUEZTE Res2Block WY EHE S S GIEREHSNT T —(E TDNN BHAVER - IF
HiE(EEEaHny i AR S — & S8 Res2Net R HHYGEE LR T
WA AT S — (@ TR o SR R E B A RS RS AT R E Y
TDNN g E T 45FEAE 5 - HERIBLSHE S SE #HEMEM - ARV E
% EEIMAL (Global average pooling » GAP) 1% 2 & % N AHZR LI 2 78 i {1dl 4k FE 1Y
P AR o R 28T SE BAHHIEEE (excitation) F1E > RBRFHFMER
HYIa Y (reshape) [O]JFARAY 1A [ & 07 HAF FME B E SR B R 4a R e R & -
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1 =80 =T
A

[ Conv2D + ReLU + BN ( 4=3, 5=2) ]

Cx40 x T

[ Conv2D + ReLLU + BN ( /=3, 5=1) ]
Cx40 xT

Att-TDNN
A,
Att-TDNN
Y
[ ¥ Ys v )

(Cx40) x T (concatenate)
v

[ ConvlD + ReLU + BN ( k=1, s=1) ]

L/
(Cx40) x T
B 4. MFA (R4 - B C ZonZER T 2SR » BHEFHTk #Hs 2
BIREANRELCRE + & ForTEHIERN -
[Figure 4. MFA module. C denotes as channels, T denotes as frames, k and s in
convolutions denote kernel size and stride, @ denotes as element-wise
addition.]
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Cl4 x40 xT

!

[ GAP (on time domain) ]
l (C/4%40) % 1 ( flatten)

[ 1 x 1 Conv ]

l (Cl4x40)/16 x 1
[ RelLU J

l (Cl4x40)/16 x 1
[ 1 x 1 Conv ]

C C/4 x 40 x 1 (reshape)
[ ]

(Cl4x40) x T ( flatten)

[ ConviD +ReLU +BN |

(C/4>x40) =T

[B] 5. MFA fREH 71T At-TDNN fREH 4578 - B C ZoniEiEg ' T 2o EHE
B © KT EEENTE -
[Figure 5. Att-TDNN module, which inside the MFA module. C denotes as
channels, T denotes as frames, & denotes as element-wise product.]

2.4 FE JH%H#] (Attention Mechanisms)

FEFR4RHY ECAPA-TDNN R A& SEH S ESCERRA S A Sl EDL ~ s Measng - 1
TENE S A ER IS AR SR A R AG A R - P MRV EER AL LUK, 2D CNN 5i4H o
{EFIEIHY SE HAHZER > SE R4 & B EUm SR F RIS R #un B 5 8 F FHIREE -
FIBREE - T AT DU B R E A AR WA SR AR O B AE B R
MEEEE SE B ES  EAFEIRELFESAEETIAMNL > e 3%
FraS e aa T — P E B HIER A ERE > IRPEIL BRI b B & SE #
HAEW - S5 3 A FESRAERIREIEATGE B IR AR EAVRIA > BB AR
o7 HlE CBAM #E4H UK GC 154 - BRI iE S/ A AR 4518 35 LI 6 - Tl
MFA {2 o B SRR ER Jakat > ML GE# MFA B E hERAERD
P -

2.4.1 SE #5%H (SE Module)

SE ( Squeeze and Excitation ) f52H F [ gaadifiies op (8 I AR B I P HIIRAE - AN SE R4 (e
6(a) Fror o HAEBERLE (squeeze) BLF3% (excitation) WP ERAGTRA FIEEAVEE -
B > S ARG R E DM SR T 2 /P EEH R DIHUS S E
SCHLT (descriptor) 3 FEACEHES » 5B HYEC LT & AW & &0 e T T T I 44



40 PR 5

AVERME - AREE A FIEECC I THYESEE - WA sigmoid pl#URF HEA B EREE
FelHlFAEFFEREE S -

) v
[ Gap ] [ omp |
) i
[ 1x1Conv_ ]

¥ (]
( ReLU |

GAP l
¥ ¥
1 x 1 Conv ( 1xI1Conv ]
RelU |
'

(o

[ 1 x 1 Conv ] T |

[ Channel Pool J

v
[ 7 x 7 Conv ]
¥

( BN )

]

(a) SE #54H(SE module) (b) CBAM f52H (¢) GC #%2H(GC module)
(CBAM module

B 6. TEEEIERR 4517 - © AL ELERTE - © ZIEPERTE -
@ FTTELERN -
[Figure 6. Different attention mechanism architectures. & denotes as element-
wise product, ® denotes as matrix multiplication, @ denotes as element-
wise addition.]

2.4.2 CBAM f&4H (CBAM Module)

CBAM ( Convolutional Block Attention Module ) 140 Z£:7A SE BI4AATISE » BLAILEREAN
6(b) Fme HALF B o mEME 2 % gRE T B2 MR 8 DI Ze B B AV 2= MR
EREEEENETEE TR T HEREEET AN B2 HE A b (Global
map pooling » GMP) ZKHU{G 5 R [EHV & E

2.43 GC 154 (GC Module)

GC ( Global Context ) f#4H 2 SE #E4HEL Non-local fH4H(Wangeral., 2018) #(T45E
% BERIEGERE AR 6(c) Fior o #i% Non-local f54H (B85 1Y I SZ i ( context modeling )
AE 181 SE MEAHEC EMYETESEHE > Cao etal 7875k Non-local f54H » #A1% /& Non-local
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TRAHAVRHM IR R B R 5 SE HAHAYAEREDLRE & WY RAH AV EES - BB IEHRAVEGT > GC
FRAHE S TR BRI SRR E T B AN EHIRI -

3. BEEEYE (Experiments)

}E{I B M E o A S B B b A i BRI R SR U O Bk G - th & S
ARG i BRI S TR 2 8 W3 I f &S AL R AR IR Ay LEAL -

3.1 EFIE (Datasets)
FAMfEE I VoxCeleb 2 (Chung et al., 2018) 1 dev HYEL {3 E BTSSR & & - A
Ll VoxCeleb 1 (Nagrani ez al,, 2017) ZRME S REFTAERTT VoxCeleb 1-O/E/H HIEAE LUK

VoxSRC 2022 HEREEEIE A A’Fﬁﬁ”ﬂ’]ﬁhﬁ]ﬁ% AN A FHEE VS (Voice
activity detection » VAD ) ¥ EEGZ i1 THEL -

3.2 2EEXE (Implementation details)

R T AR - FrA SR S 2R T HEE ISR TS © A Adam E1b
7% (optimizer ) FEEAIEHERE S8 VIEEEEFy 1e-03 > & 10 ([ epoch &E/) 25% -
5/ AAM-Softmax {F AR NE > HH margin 555 2 > scale 5% /5y 30 - 5/l SR HAR] EH
MEEE TR IR AR e Hﬂﬁ 5Lk 2e-05 o G| SREEY batch size FEE Ky 256 » il
& 100 i epoch EH AR S8 - THp4EES IM ECAPA-TDNN iy iE 8= B
BB Ry 512 FEH R AMNEH A/ NGB fy 192 FEATBRIEE4AE 77 1H > 2D CNN B4R 52
éﬁ?ﬁzﬁi/éﬁ AR/ NV Fy 64 0 T MFA fEAH AR/ NRITEE £y 32 -

3.3 FEfh#ER] (Evaluation Metrics)

Fe M LLEF $E 55 2%R ( Equal Error Rate, EER ) DL R &% /Mg HI R 4 B/ 8 ( Minimum Detection Cost
Function, MinDCF ) {E B FR MRS Z2 4R FRFRAVAER o b i/ Mg I REAS sl BB VoxSRC
2022 FEAVEAE > K SBELE R Cuis=1 > Cruste=1 ~ Prarger=0.05 o FANEZ A {58 155
BUERUETTEE S B T % -

4. BERGEE (Experimental Results)

B e Jebe¥ T4 ECAPA-TDNN BRI (E Ry R A A IM ECAPA-TDNN {2
FHY VoxCelebl-O Je iz [HHERY VoxSRC2022 Batte YR > HEERMFE 1 for - A
LIS BE 2 IM ECAPA-TDNN HE Z87F R B 50R 55 _EAYFRIABLF4G ECAPA-
TDNN MZE#% - [EEHEENE EPBEEREF—T7 -

PR IRATTE o3 A S A B A A BRAR AH LUK A [ B 0F 78 0 A Al S A AU SR B P o
M2 - MR A AV G ORI MR R - A BRI E S (8 M EATEEASE
RAMFE2 AR -
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Z& 1. IM ECAPA-TDNN £ ECAPA-TDNN 7riz B8 R R TERIEE f.2 768
o ig
[Table 1. Comparisonthe performance beteen IM ECAPA-TDNNand ECAPA-TDNN
on the easiest and the hardiesttest sets.]

VoxCeleb1-O VoxSRC2022 val
Architecture
EER(%) minDCF EER(%) minDCF
ECAPA-TDNN (Re-implemented) 1.3770 0.0931 3.6735 0.2479
IM ECAPA-TDNN 1.2600 0.0849 3.6824 0.2462

2 2. TR B RHARE LHIZTILEE

[Table 2. Comparison the performance between different models on each test sets.]

VoxCeleb1-O VoxCelebl-E VoxCeleb1-H VoxSRC2022 val

Architecture
EER(%) minDCF EER(%) minDCF EER(%) minDCF EER(%) minDCF

IM ECAPA-TDNN
(baseline)

T RIHIRT R EARLE

IM ECAPA CNN-
TDNN

1.2600 0.0849 1.4733 0.0941 2.6891 0.1621 3.6824  0.2462

1.1218 0.0886  1.2763 0.0825 2.3318 0.1475  3.2230 0.2144

IM ECAPA CNN-

TDNN (pre-act) 1.0424 0.0739  1.2646 0.0831 23518 0.1415 3.4471  0.2198

IM ECAPA MFA-
TDNN

FEHTER ST

IM ECAPA CNN-
TDNN (pre-act) 1.0424  0.0739 1.2646 0.0831 2.3518 0.1415 3.4471 0.2198
with SE

1.0424  0.0797 1.2632 0.0813 2.3526 0.1439  3.2535  0.2118

IM ECAPA CNN-
TDNN (pre-act) 1.1484 0.0817 1.2507 0.0821 2.3500 0.1437  3.1160  0.2053
with CBAM

IM ECAPA CNN-
TDNN (pre-act) 1.2552 0.0992 13807 0.0926 2.5533 0.1551 34990  0.2282
with GC

4.1 FiEREEELHAVEEER(Comparison between Feature Prepocessing Module)
ENIA T RIRREEAH > 1% - FTA AU ARl A FL S SR A B 1 820 - AHEL Y 2D CNN
BAHAE B EE RS FE A B ENSE > FHHEUER 2D CNN HE4H 8 28 (5 A S il By
Voxcelebl-O SHIE{EE FEHEEE TR 4ARY 2D CNN 41 » (H2 HAF R HES i s S -
FIAANRE R 7=y » IR R E 2 N FAFIE A T# &R IM ECAPA-TDNN {E £ 1 5%
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Wi - MAE(He etal., 2016b) H3REA T FEHUEHY ResBlock AL RIGHYAEEE &G A4 AE 3
R > AL G RCTHIRUS 2D ONN AR R SR ERIEAERIFEN - 17 MFA f5
RN S RE S GO ER GRS - HAR MR AR B mT DU B 6 TR
’fi 2D CNN 52 — BB RAYRIT - WAEE R EUE EREMETRE -

4.2 FEES#HEIAYEEEX (Comparison between Attention Mechanisms)

HREE| MFA A B HER HEEIRERE 7 % 8) > fI4E 2D CNN HBLH Bt T
FERUEEYRRACE R R IR - AR SRR R A R A RGP R & - SE 15540
ALY Voxcelebl-O G FIREEHEEEARIT - (B2 CBAM HAHAE HA &
R REERHES L SN R EE B IIRE R A & EEFER - SR ERNEERFIRR
EHE CBAM RIS A\ZERETE JIRES A RN B 2% S 0 R H R R se Bt AR - B
tb SE fH4H R 7 &/ Pt - CBAM EIIA T £EE At LT TR LEUSA F 5
YRR » Bt at R A R S A R MY S E R ECE A R OB T W - e
=T PERGERAYRIA L HEE CBAM HYBRRI > GC B M AEFTA AR A
Zetth - FAERAVERITR BB AR RETEL TDNN GEfEE5S » FHRHAS RS
FHZE TDNN K2 4 SRR 28 A2 TUBRHY B AT - 3 GC 1i4H 7 SE RAHAYFRITHD
ZEAE -

4.3 &R MER (Final Proposed Model)

RGN LA nyEERAE R - IR A TS 2D CNN iR ERIsAE - 10 0 B 1%
B CBAM 1 IM ECAPA-TDNN f[15 2 1] IM ECAPA CNN-TDNN (pre-act) with CBAM
R TR B R A o AHDLEARLERIAY > FRAFINTE AR SR A HH AN
D DU R AR VoxSRC2022 BRRg e slaR » & AI(E EER {HEL minDCF {H 4771
H 15.4% LI 16.6% YR -

5. 455 (Conclusions)

AR CHRH 7B Improving ECAPA-TDNN {24 IM ECAPA-TDNN 45 FRAMIHY
FAREREAR > W E MBS S N [E 0T R R EAEAR DR SRR R R U R R R SRR e T2
AyaRAL o BAMER AR AR B A 45 & TR E R 2D CNN iR B B 4 B £ B 71
F CBAM f54H » £ R TEHEEE ORI EILACEFAII A ZE RERA - KRGS
DAL Ry i A A& e HA SR AR Y R4 Rs - A S RESEE LA — DU fE AR MIE & 5
SR ERAIRIHE -

2Rk (References)

Cao, Y., Xu, J., Lin, S., Wei, F., & Hu, H. (2019). Gcenet: Non-local networks meet squeeze-
excitation networks and beyond. In Proceedings of 2019 IEEE/CVF International



44 B, %

Conference on Computer Vision Workshop (ICCVW).
https://doi.org/10.1109/ICCVW.2019.00246

Chung, J.S., Huh, J., Mun, S., Lee, M., Heo, H.-S., Choe, S., Ham, C., Jung, S., Lee, B.-J., Han,
I. (2020) In Defence of Metric Learning for Speaker Recognition. In Proc. Interspeech
2020, 2977-2981, https://doi.org/10.21437/Interspeech.2020-1064

Chung, J.S., Nagrani, A., & Zisserman, A. (2018). Voxceleb2: Deep speaker recognition. CoRR,
abs/1806.05622.

Desplanques, B., Thienpondt, J., & Demuynck, K. (2020). Ecapa-tdnn: Emphasized channel
attention, propagation and aggregation in tdnn based speaker verification. arXiv preprint
arXiv:2005.07143.

Gao, S.-H., Cheng, M.-M., Zhao, K., Zhang, X.-Y., Yang, M.-H., & Torr, P. (2019). Res2net:
A new multi-scale backbone architecture. IEEE transactions on pattern analysis and
machine intelligence, 43(2), 652-662. https://doi.org/10.1109/TPAMI.2019.2938758

He, K., Zhang, X., Ren, S., & Sun, J. (2016a). Deep residual learning for image recognition. In
Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 770-778. https://doi.org/10.1109/CVPR.2016.90

He, K., Zhang, X., Ren, S., & Sun, J. (2016b). Identity mappings in deep residual networks. In
Proceedings of ECCV 2016, 630-645. https://doi.org/10.1007/978-3-319-46493-0_38

Hu, J., Shen, Li, & Sun, G. (2018). Squeeze-andexcitation networks. In Proceedings of 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 7132-7141.
https://doi.org/10.1109/CVPR.2018.00745

Ko, T., Peddinti, V., Povey, D., Seltzer, M.L., & Khudanpur, S. (2017). A study on data
augmentation of reverberant speech for robust speech recognition. In Proceedings of 2017
IEEFE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
5220-5224. https://doi.org/10.1109/ICASSP.2017.7953152

Liu, J.-J., Hou, Q., Cheng, M.-M., Wang, C., & Feng, J. (2020). Improving convolutional
networks with self-calibrated convolutions. In Proceedings of 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 10093-10102.
https://doi.org/10.1109/CVPR42600.2020.01011

Liu, T., Das, R. K., Lee, K. A., & Li, H. (2022). Mfa: Tdnn with multi-scale frequency-channel
attention for textindependent speaker verification with short utterances. In Proceedings
of ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 7517-7521. https://doi.org/10.1109/ICASSP43922.2022.9747021

Nagrani, A., Chung, J. S., & Zisserman, A. (2017). VoxCeleb: A large-scale speaker
identification dataset. In Proceedings of Interspeech 2017,2616-2620.

Snyder, D., Chen, G., & Povey, D. (2015). Musan: A music, speech, and noise corpus. arXiv
preprint arXiv:1510.08484

Thienpondt, J., Desplanques, B., & Demuynck, K. (2021). Integrating frequency translational
invariance in tdnns and frequency positional information in 2d resnets to enhance speaker
verification. arXiv preprint arXiv:2104.02370



a5 & R as 2o 3T T B PR IR BT T 1) 45

Wang, X., Girshick, R., Gupta, A., & He, K. (2018). Non-local neural networks. In Proceedings
of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 7794-7803.

Woo, S., Park, J., Lee, J.-Y., & Kweon, 1.S. (2018). Cbam: Convolutional block attention
module. arXiv preprint arXiv:1807.06521

Zhang, Y.-J., Wang, Y.-W., Chen, C.-P., Lu, C.-L., & Chan, B.-C. (2021). Improving Time
Delay Neural Network Based Speaker Recognition with Convolutional Block and Feature

Aggregation Methods. In Proc. Interspeech 2021, 76-80.
https://doi.org10.21437/Interspeech.2021-356

Desplanques, B., Thienpondt, J., & Demuynck, K. (2020). Ecapa-tdnn: Emphasized channel

attention, propagation and aggregation in tdnn based speaker verification. arXiv preprint
arXiv:2005.07143.



46



Computational Linguistics and Chinese Language Processing
Vol. 27, No. 2, December 2022, pp. 47-56 47

© The Association for Computational Linguistics and Chinese Language Processing

I GGEIEARE T G AR

Development of Mandarin-English
Code-switching Speech Synthesis System

SRE - BT~ BEE

Hsin-Jou Lien, Li-Yu Huang, and Chia-Ping Chen

WE

A SR H S R AR S & %%f’%?@%&%T ENREEAFRES
FHINE > FIHES —EE R ZHES N LEREETIIR - ZRIEGKE
TIAGES AR L\Xibﬂ%\%ﬁ%%%%él%aﬁ: o PEANEE AR ~ SL3057 I HE
TTAFEIRIRTEREE - i o SCE T B R BBt AR IIsE S Ry B A
HIBES B EREE - th B B E e ERLHET O T EE - 26 %
TN BT o SESCH O A SR R A B o S A 1R 1 e L

Abstract

In this paper, the Mandarin-English codeswitching speech synthesis system has been
proposed. To focus on learning the content information between two languages, the
training dataset is multilingual artificial dataset whose speaker style is unified.
Adding language embedding into the system helps it be more adaptive to
multilingual dataset. Besides, text preprocessing is applied and be used in different
way which depends on the languages. Word segmentation and text-to-pinyin are the
text preprocessing for Mandarin, which not only improves the fluency but also
reduces the learning complexity. Number normalization decides whether the arabic
numerals in sentence needs to add the digits. The preprocessing for English is
acronym conversion which decides the pronunciation of acronym.

BRSEEE © SEE G - sEUSEH  ERFIEE

Keywords: Speech Synthesize, Codeswitching, Text Preprocessing
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1. &% (Introduction)

sE 5 ( Code-switching ) EHSAE —AIERE S AIEE M &7 — MLl LAVEES WO M
EEBENERSHEET+OoER > HBRESHEBSE ST oRAKEHEZES
(Multilingual ) HY7J7RE8E - BRI S HEES - 8RR —SBENZHESH
EE RIS EHAAE ISR B R 2 - G ARSI - IR EUERE
FPEE ) TR S E RSB AGIR » Rk BRI > M2 BEEREE B oL SGE
F B AR &L(Wang, 2021) > AR MIVEREREI - 8T 2\ (A2 EE1E - KAl 4k

S B RREE BV Z ST > HILASS — Z S BRI RS - EE
B E ORI

FEASLH o [ 1] FastSpeech2 (Ren et al., 2020) 5y &Enkes @ Frdmbihes BRI 5L
Fs(Gulati et al., 2020) AfrHEH AY Conformer ZE4# » B 25 (55 F HiFi-GAN (Kong et al., 2020)°
AN FIE I ARSI 2R S EE - INEREET I EEES M E (language embedding ) >
ARy E]FAR ~ PE3C4R F5ES ID (language ID) - [ aBHSEEHARY &) F A H L BE—5E
= 1D F£or > HWILEER T TR -

MR A P CHEREK - FiE T %8 WL Ul SR P S o R AR
WRER NIRRT o HRAME S ERACHEAE o0 R A B - AR RS TS
HIRTRE » PSRBT IERE o MEFSOP&HE ERHNEETEE » 2K —aEEsi &89
HE o MRS RN SN HEE S R E TS RN ETY RN B2 A
YT ST 5B i f R Y > PRI 5B 78 - DU T el S 0y =X W T
o FATE BB SCRETER AR - DR REMR - 273 3OGE S G IR
>}'T_< o

s L2 HEREEIZ AR T - BEEI © WAL S0 ~ SO TTA R OUF AR
B == ERREMIER RS RECE  EE - EREER R AR
BRI ZGOETERE » BT ¢ REEHRMT R RHERAIR RS TT [ -

2. P52 7% (Research Methods)

LL Conformer-FastSpeech2 fil L35 [MIE(E AIEMAUE > Ky 72T » SOCEEE SR
B oy R AR o SRS SOSOAECR B AT R © £SO o A BT - SCF
W B IEARA L > TSI T4 55 SR A H I Bl 30 H ST SRR IR EGEE S ID 4R
B - BN~ SRR AR R FAETTHYRRE

2.1 ZEESREE A K A% (Multilingual Speech Synthesis System)
FA H» {# ] FastSpeech2 (Ren et al., 2020) &k s> BHE2E{H F HiFi-GAN (Kong
et al., 2020) -

FastSpeech2 J& {7 H 47 (Non-autoregressive) YR » H] F 8 Ay A ] 5 e H B
[ #2 Bf (Auto-regressive) 5 AU AH [ & B 09 58 & - 4208 TP 09 4R 5 23 R A 0% 23 (5 A
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Transformer Z24% » fEFR I A% H i Transformer 45 Conformer (Gulati ef al., 2020) » i
44 By Conformer-FastSpeech2 ( CFS2) - Conformer 454 7 Transformer Fl1#&fERE4H
(Convolution module) PIIE55%H - HAGME S HTEE A4S (Feed Forward Module ) ~
% UA 33 = JJ1% % ( Multi-Head Attention Module) ~ & 5140 ~ & E& /b ( Layer
Normalization) - 248 Z8RE40E 1 @ MEA R & Conformer HYZEfE -

Waveform

HiFi-GAN Vocoder

>

Mel-Spectrogram

Synthesizer Layer Normalization
. ’ c
Postnet
A

f‘
N >

s |
o |

Conformer Decoder s Feed-Foward
! Medule
h
N
L/
K
Convolution
Module
A

N
€
A

A

Pnsiti‘b‘n ,"
Encoding ,*
‘V"

A

Variance Adapter

<
<
<€
<

x4

Conformer Encoder

4 . ‘\‘ Multi-Head Attention
oI\, Position. Y Module

AR AR AR

"\1/  Encoding*. 3
E'y \
\ Y )\4
RN A
Phoneme DY x1/2
Embedding RN Feed-Forward
SO Module
NN A
[
!

Language
Embedding

Pre-processing

i

Language ID Text

[E 1. Conformer-FastSpeech? #7312 E » ZF FastSpeech? JIAES/A&E -
GBS Conformer Y421 + BZFS Transformer ZEFEF LB FRIRAAL
BHESR -

[Figure 1. The architecture of the Conformer-FastSpeech? is based on the
backbone of FastSpeech?2 and combined with language embedding. The
right handside of the figure is the architecture of Conformer which is
associated with Transformer and convolution module to enhance feature
extraction.]

FZER I AGESEE > WEBEF phoneme embedding SR —HE M A RIS ZSHY
B - #ELIRTT A E R EFE SR S0 (RIEEREES S TR M RsES D
EA 0 f11 K language ID 43 BIFR/RIECELFIT o
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2.2 1 ERIEIEE (Mandarin Data Preprocessing)
HA AMFITE S KR 2 A S U HAY By T R AR eE s S e diel - M E el T —
@ python T.E %5 Jieba (Sun, 2012) #7937 EE (Word segmentation) » & H13:A DT
TR EETEE R - B H A IR Rt E R E - IR REEH
oS > HETT R T EE S 09 [ ZARE o BLAP Jieba T E 0] H1T5E AT & EHAEERNFH
EhaHifF CKIP team (Ma & Chen, 2004) FY=BEPE A » DUERTHETERHYAERESS - K CLMAD
(Bai et al., 2018) MG — 1R 7 I & 2408 F AR R SR IS T L A -

AMA R L ARGEEREA - Ty 2% > BRGEHMANT BN
(Y - RIEEA AT E R B Bl A » FY2 B AMAI A pypinyin i SO F A pCERE S - H
55— grapheme-to-phoneme ( G2P) #9 python T.EH. > DISSIFR TP W TR
# (Tone) - FEHHILPFE4H G AV AL R SCAYRIR - (1 A 400 T DU B B A 07 =022
B SCHyEEE o 2 1 Ry oClE RO E PR Ay E ) o

1 FXERFIEEE - SLH AT B 7 » P BB 7 50 -

[Table 1. Mandarin Data Preprocessing. Word segmentation would be applied
before text-to-pypinyin.|

AR 7502 AGIRRE
JFHESCAR HIRAE TR
b3 FRr R T
YR ming2 tianl * bu4 hui4 * xiad yu3* o .

PEANRFIEEIR Bl A TSR ST A 20 F R T B8 m
A WFEALEREE -+ 8 T B o HEEFEA12% 'Chinese Text Normalization
TE R BERERE S, HLMMOE R B0 8 R I #7753 08> 16 DL Regular Expression #8174k
HAHBENE S > FHETE ST 8B > AR MBS T B - (FEE
RETERAFIFTRE » SHA A RS - 22 BEEXIHIF R IEF RIS E -

2.3 HEFRABEE (English Data Preprocessing)

YWY EEFEE AT 4157 By acronym Al initialism o W Y7 B2 ME AV BE AT 55 -
acronym ¥5RHE 5 1% 1Y BEF 58 By — (BT HYEE > (150 - NASA &3 “na-suh” » FOMO &
fift “fow-mow” - [fij initialism FIZF5E#E F S RINEE - MIER A —EHHYEE
%72 FBI ~ NBA ~ BBC % - ZA[f FHABH 35 &y acronym B/ initialism » 85§40 D) S
ETE BENARGEHIEE » HEIRMGERENTETRE - BT T —{EEFE
FHL Eig AR SOR &R 2RISR s R i A ZE B & initialism > Z52
R PR B A D S o DU N & R IERENE » EIERIAR R > #2FI2ER > & BBC
LRHESY S initialism > SEEHA L “bee bee ci” b FBI H|&i#EHafy “efbeeI” -

! https://github.com/speechio/chinese_text normalization
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7 2. FpAHIALL Regular Expression #o 11 1E2HEFREC - FIBTE L BN LB
FEL B AR -
[Table 2. Use Regular Expression to check the pattern of the text, and decides
whether it requires additional number units.]

AT H IS TER AR
e 1986 =8 H 18 H — /U +/\H

1997/9/15 —NNEFENA+ARHE
Money 19588 T —ENLTHRANT/UT
Phone F-1# 0919114115 EH———7
Phone ik 02-2720-8889 T T/ UVUUL
percentage 62% HaZAN+T=

1999 {E#ER —T BN UERER
cardinal & 130 §EER —H =Bk

124000 ¥/K + ZEI K
cardinal 4F%E cardinal 4R5REZSEE 103040100 | E2gEE W= EPUE FEE
cardinal 4fig} 175.5 N5 —HJHt AN

2.4 $THHFEEREERA BRI (Process for Code-switching)
TEFISRPEEL » MR I TEES ID ETESAE - AME SR » HEA R
SEHBHEIAN SIA » SEABLAN DL P B S F LAARSE o B IIRERES 1D B ER
XARZTFTE AR 3 iR ERKEES S B AR SO ST RS BT RE  #EH
M E TLBIENSES ID HETESRE - STEREBENSIARS RIETERAIERE - H
#1735 £ A& (phoneme embedding ) 1 Ry 4mUEESAVEN A - He & 4mE 25 VSRR
J7%1] (hidden state sequence ) » FIFEE A EAVEG AR FESHTII SRR EUT Y I TIR4E
yglil%R -

AT ~ L ERMENGE R AR » BN AMRESKERER Y & T8 » §H T
{7 RE AR PRI ELE] AR H 28RV [ - FastSpeech2 ZEEH1Y Length Regulator » H—2%] a
T #4%% duration predictor i AYISE (duration) K/ » FE PRI K B AR R [ A S ek 3
FPoERE > o TR 1 o= 1.5 RoRBERFYITR L 1.5 % EEif (SRR T
£ 1.5 6% BIRIIeEE - 5hCsES 1D - B nTE i i B B R B 0y B3RS - W
FEFLAE 2 o fEE B IFEECEES 1D > SHEPR(E P F I THREE o A5 B Al Ry B S ST
R B HIRHREL o fHIR > Ui A EEHIREEF -
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Length
Regulator

D=[21,21]

Duration
Predictor

tho

g

D=1[223,1,1]

Length
Regulator

D=[21,21,1]

Duration
Predictor

/

T

tho

[& 2. Length Regulator FJ{E% o L{ Length Regulator 17228 o FHBEIEi@FFE
PO RESIEE - D ZonfFR (duration) » Hpw, ZET5 phoneme HY
BEFEFFE » Hue ST SEEIE ST 12 - Gl stikaE = ID ZEH 8
HIRFRITTE » BROTER L a BIGEAA - FEEIFHIRFRUFTE IR

B ZEHIRIBHEEFIETHE -

[Figure 2. Length Regulator. Use the parameter a in Length Regulator to adjust the
length of the hidden state sequence. D denotes duration. H,,, denotes the
phoneme hidden state. H,..; denotes the mel-spectrogram hidden state. The
right handside of the figure shows that the specific duration is decided by
the language ID. The duration elements multiply a and round it to get a
new duration sequence. The left hand side of the figure adjusts all

sequence.]
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—>{Phoneme Embedding—» Encoder

#ESES ID (B + Jieba) \ sequence /
A

o a i
635 s DZ{@ HEEPER NFHIRE [ hidden state\

En
LanEmb

Zh
LanEmb

ID=0(ID=1 Zh

D=1 a
dinner [istEs /T »{Language embedding- - - - - - - LanEmb

EZ

B 3. FZHE RSB FE/E * LanEmb ZTa8 508 © frA X B RAEE.
B HFHtaE S ID » R IETTRIFIEE ~ FE R @ R BT
BN - HEEE ID EITHEE R - R i as 0 5 I -

[Figure 3. Flow chart of the code-switching language embedding. LanEmb denotes

language embedding. The input would be categorized by its language and
the corresponding language ID would be given. After that, the result of
the data preprocessing and phoneme embedding would be the input of the
encoder. Finally, the output of the encoder would merge with the result of
language embedding.|

3. BEsYE (Experiments)

EERTIERES BFREERSE » DEFAAEBERERASFTERNATERSE > LIk
{5 F ESPnet2 (Watanabe ez al., 2018) fi{ 585 T B BhFE & -

3.1 B4 (Datasets)

o FIAERIEE - (FRINERSEE ST GEER AISHELL3 (Shi ef al., 2020) Fe8SCEER
VCTK (Yamagishi et al., 2019) -~ £ R TS8R ME TR (H 2V ERE > RIATHI4RH—(E
B EIRE BB R RN D R SRR > RSB T 30 FEEEIE
THS R B M E S B RIS B RAT R BB BRI 5y 2 — > Wida £ f AISHELL3-
thirty 1 VCTK-thirty » ZRMENFEAETRLIFR 3 s -

o NTERME: SE T —iEE RS P GE S G A4 (Wang, 2021) » {EREAMER
RN ZEE - 358 AISHELL3 BRMESH—ESEE A2 E SR > W{HH AISHELL3-
thirty F1 VCTK-thirty HYSCASE LRI SCA - f b A Bl B g e
JEASH BB o L AE By Generated-multi - #t 25,362 SEEHE - 3£ 15.6 /\Ef >
WFE3 AR -

3.2 §4k5%E (Implementation details)

RS ESPnet2 (Watanabe et al., 2018)F FyBA28AY T H - CFS2 AYFIISRE KL ESHY
Generated-multi’ 22 -0 Y Conformer 4RHEES FIfEMEES kernel size 435l F 7 K 31 padding
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By 3 Bl 155 {B{EES (Optimizer ) {i f§ Adam (Kingma & Ba, 2014) » 275 ( Learning rate )

WERy 1o AR RSE R ZESEE GRS - KT (HEWS SR L5 I H

SES R 182 5 3R E - HiFi-GAN ESH5325 Ff] AISHELL3-thirty 1 VCTKthirty 2} g8

s RN Batch size YW 73 32 (£ Adam (A B {5 BV EEHE B 0.0002¢

7 3. BHEITFYEA - S BN =-1(735EH7 VCTK-thirty FIAISHLLE3-
thirty » R4ERGEFIZE Generate-multi -

[Table 3. The details of the dataset contain VCTK-thirty, AISHELL3-thirty and
Generate-multi which is the generated dataset.]

HRE HTEEE daF e (VNRf
VCTK-thirty 11, 654 22.5
AISHELL3-thirty 13,708 19
Generate-multi 25, 362 15.6

4. BERGEER BT (Results and Analysis)

AEERPR A P97 757 #( Mean Opinion Score, MOS) {E Ryttt » 73 SR [T F5 0(fE)
~5 (&) » HEEEEHVRBRSEET > B8 TRGE - B DU S -
FERRIEBEHL A E BB B AV U T Ak RRFIIFRE Y 11 b A B2 ERREE -
A G pEE E TR BRI A D BOPII O EER -

4.1 &R ERERNLE (Quality of the Generated Dataset)

¥ 3.1 A RERE Generated-multi B [F 4G ERIEE AISHELL3-thirty F1 VCTK-thirty #fT

Ebis > DAMECRIEE AR BRI R AL E B3R 4 Fon > Al el EREN T BEE 4 oLk

FoRE A REY T SRR TG A SRRV R - UL E RIS S s E a1 THY -

4. BHIERIMOS o ZpVCTK-thirty i1 AISHELL3-thirty B X AL
Generatedmulti BFHTXR o [LEEE GBI EREE S unE » LHTERIES
B4 7L -

[Table 4. The MOS of the dataset. The text of the Generated dataset is based on the

text of VCTK-thirty and AISHELL3-thirty. The MOS score of generated
dataset is higher than 4.]

Tk MoS

37 h
VCTK-thirty 4.46 +0.22 -
AISHELL3-thirty - 473 +£0.17

Generated-multi 428 +0.31 4.09+£0.62
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4.2 EFIEIEREESE (Results of Data Preprocessing)

H W RS = 2 0 BT T BRI R EE - [RIEE MOS Eﬂ?ﬁ R~ BRI ERFRHTRR 7y

FRAETTELER o WP SOSUARTE A ISR B i Ry i sEpE o » N AR Y SR B A 8 S i

PrE - MERG SR RS 5JRl - ﬁCZIKLﬁEPXE@ﬁﬂ{é » MOS A BN - 5598

EITRHE B ERU BRSO - B2 B R BV » SR BB &AL E a3

)5 IERLTE MOS 738 4.02 $2EE]T 4.45 0 SECKIERVIET T > HELTTAD 8

TERUBE R SRR ESE - (EIEE RAVEN S » BERAE I A &A S E KA SCAR » A

DASHE R TR FaB AR - ARMAENIA B FEE R % - MOS 738 3.69 BEfZE 3.99

FH&S S PRI B R R B RE IR G R 2 'S -

5. HAAEITHIEEERIMOS - [LE R aE e aflptan ™ » R in
& BEBPTHEH -

[Table 5. The MOS of the speech which is with preprocessing or not. The quality of

the speech is better after processing the text.|

s BRIATRE AR w/o MOS
. w/o 4.50+0.11
Hh S e
w/ 452+0.18
rh
N w/o 4.02 +0.40
B IEHEA R
w/ 4.45+0.20
» . w/o 3.69 +0.20
i THTRER
w/ 3.99+0.15

4&5s% (Conclusions)

BV AT FOCEERBEREE S SRS - HAMER#ERE > Bt « JHER
Al R ST 58 5 Y i e > T HUE h SOy B IE AR B B S BA s e 2> 73 Al 4.02
ETHE 4450 F23.69 % 3.99 MBI AGREFESHIZER] > Wit > RARWFFRFEN
HEREOSER T PO HEE T G LX&LX%I*“T%%’E% Hill > A EsOR
HaH RS as b B AR SRR FEE A A R A A B B R R AT R - (RAR AT SRR S
SRR AT -
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Abstract

Non-lexical items are expressive devices used in conversations that are not words
but are nevertheless meaningful. These items play crucial roles, such as signaling,
turn-taking, or marking stances in interactions. However, as the non-lexical items do
not stably correspond to written or phonological forms, past studies tend to focus on
studying their acoustic properties, such as pitches and durations. In this paper, we
investigate the discourse functions of non-lexical items through their acoustic
properties and the phone embeddings extracted from a deep learning model. Firstly,
we create a non-lexical item dataset based on the interpellation video clips from
Taiwan’s Legislative Yuan. Then, we manually identify the non-lexical items and
their discourse functions in the videos. Next, we analyze the acoustic properties of
those items through statistical modeling and building classifiers based on phone
embeddings extracted from a phone recognition model. We show that (1) the
discourse functions have significant effects on the acoustic features; and (2) the
classifiers built on phone embeddings perform better than the ones on conventional
acoustic properties. These results suggest that phone embeddings may reflect the
phonetic variations crucial in differentiating the discourse functions of non-lexical

items.
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1. Introduction

People’s everyday interactions include sounds that are not verbal words in the traditional sense.
These sounds, such as sighs, sniffs, and grunts, are used in indexing the turn-taking in dialogues,
marking stance, showing affections, and expressing roles and meanings in conversations
(Dingemanse, 2020). Examples of these non-lexical items are un-huh in English as a marker
showing understanding and attentiveness, while the single syllable u4 and um act as fillers and
disfluency markers (Ward, 2006; Buschmeier et al., 2011).

While these non-lexical items are important linguistically, they pose an interesting
challenge to linguistic inquiry. Non-lexical items do not belong to a major word class, and some
do not conform to the language’s phonological requirements (Keevallik & Ogden, 2020).
Moreover, while the phonetic properties of non-lexical items could be generally described, they
are nevertheless “phonetically underspecified” (Keating, 1988). For example, in the study of
“moan” in board game interactions, Hofstetter (2020) found “moans” involve phonetic
properties related to open vowels, irrespective of their frontness, backness, or roundedness. The
study suggests that a non-lexical item can not be represented as a single phonetic symbol,
instead, it may refer to the vowel space for which we do not have a general phonetic symbol.
Some studies, therefore, analyze these items in terms of their acoustic properties: the
components’ sound (Ward, 2006), the fundamental frequencies, durations, and intensities.
(Shan, 2021; Ballier & Chlébowski, 2021).

In contrast to the conventional acoustic property analysis, an alternative approach to
analyzing non-lexical items is through the acoustic representations learned by data-driven
methods. These methods include deep learning models mapping the audio segments to the latent
embedding space from acoustic data in a (self-)supervised fashion (Li et al., 2020; Xu et al.,
2021; Baevski et al., 2020). Although the models are not explicitly trained to represent the
similarities among phonetic features, studies nonetheless find the audio segments with similar
linguistic properties are closer together in the embedding space (Ma et al., 2021; Cormac
English et al., 2022; Silfverberg et al., 2021). Therefore, these phonetic representations may
already encode the phonetic variability of non-lexical items to reflect their different discourse

functions.

This study thus aims to investigate how the acoustic properties contribute to the non-
lexical items’ discourse functions and how the phone embeddings extracted from the deep
learning model help differentiate those functions. The rest of the paper is organized as follows.
We first review related works on discourse markers and how they are analyzed with acoustic
properties (Sec. 2). Next, we describe our dataset on non-lexical items (Sec. 3) in Taiwan
Mandarin, in which we manually identify the items and annotate their discourse functions in

interpellation video clips of Taiwan’s Legislative Yuan. Finally, based on the dataset, we
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conduct the acoustic property analysis (Sec. 4) and build classifiers based on the phone

embeddings extracted from a deep learning model (Sec. 5). Finally, Section 6 concludes the

paper.

2. Related Works

2.1 Discourse Marker

Discourse markers (hereafter, DMs) have received increasing attention since Schiffrin (1987,
p. 31) initially defined them as “sequentially dependent elements which bracket units of talk.”
However, little consensus has been not only on the terminology! of DMs but on the
classification frameworks. Schiffrin (1987) has proposed that DMs form a category composed
of phrases, conjunctions, and interjections, and that they have a part in discourse coherence
considering different planes of talk.? Additionally, DMs can also serve as identifiers of
participation status, speaker’s assumptions, or hearer’s knowledgement (Schiffrin, 1987;
Schwenter, 1996; Fraser, 1999).

Despite that earlier research considered DMs as text-connective items bonding to syntactic
structures, Fischer (2006, p. 9) de fined DMs as devices involved in “turn-taking, interpersonal
management, topic structure, and participation frameworks.” Subsequently, Diewald (2006,
2013) suggested that DMs demonstrate pragmatic functions, manage discourse in a
syntactically-independent way, and present their polyfunctionality in discourse (c.f. Fraser,
2009; Hansen, 2006; Németh, 2022).

Although numerous analyses were conducted on the pragmatic functions of DMs, they
focused mostly on the associations with semantic senses and syntactic structures (e.g., Aijmer,
2011; Crible, 2017; Ford & Thompson, 1996). That is, studies of the connections between the

discourse functions and the phonological information of DMs are relatively few.

2.2 Acoustic Property

The previous works which interwove DMs and their acoustic properties were mainly on the
pragmatic-prosodic interface. Shan (2021) and Zhao and Wang (2019) investigated the
Mandarin Chinese DMs, R nizhidao ‘youknow’ and {RNHI3E ni bu zhidao ‘you don’t
know’, respectively. While Shan (2021) analyzed on duration, tempo, intensity, and

fundamental frequencies (i.e., pitch, hereinafter Fy), Zhao and Wang (2019) examined the

! For instance, discourse marker (Jucker & Ziv, 1998; Schiffrin, 1987); discourse particles (Aijmer, 2002;
Fischer, 2006); pragmatic marker (Brinton, 1996); among others

2 Schiffrin has suggested the five planes of talk: the Exchange structure (ES), Action structure (AS),
Ideational structure (IdS), Participation framework (PF), and Information state (InS). More details can
be seen in Schiffrin (2005), Maschler and Schiffrin (2015), and Hamilton et al. (2015).
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speech tempo, mean Fy frequencies, and pitch accents of the DMs. In general, they have found
correlations between the discourse functions and the acoustic properties. Moreover, Tseng et al.
(2006) have suggested that connectors are predictable from speech prosody; most ‘redundant
prosodic fillers’ are duration-triggered and manifested through narrowed Fy ranges, whereas
‘obligatory discourse markers’ are syntax-triggered and manifested through widened Fy ranges
and resets.

The acoustic properties and their relevance to the pragmatic functions of DMs have also
been analyzed cross-linguistically (e.g., Cabarrdo ef al., 2018; Raso & Vieira, 2016; Gonen et
al.,2015; Benus, 2014). Referring to Wu et al. (2021), the phonetic variations of DMs in French
are likely to appear in spontanecous speech and undergo phonetic reduction, considering their
shorter mean phone duration and a rather centralized vowel space. Additionally, Schubotz et al.
(2015) investigates the common English construction you know in terms of its duration, which
is likely to be affected by the residuals of speech rate.

In addition to acoustic properties, past studies also examined the phonetic representations
learned with data-driven methods. For example, Silfverberg et al. (2021) studied phonological
alternations of Finnish consonant gradation with vector representations retrieved from RNN
models. Other studies also tried to learn dense vector representations purely from text using
grapheme-to-phoneme mappings with CBOW and SkipGram models (O’Neill & Carson-
Berndsen, 2019). Notably, recent studies found transformer-based speech processing models
(Baevski et al., 2020; Hsu et al., 2021), while not explicitly modeling phonetic properties,
encoded the phonetic categorization information in the model representations, such as vowels

and consonants, or fricatives and stops (Ma et al., 2021; Cormac English et al., 2022).

Tracing back to the former sections, previous literature on DMs mostly concentrated on
their status at the semantic-pragmatic interface. The reviewed acoustic-related research,
however, focused on those construction-wise DMs, and not to mention that the analyzed
acoustic properties were limited to suprasegmental features, such as pitch and duration. In this
case, the potential phonetic-pragmatic interrelationship of non-lexical items is yet to be

elaborated.

3. Non-lexical Items Dataset

First, we used four interpellation video clips from Taiwan’s Legislative Yuan.? Audio tracks
were then extracted from the clips, converted into 16 bit WAV format, and resampled with
22kHz sampling rates. The overall data comprise separate interpellation of two male and two
female legislators, each ranging 6-8 minutes. The equal number of genders was to balance

3 The clips were downloaded from the Parliament TV website (https://www.parliamentarytv.org.tw/) and
encoded as AAC, H.264
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potential gender differences in the utterances.

Secondly, the audio segments of non-lexical items (e.g., uh, em, and ho) were annotated
by three native speakers via Praat 6.2.03 (Boersma & Weenink, 2021). Each non-lexical item
acquired two tags, one for functional Role and one for pragmatic Meaning. Referring to Ward
(2006), we defined the six candidates of Role as follows:

o BACKCHANNEL, which occurs repetitively and shows the agreement of the hearer; it often

overlaps the main channel* of the utterance.

o CFT (Clause-final token), which occurs in the sentence-final position and ends certain turn
of talk.

o DISFLUENCY, which refers to the onset or coda of a word that can hardly be recognized

due to its discoursal incompleteness.

o FILLER, which serves as a connector between two sentences or a sentence-initial particle of

the speaker.
e RESPONSE, which occurs in the main channel and often indicates a flippant attitude.

o OTHER, which represents the non-lexical item not belonging to the above types.

Similarly, we summarized the following eight candidates for Meaning. It is noted that
certain non-lexical items may carry multiple pragmatic meanings, and that the candidates below
are not mutually exclusive. Thus, one non-lexical item is allowed to be annotated with multiple

Meaning tags.

e authority. The speaker demonstrates his profession, personal experience, or intention in the

speech.
e control. The speaker is in control of knowing exactly what to say or do next.

e concern. The speaker lacks confidence in his own words or tries to show respect to the

audience.

o thought. The speaker takes the words (from himself or the other participant) as involving or

meriting thought.

o dissatisfaction. The speaker is unsatisfied with his own words, the conversation, or the other

participant.

o new information. The speaker wants to express that he has received new information; the

4 see also Heinz (2003), Li et al. (2010), and McNely (2009) among others.
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speaker successfully lets the other participant understand the topic of the speech.

e old ground. The speaker is expecting to move on to the next topic since he has already

acknowledged the current one.

e neutral.

In sum, a total of 143 non-lexical items produced by the legislators were manually

annotated. We then moved on to extract the acoustic properties for the dataset.

4. Acoustic Property Analysis

With the assumption that the discourse functions may encode phonological variations, we
illustrated our data collection and the annotation for non-lexical items in Sec. 3. The following

sections (4.1 and 4.2) then present the analyses and results of acoustic properties.

4.1 Property Extraction

For each non-lexical item, we retrieved six conventional acoustic properties: mean pitch,
duration, F1, F2, F3, and nasality, via customized Praat scripts (Styler, 2017). As formant
frequencies construct the vowel space, F1 is determined by the vowel height, F2 is determined

by the vowel backness, and F3 is determined by the vowel roundness.>

In terms of nasality, it can be quantified by aI-p1 (for high vowels such as [i, u, y]) or al-
p0 values (for non-high vowels such as [a, o, 9, ¢]). Since most of the annotated non-lexical
items are realized and transcribed with non-high vowels, only the al-p0 values were considered.
While al stands for the amplitudes (in dB) of F1, p0 stands for the amplitude of the nasal peak
below F1 (Chen, 1997; Cho et al., 2017; Chiu & Lu, 2021).

Subsequently, to build up the most comprehensive acoustic properties, the values of F1,
F2, F3 frequencies and al-p0 amplitude for each annotated non-lexical item were measured at
5 different time-points (i.e., the 10%, 30%, 50%, 70%, 90% time-points within each item
interval). The retrieved acoustic data for 715 tokens® were processed and modified into
machine-readable forms using the pandas package (The Pandas Development Team, 2020) in
Python 3.8.9 (Python Core Team, 2021).

The statistical analysis was performed via the ImerTest package (Kuznetsova et al., 2017)
in R 4.2.1 (R Core Team, 2022). Some factors contain rare categories were therefore re-coded.
Specifically in the candidates of Role, DISFLUENCY and RESPONSE in were merged into

5> The higher the F1, the lower the vowel; the higher the F2, the more anterior the vowel; the lower the F3,
the rounder the vowel (Flanagan, 1955; Lindblom & Studdert-Kennedy, 1967).
¢ Each 143 annotated non-lexical items were measured at 5 different points, resulting in 715 tokens.
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OTHER, considering their extremely few occurrences. As for the candidates of Meaning, the
items with multiple candidate tags were recoded as complex. The OTHER and complex were
set as references in Role and Meaning factors, respectively. Finally, Box- Cox transformations
(Box & Cox, 1964) were applied to each response variable to reduce the non-normalities in the

distributions.

4.2 Evaluations

To explore the effect of discourse functions on the acoustic properties, we conduct statistical

analyses with linear mixed-effects models and classification tasks with SVM.

Statistical Modeling.

Apart from the two discourse functions (Role and Meaning), we also take Transcriptions into
consideration. As Transcriptions, annotated for segment identification, reflects the annotators’
perception for each non-lexical item, it is likely a control variable that poses significant effects
on the properties. Thus, for the evaluation of each acoustic property, we actually compare two
models: one full linear mixed-effects model (composed of Role, Meaning, and Transcriptions)
as well as one counterpart baseline model (composed of only Transcriptions).
Table 1. Model comparisons of linear mixed-effects in different response variables.
The comparisons are between the base model, which only contains
transcription and random intercepts, and the full model, which additionally

includes discourse function predictors. For brevity, only comparison statistics
are shown. *p <0.05, **p <0.01, ***p <0.001.

Chiq Df p-value
Duration 83.79 9 <.00] ***
Pitch 124.66 9 <.00] ***
F1 10.12 9 341
F2 20.32 9 .016 *
F3 7.62 9 573
Nasality 15.29 9 .083

Table 1 illustrates the sequential (Type I) ANOVA results for the linear mixed-effects
models, in which one specific acoustic property is used as the dependent variable. Specifically,
the acoustic properties that reach statistical significance among the model comparisons are
Duration, Pitch, and F2, suggesting that certain types of roles and meanings present additional
effects on acoustic properties, after controlled for the transcriptions. These results imply that

the discourse functions show additional effects on the Duration, Pitch, and F2.
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Table 2. Parameter estimates of discourse functions in the linear-mixed effect models.
The variables of transcriptions are included in all models, but their estimates
are not shown in the table for brevity. Response variables are Box-Cox
transformed, the parameters are therefore in the transformed scale.

*p <0.05, **p <0.01, ***p <0.001.

Duration Pitch F1 F2 F3 Nasality

(transcriptions) --

CFT 0.034 12.04™ 35.68 6.28 10169.4 4.03
FILLER 0.042 14.92"* 2.67 1.22 10913.4 5.67
authority —-0.016 3.87 3.98 2.29" —6832.3 2.52
control —-0.013 0.16 3.49 7.87 2345.1 0.18
dissatisfaction —0.052 -10.07"* 45.70 3.16™ —9942.1 4.08
neutral —-0.016 0.05 58.17 1.58* 1948.2 0.30
new information —0.267" 10.17" —40.21 1.65 =5134.1 271
old ground —0.003 0.82 —4.51 1.31 3383.3 0.13
thought -0.288™ —2.36 97.46 1.55 2643.0 2.75

To further examine such possibility, Table 2 compiles the fixed-effect results of the full
linear mixed-effects models for the acoustic properties, where the discourse functions’ are the
predictors. We find that both types of discourse functions show the most significance on Pitch,
which corresponds to the reviewed works in Sec. 2.2. Yet, only certain types of Meaning show
correlation with Duration and F2; not to mention the other three acoustic properties (i.e., F1, F3,

and Nasality) which do not show any statistical significance.

Support Vector Machines.

Support Vector Machines (SVM) model is implemented for the classification tasks, in which
the acoustic properties are used in prediction of discourse functions. As we assume that the
discourse functions may reflect in the phonological variations of the non-lexical items, linear

models such as SVM are applicable.

We use random 70-30 splits for training and testing data. While the training data comprise
500 tokens, the testing data comprise 215 tokens. A random guessing model, serving as a the-

most-frequent baseline, is also implemented for comparison. It calculates the frequency

7 Notice that the aforementioned BACKCHANNEL (as Role) and concern (as Meaning) only exist in
the supplementary annotation for those non-lexical items produced by the administrative officers in
opposition to the legislators. Data are reserved for the future studies.
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distributions of all discourse functions, and then it invariably predicts the most frequent class.
We use the accuracy, precision, recall, and Fl-score to evaluate the performance of the two
models.

Table 3. Evaluation of acoustic models

Role Acc Pr Re Fl1
acoustics .76 15 .20 17
acoustics-base .76 15 .20 17
Meaning Acc Pr Rc F1
acoustics 48 .09 .14 A1
acoustics-base .38 .04 .10 .06

Table 3 shows that both models, based on the acoustic properties, find it harder to predict
Meaning than Role. Specifically, the acoustics achieved slightly better accuracy (.48) and
precision (.09) than the baseline (.38 and .04). In the prediction of Role, however, the
performance of the models was very similar. It implies that the acoustics in fact does not acquire
much advantage in predicting discourse functions. This observation is consistent with the results
of the previous liner mixed-effects model, in which we found few correlations between the
acoustic properties and the discourse functions. Therefore, we attempt to find other
presentations of phonological variations that may better capture the candidates of discourse
functions with higher accuracy.

5. Phone Embeddings

As the conventional acoustic properties did not show promising results of capturing the
discourse functions, we reached out to phonetic vector representations, in which the
phonological variations of non-lexical items might be encoded.

Instead of the common end-to-end models trained on waveforms and language-specific
transcriptions in ASR tasks, we chose the Allosaurus model by Li et al. (2020)® for retrieving
the phone embeddings. Specifically, the Allosaurus is a universal phone recognizer integrating
an ASR encoder with an allophone layer, in which language-independent phone distributions

are directly recognized and mapped into language-dependent phoneme distributions.

We first examine the phone embeddings learned by the phone recognition model. In the
video clips collected in Section 3, the model automatically identifies 29,218 phones in the

conversations. To investigate the phone organizations in the embedding space, we then extract

8 https://github.com/xinjli/allosaurus



66 Pin-Er Chen et al.

the bi-LSTM representations® with which model predicts the phones as phone embeddings.
Next, we average these embeddings by their predicted phones and obtain 34 phone centroids in
the embedding space. We follow the literature (Cormac English ef al., 2022) and conduct
hierarchical clustering with Ward linkage based on the Euclidean distances between the
centroids. The clustering results are shown in Figure 1a and Figure 1b. We not only observe
clear clusters of vowels and consonants but observe that the fricatives and stops tend to be close
to each other with similar phonetic properties. The patterns suggest that the phone embeddings

might reflect the phonetic variations in our conversation data.

Moreover, we inspect the clustering structure of recognized phones that occurred in the
non-lexical items. Figure lc shows the two-dimensional t-SNE (Pedregosa et al., 2011)
visualization of the 640-dimension phone embeddings obtained from Allosaurus. The same
phones tend to form distinct clusters, and the general distinction between vowels and consonants
is still observed in the figure. It indicates that the embeddings may represent their corresponding
phonetic properties. As Li et al. (2020) have shown in their studies, Allosaurus has the
advantage of multilingual phone recognition and involves more phonological knowledge. It is
thus appropriate for us to leverage these phone embeddings, by which the discourse functions

of non-lexical items may be encoded.

5.1 Classification Task

The output data by Allosaurus (i.e., the phone embeddings and phoneme transcriptions) are
aligned with our annotations of discourse functions for non-lexical items. It is noted that only
the phoneme, whose timestamp matches the 715 tokens of non-lexical items, are kept for the
classification tasks. The data is split randomly 70-30 into training and testing datasets as in
Section 4.2.

We also implement a linear SVM model and a random guessing model serving as a the-
most-frequent baseline for the classification tasks.! The only difference here is that we replace
use the acoustic properties with the phone embedding vectors to predict the candidates of the

discourse functions.

° Referring to the comments from the reviewers, the bi-LSTM representations are used as the phone
embeddings considering their better performance than the other representations (i.e., the 40-dimension
MFCCs and the phone logits) generated by Allosaurus.

10 Regarding the comments from the reviewers, the linear SVM model and the model baseline are adopted
to not only display the data distributions but highlight the results of Allosaurus, as we mainly focus on
whether the phone representations really help us explore non-lexical items. Based on the results, we did
find the the model using phonetic realizations performs better in predicting the discourse functions, and
we expect future research to develop better representations and state-of-the-art models that allow us to

describe non-lexical items more appropriately.
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Figure 1. (a) The dendrogram of the hierarchical clustering with Ward linkage. The
links are color-coded for visual references. Generally, the top left and
right branches loosely correspond to consonants and (semi-)vowels. The
leftmost branch (orange) are mostly fricatives (e.g., s, s, €); the one on the
right (green) includes stops (e.g., k, t, p). (b) The distance matrix shows a
consistent pattern with the one in the dendrogram. (c) The t-SNE
projection of the phones in non-lexical items. Only the most-frequent 15
phones are shown for clarity. IPA symbols mark the median points of

each category.
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5.2 Evaluation Results

As shown in the upper part of Table 4, phone emb. stands out with the highest accuracy (.92)
and precision (.96) in prediction of Role. While baseline presents the accuracy of .78, the
acoustic models (see Table 3) show even lower accuracies (.76) and precision (.15). As for
predicting Meaning, phone emb. Significantly outperforms its baseline and remains the highest
in accuracy (.77) and precision (.84) among all models. In general, phone emb. presents superior

performance than the other models in prediction of both discourse functions.

Table 4. Evaluation of classifiers based on phone embeddings

Role Acc Pr Re Fl1
phone emb. 92 .96 .87 91
baseline 78 .16 .20 18
Meaning Acc Pr Rc F1
phone emb. 77 .84 .68 72
baseline 42 .05 A1 .07

Moreover, both models (i.e., acoustics and phone emb.) are better at predicting Role than
Meaning, likely due to the fact that Meaning comprises more types of candidates and internally
more equal distribution. In this case, the gap between the accuracies of phone emb. (i.e.,
between .92 and .77) is still the smallest among the models. This suggests that our model is
better at capturing the discourse functions by using the phone embeddings, the phonetic
realizations, than the statistical acoustic properties.

6. Conclusions

This paper focuses on the phonetic-pragmatic interrelationship of non-lexical discourse markers
in Taiwan Mandarin. As we assume that the discourse functions may be captured by the
phonological variations, we firstly analyzed on the common acoustic properties (i.e., duration,
nasality, mean pitch, F1, F2, and F3), followed by the classification tasks considering the 640d-
phone embeddings. In comparison with the conventional acoustic properties, the model using
phonetic realizations performs better in prediction of the functional Role and pragmatic
Meaning of the non-lexical items. The result is consistent with our hypotheses that the phonetic
realizations, embeddings via deep learning, encode certain phonological variations of non-

lexical items and correlate with their discourse functions.
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Abstract

Chinese multi-dimensional sentiment detection task is a big challenge with a great
influence on semantic understanding. Irony is one of the sentiment analysis and the
datasets established in the previous studies usually determine whether a sentence
belongs to irony and its intensity. However, the lack of other sentimental features
makes this kind of datasets very limited in many applications. Irony has a humorous
effect in dialogues, useful sentimental features should be considered while
constructing the dataset. Ironic sentences can be defined as sentences in which the
true meaning is the opposite of the literal meaning. To understand the true meaning
of a ironic sentence, the contextual information is needed. In summary, a dataset that
includes dimensional sentiment intensities and context of ironic sentences allows
researchers to better understand ironic sentences. The paper creates an extended
NTU irony corpus, which includes valence, arousal and irony intensities on the
sentence-level; and valence and arousal intensities on the context-level, which called
the Chinese Dimensional Valence-Arousal-Irony (CDVAI) dataset. The paper
analyzes the difference of CDVAI annotation results between annotators, and uses a
lot of deep learning models to evaluate the prediction performances of CDVAI
dataset.
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1. Introduction

There are billions of posts on various kinds of forums and social media every day, which shows
the exchange of opinions online are high in action and frequency. Human conversations are
complex behaviors, because opinions by the people may use direct or indirect presentation
sentences. Therefore, the semantic understanding of online opinions is more complicated. In
addition, metaphors, irony, sarcasm, etc. also widely appear on online social media. These kinds
of expressions cause challenges for natural language understanding (NLU) and natural language
processing (NLP). Joshi ez al. (2018) has reviewed the irony detection problem. Although most
of the literature lacks a clear and consistent definition of irony, they found that the most common
feature of ironic sentences is the inversion of the literal meaning and true meaning. For example:
"Great, it's raining, but I didn't bring an umbrella....", the literal meaning is that raining without
an umbrella is a great situation. However, the context "it's raining, but I didn't bring an
umbrella..." shows a negative emotion, contrasted with "Great" which is a positive emotion.
This emotional contrast caused the semantic turn from negative to positive, which enables the
expression of irony. In Chinese irony, the contrast between positive and negative emotions is
often used to indicate the difference between sentences and contexts. This emotional contrast is
often used to achieve ironic expressions (Veale & Hao, 2010). According to the grammatical
structure mentioned above, this study argues that context must be considered to match the
characteristics of ironic sentences to improve the performance on irony detection task. The work
in sentiment analysis of irony has turned to the study of ironic language features (Colston, 2019).
With the development of machine learning, some studies have begun to use machine learning
methods to predict the intensity of irony (Chia et al., 2021; Dimovska et al., 2018). However,
most of them still predict irony using whole sentences instead of considering context as
mentioned above.

To improve machine learning performance of detecting ironic sentences, some studies
proposed to annotate grammatical structural features or use feature selection to screen important
irony spans in the English language (Kumar & Harish, 2019). Long et al. (2019) proposed the
usage of capitalized words as a hint of irony in English. However, capitalization does not exist
in Chinese so the capitalization is not suitable for use. In conclusion, while the grammatical
structure of irony has been thoroughly studied in English, it is not appropriate to apply it directly
to Chinese. Although some studies summarized Chinese irony grammatical structures (Jia et al.,
2019), there are few datasets annotated based on these rules. Since irony has a humorous effect
in the conversation processes, the paper considers irony detection as a sentiment detection task.
Therefore, considering the multi-dimensional Valence-Arousal-Irony (VAI) intensity for irony
sentences and context is more possible to identify the true meaning of ironic sentences and the

emotional state of the social media user.

Based on Tang's (Tang & Chen, 2014) open data on irony sentences, the paper proposes
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to extend sentence-level intensity of valence, arousal and irony, and context-level intensity of
valence and arousal. This annotation method provides a way to judge the difference in context
and semantics in irony sentences. By quantifying emotional indicators, the pattern of sentiment
while using ironic sentence can be more easily understood. This augmented CDVALI dataset is

the first dataset to do sentiment annotations for irony context.

Furthermore, this paper proposes deep learning models based on the pretrained
Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al., 2018) model
to learn the dimensional VAI on the ironic sentences and dimensional VA on ironic contexts.
The paper uses pre-trained BERT to extract hidden features of sentence or context, respectively.
Then there are three methods to combine hidden features and predict VAI scores of sentence-
level or VA scores of contexts-level: (1) using a linear layer to predict VAI and VA, respectively;
(2) summing two hidden features from two encoders of sentence and context. (3) Concatenating
two hidden features from two encoders of sentence and context. Furthermore, the paper
constructs a token classification model to automatically predict the position of context. Then
the predicted positions of context are used to replace the origin positions of context, and predict

VAI scores of sentence-level or VA scores of contexts-level.

2. Related Works

Because of different research perspectives, the definition of irony is often adjusted. However,
previous studies summarized a basic consensus in the process of exploring ironic sentences.
“Irony is an expression in which the true meaning is the opposite of the literal meaning” (Li &
Huang, 2020). Based on the above, the most common feature of irony is metaphor, which can
make the literal meaning opposite to the true meaning of the sentence that the commenter wants
to express. The form of ironic sentence can be expressed as using keywords of exaggeration
with positive emotions to describe context with negative emotions. This emotional contrast
makes the sentences have an ironic effect (Veale & Hao, 2010). Li et al. (2020) proposed an
irony identification program (IIP) based on the grammatical structure of ironic sentences, which
supports future studies to identify whether a sentence is ironic. The above research provides

support for the definition of irony in the paper.

Irony sentences are not usually used in official documents. Thanks to the prevalence of
social media, many ironic sentences have been posted online which has led researchers to collect
and analyze ironic sentences on social media platforms (Lestari, 2019). Among the studies
related to irony detection or sentiment detection. There are very few corpuses including VAI
indicators. The possible reasons are that irony detection is not traditionally attributed to the
domain of sentiment detection. However, irony has a humorous effect in conversation, which
can result in specific emotional patterns for the writer and reader. Therefore, the paper considers

irony detection as an emotion detection task. But most of the existing corpus are only included
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valence and arousal (VA) or only include irony (I) indicator.

Recent studies have collected data on social media to build corpus. Preotiuc-Pietro et al.
(2016) used the Likert nine-point scale to annotate VA indicators for Facebook posts. They
found that there is high correlation between VA. Bosco et al. (2013) annotate irony and
emotional expression for Twitter tweets to establish the Senti-TUT corpus. Their corpus
includes positive, negative emotions and irony, which considers the concept of valence. Ghosh
et al. (2015) annotate figurative language such as irony, satire, and metaphor on a 11-point scale
at SemEval-2015 Task 11. In addition, there are many constructions of VA or I corpus, but there

are very few studies that comprehensively considers VAL

The necessity of considering VAI indicators simultaneously is that there are correlations
among the three indicators. Effects of irony on human emotions in conversation was found in
the study of Pfeifer (Pfeifer & Lai, 2021). People who use irony are in a less negative and less
excited state of mind. Existing VAI corpus was constructed by Xie et al. (2021). They found
that stronger irony expressions may have lower valence (more negative) and higher arousal
levels, respectively. However, since context is important information to construct ironic
sentences which their study didn't consider. The biggest difference between Xie et al. (2022)
and the paper is that the context is considered and annotated with VA score. To conclude, the
above study proves that it is necessary to consider VAI together because of the correlations in

these three indicators.

Irony Corpus built in Chinese such as Xiang et al. (2020) proposed Ciron dataset. Their
dataset contains 8.7K Weibo posts. However, they annotated the intensity of ironic sentences
in the corpus without considering context and other sentiment indicators. Existing corpus that
include irony sentences and context is NTU Irony Corpus (Tang & Chen, 2014), but their corpus
without other sentiment indicators. Lack of consideration of sentiment indicators is impossible
to understand clearly on the emotional transitions and semantic changes in the sentences.
Therefore, the corpus provided in this paper has a greater advantage in understanding the

structure of ironic sentences and sentiment patterns.

In terms of the irony detection model, Rangwani et al. (2018) considered emojis on Twitter
as a feature when annotating ironic sentences. They use Convolutional Neural Network (CNN)
to pre-train the emoji and connect to a XGBoost model for classification. Naseem et al. (2020)
proposed a T-Dice model based on the frame of the Transformer to detect valence and irony,
then connected to Bi-directional Long Short-Term Memory (Bi-LSTM) to classify emotions.
The accuracy of their model's prediction results exceeded the state-of-the-art methods of the
time. Xiang et al. (2020) found that the performance of BERT is better than GRU in their
experimental results on the Ciron dataset they built. Lu ef al. (2020) improved the Bi-GRU
model based on BERT in the Chinese sentiment analysis task to achieve the best results. To sum

up, in recent years, no matter in sentiment or irony detection tasks. Models that can connect the
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information of the entire sentence have achieved better results. Furthermore, models with
attention mechanisms such as BERT or based on Transformers frame can make the model
achieve better results. In summary, this paper will base on BERT to detect the VAI score of
sentences and the VA score of the contexts.

3. CDVAI Dataset

The paper proposes to extend the NTU irony corpus to a Chinese dimensional valence-arousal-
irony called CDVAI The NTU irony corpus is the only Chinese corpus that includes ironic
sentences and contexts. Therefore, the paper proposes to annotate the VAI intensity of the
sentence-level and the VA intensity of the context-level, respectively. Li and Huang (2020)
analyzed the sentence structure of Chinese irony based on the existing corpus. They summarized
that context is an important information for detecting irony. Based on the sentence structure in
the NTU irony corpus and their findings, the paper defines irony as "irony is an expression in
which the true meaning is the opposite of the literal meaning." Context is the true meaning of
the sentence (usually a negative description), while ironic keywords (usually positive

descriptions) can make the literal meaning contrary to the context.

3.1 Dimensional VAI annotation

The paper annotated irony sentences with VAI intensity, and irony contexts with VA intensity.
Every indicator was rated from 1 to 5 points. The detailed annotation judgement as follow:

e Valence: Lower valence scores indicate more negative emotions (1-2 points), whereas
higher valence scores indicate more positive emotions (4-5 points), and 3 indicate neutral
emotions, or inability to judge.

e Arousal: A score of 1 indicates the sentence is close to an objective description, or difficult
to judge whether the sentence expresses excitement. A score of 2 indicates that the
annotator can feel the low excitement expressed in the sentence, but there is no emotion
word such as sad, annoyed, lost, happy, etc. in the sentence. A score of 3 and above
indicate the annotator can feel the medium excitement expressed in the sentence, or with
explicit emotional words or phrases to clearly describe the emotional state. A score of 4
indicates that the annotator can clearly feel strong excitement expressed in the sentence,
such as madness, rage, etc. Furthermore, the sentence may contain violent words, such as
aggressive language. A score of 5 indicates in addition to strong excitement, words with
discrimination, hated, or words with obvious manic emotions. For example: “Great, the

class report is going to be in the same group with that pathetic nerd!”.

e [rony: The annotator reads a sentence and judges whether the true meaning is the opposite

of the literal meaning. Most of the sentences in NTU irony corpus use negative
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descriptions as the context, and positive descriptions as the keywords to express irony.
Irony intensity will be determined according to the gap between the positive intensity of
irony keywords and the negative intensity of context. In this paper, the positive intensity
of various ironic keywords appearing in the corpus is summarized as: wonderful > great
> very good > good. A special case is "it's fine to get worse!", the true meaning in this
case is the situation is already bad but the commenter doesn’t want the situation to get
worse, the ironic keywords "it's fine to" makes the literal meaning opposite to the true
meaning. However, this case means the situation is already bad so the gap between
positive intensity of irony keywords and the negative intensity of context is small. The
larger the gap between the positive intensity of the ironic keyword and the negative
intensity of the context, the higher the score of irony, and vice versa. A score of 1 indicates
that the gap is very small, or the context is close to an objective description, which leads
to hard judgement. For example: "Good, it's raining.". A score of 2 indicates that there is
a small gap between ironic keywords and context. A score of 3 indicates that there is a
moderate gap between the ironic keywords and the context. A score of 4 indicates that
there is a big gap between the ironic keywords and the context. A score of 5 indicates that
there is a great gap between ironic keywords and context. The sentence may contain
discriminatory or morally unacceptable metaphors, such as sexual innuendo.

3.2 Annotated result analysis

There are 1004 sentences in NTU Irony Corpus, and 843 sentences with an ironic context. Each
sentence was annotated by three annotators. The annotators consist of postgraduate students and
an undergraduate student, all of them are native Chinese speakers and ages between 20 and 25.
Due to the subjective judgement bias of different annotators, the paper uses the average of 3
annotators as the gold standard. The paper using scores to annotate VAI is more reasonable.
Human perception of emotional intensity is closer to continuous scores than classification. The
meaning of the annotating criterion in the paper is to concretize the definition of intensity of
VALI and set the standard score line. Continued from above, the traditional method which is used
to evaluate the agreement between annotators such as Cohen's kappa doesn't conform to the
hypothesis of the paper. So, the paper uses mean absolute error (MAE) to evaluate the
annotation consistency. At the sentence level, the MAE of the three annotators ranged from 0.05
to 0.31 in valence, 0.25 to 0.41 in arousal, 0.22 to 0.56 in irony. At the context level, the MAE
of the three annotators ranged from 0.07 to 0.4 in valence, 0.15 to 0.65 in arousal. From the
above, the MAE difference between of the three annotators is very small, which proves that the

annotating is effective.
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e For example:
Score of a sentence: valence: 1, arousal: 5, irony: 4

Score of a context: valence: 1, arousal: 5

Sentence: “/R4F (applause) TIHY 75/ &KL DIEF 247 Z4F T iRFGR AT &
JH outlook FEEFHEAI! K 7 Z E)ILHHTF K A HFRE R (R FHI!"  (“Very good
(applause) The factory manager of the factory has been coming to work for many years. She
told me that she doesn t know how to use Outlook to send meeting notices!! mother fucker!!

Give me your salary and I will send the notices for you!!”)

Context: “ LH %/ AR LIFZLFZ24F T IRECHAT &/ outlook g
FEH!”  (“The factory manager of the factory has been coming to work for many years.

She told me that she doesn’t know how to use Outlook to send meeting notices!!” )

Judgement: First, in terms of judging the score of valences, there are extremely negative
emotions in this sentence such as “mother fucker!! Give me your salary and I will send a
notice for you!!”. Clearly, the emotions expressed by the swear words and complaints in the
sentence are highly negative. Thus, valence is given a score of 1. In terms of judging the
score of arousals, we can notice the abuse language and feel the emotion of manic. Thus,
arousal is given a score of 5 points. In terms of judging the score of irony, the irony keyword
“very good” is a weak positive description. However, according to the description of the
sentence, the incident described in the context caused serious discomfort and negative
emotions to the commenter. As we can see, there is a big gap between positive irony keyword
and negative describe of context. Besides that, the sentence also contains sarcasm spans, such
as “Give me your salary and I will send a notice for you.”, so it is given a high score of 4

points in irony.

3.3 Statistics of Annotated Result

Table 1 shows the annotated result of CDVAI dataset in different levels and sentiment. Since
the dataset is mainly ironic sentences, which results in valence scores that are all low (negative
emotion) at sentence-level. While few valence scores of contexts are neutral at context-level.
The sentences corresponding to these kinds of contexts often show low scores in valence and
irony. There are many sentences containing emotions, which can be observed in the arousal
scores centered on points 2, 3 and 4. The score of arousals at context-level is distributed to a
lower score than sentence-level. The reason is that irony keywords usually have exaggerated
expressions, resulting in a higher arousal. The distribution of the score is like arousal. Gap
between positive irony keyword and negative context are usually small, which can be observed

in the irony scores centered on points 1, 2 and 3.
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Table 1. Score frequency of all sentiments.

Level Sentiment 0 1 2 3 4 5
Valence 0 380 624 0 0 0
Sentence Arousal 0 60 406 369 150 46
Irony 0 181 428 310 75 20
Valence 0 302 516 25 0 0
Context
Arousal 56 279 264 161 76 26

4. Model Performance Evaluation

To validate the annotation consistency and the validity of the proposed CDVAI dataset in the
paper, the paper constructs deep learning models to predict the VAI score of sentence-level and
VA scores of context-level. Table 2 shows the general statistics of CDVAI dataset. The paper
uses stratified sampling to split the dataset into training, validation, and the testing set. The ratio
of training set and testing set is 7:3, and validation set is split from training set which ratio is
9:1.

Table 2. Statistics of the proposed CDVAI dataset.

dataset Sentence-level Context-level
Training set 632 531
Validation set 71 59
Testing set 301 253

4.1 Prediction Model

This paper uses pre-trained BERT models as an encoder to extract hidden state of sentences and
contexts, then connected to a linear layer to perform score prediction. There are three methods
to obtain final hidden features such as (1) M1: After input sentence and context into the encoder,
the hidden features of the sentence are used to predict sentence VAI score through a linear layer.
The hidden features of context are used to predict context VA score. (2) M2: The position of
the context in the sentence has been located. After input sentence and context into the encoder,
the hidden features at the context position are summed, then predict sentence VAI and context
VA scores. (3) M3: After input sentence and context into the encoder, concatenate two hidden
features of sentence and context then predict sentence VAI and context VA scores. Above
processes are the first part of the experiment in this paper. The second part of the experiment,
the paper attempted to create a model to predict context span automatically. The paper uses the
pre-trained BERT models as encoders, and then the output of encoder with linear layer to predict

the span of context in the sentence. Finally, the predicting context will replace the origin context
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in the first part of the experiment, with the predicted context of the proposed model, then repeat

the process of the first experiment.

The paper compares BERT models pre-trained on a Chinese corpus to find the best results.

The pre-trained models are as follow:

e PM1: hfl/chinese-macbert-base uses Wikipedia simplified and traditional Chinese as the
corpus to train the model. (Cui et al., 2020)

® PM2: shibing624/macbertdcsc-base-chinese using the SIGHAN typo correction corpus to
train the model. (Cui et al., 2020)

® PM3: uer/chinese roberta L-4 H-256 uses UER toolkit and CLUECorpus2020 to train
the model. (Turc et al., 2019)

® PM4: IDEA-CCNL/Erlangshen-Ubert-110M-Chinese uses datasets from a variety of tasks
for open-source UBERT. (Wang ef al., 2022)

o PMS: IDEA-CCNL/Erlangshen-Ubert-330M-Chinese uses datasets from a variety of tasks
for open-source UBERT.

o PM6: IDEA-CCNL/Erlangshen-UniMC-RoBERTa-110M-Chinese uses 13 supervised
datasets to train the model. (Yang et al., 2022)

4.2 Experimental Settings

The proposed CDVALI dataset includes the annotation of irony context to allow the model to
understand contextual emotional changes during the training process. The paper uses a variety
of modified pre-trained BERT models as the experimental encoder. The parameters are shown
in Table 3. Each pre-trained model uses the same parameters, except the learning rate. Since
context contains less information than sentences, a smaller learning rate should be tried. The
context span prediction model in the second part of the experiment were tried smaller learning

rate due to the difficulty to learn the span of context in the sentence.

Table 3. Parameter settings of BERT models.

Parameter Value
Optimizer Adam
Learning rate - sentence-level 4e-4, 4¢-5, 4e-6
Learning rate - context-level 4e-5, 4e-6, 4e-7
Learning rate — span prediction 43e-6, 45¢-6

Number of epochs 50
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4.3 First Part of Experimental Results

The prediction performance of dimensional VAI score on sentence-level is shown in Table 4.
First, the performance of valence prediction is quite good. All MAEs are about 0.4, no matter
what approach in this paper. However, the paper can still discover that M1 got the greatest
performance, which indicates more complex hidden features don't get better result in valence.
The reason is detecting the score of valences is relatively easy in the task, so more complex
hidden features cause worse results. The performance of arousal prediction is a bit worse than
valence, which indicates arousal is relatively difficult to learn. All MAEs are about 0.6, however
M1 does not have the greatest approach on all models. M2 and M3 make the performance
progress at PM3. PM4, MP5 and PM6 improve performance while using M2 or M3. Finally,
the performance of irony prediction is a bit better than arousal. All MAEs are about 0.5 to 0.6,
which means our annotated method to judge irony is effective. M2 and M3 are more helpful to
improve the performance of PM2, PM4, PM5 and PM6, which indicate these models can deal
with complex hidden features better. Overall, the result of sentence-level VAI is quite well, but
M2 and M3 doesn't show significantly helpful while predict VAI scores.

Table 4. Prediction performance of dimensional VAI score on sentence-level.

Valence Arousal Irony

M1 M2 M3 M1 M2 M3 M1 M2 M3
PM1 0346 0421 0390 0521 0649 0.639 0521 0577 0.603
PM2 0380 0421 0390 0.619 0649 0.639 0.601 0577 0.603
PM3 0371 0410 0371 0.643 0.603 0.596 0.538 0.570 0.566
PM4 0380 0412 0390 0.619 0614 0.639 0.601 0572  0.603
PMS5 0376 0381 0420 0.615 0.616 0.610 0575 0591 0.559
PM6 0380 0412 039 0.619 0614 0.639 0.601 0577 0.603

Model

The prediction performance of dimensional VA score on context-level is shown in Table
5. The context-level valence also performs quite well. Overall, MAE is around 0.4. However,
M2 and M3 improve the performance significantly. Among them, M3 provides an even better
effect. This shows our approaches are more effective on context-level. The reason may be the
complex relation of sentence and context, which shows that the true sentiment pattern of ironic
sentences requires a judgment of the context first then combined with the whole sentence to
understand. This result can also be seen in arousal. However, M2 showed more effective help
in predicting arousal scores. The inference is the information of context itself is more important

than the whole sentence while predicting arousal scores, and this effect significantly.
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Table 5. Prediction performance of dimensional VA score on context-level.
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Valence Arousal
Model
M1 M2 M3 M1 M2 M3
PM1 0.431 0.408 0.389 0.819 0.649 0.787
PM2 0.413 0.408 0.389 0.796 0.649 0.787
PM3 0.431 0.468 0.427 0.798 0.603 0.829
PM4 0.413 0.415 0.389 0.796 0.614 0.787
PM5 0.426 0.463 0.428 0.815 0.616 0.834
PM6 0.413 0.415 0.389 0.796 0.614 0.787

Analysis of the above shows that M2 and M3 can improve the performance on context-

level significantly. However, they don't seem quite helpful on sentence-level. In summary,

depending on the choice of pre-trained model, context information can improve performance

while predicting VAI score in sentence. Results on context-level shows that understanding the

true sentiment pattern of ironic sentences requires to combine sentence and context information.

4.4 Second Part of Experimental Results

Due to the lack of context annotation in previous study. The paper proposes a model to predict

the irony context span automatically. The paper proposes to fine-tuning PM1 to PM6 to compare

prediction performances. But the performances of the model are hard to accept. So, the paper
adds a new pre-trained model to solve this problem, which is PM7: IDEA-CCNL/Erlangshen-
DeBERTa-v2-97M-Chinese (He et al., 2020) to improve the model. The results show in Table

6.

Table 6. Prediction performance of context span predict in ironic sentences.

Indicators
Model
Precision Recall F1
PM1 0.373 0.302 0.333
PM2 0.349 0.274 0.307
PM3 0.329 0.218 0.262
PM4 0.373 0.309 0.331
PM5 0.436 0.352 0.390
PM6 0.373 0.298 0.338
PM7 0.438 0.377 0.405

The paper uses PM7 to predict context span, then replace origin context span with the

predicted context span and execute the same process of above experiment to evaluate the
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availability. The span predict model results on sentence-level are shown in Table 7. Compared
with the first part of the experiment, the MAE of valence on sentence-level on M2 is making
progress. The reason may be that although the predicted context spans are not correct, they
contain more emotion information words accidently. The MAE of arousal on sentence-level
becomes larger on M2, however the MAE reduces on M3. The reason may be the noise of the
context improves the performance. The same situation occurs with irony. This discovery is quite
surprising that the information of whole context may not be the important one to improve the
prediction performance but the critical part or words in the context.

Table 7. Prediction performance of dimensional VAI score on sentence-level in part 2

experiment.
Valence Arousal Irony
Model
M2 M3 M2 M3 M2 M3
PM1 0.337 0.403 0.631 0.585 0.575 0.638
PM2 0.337 0.403 0.631 0.585 0.575 0.638
PM3 0.384 0.376 0.618 0.648 0.606 0.613
PM4 0.392 0.403 0.677 0.585 0.594 0.638
PM5 0.383 0.364 0.607 0.609 0.561 0.574
PM6 0.392 0.403 0.677 0.585 0.594 0.638

Finally, the span predict model results on context-level are shown in Table 8. Since the
context span of the model predictions cannot be fully correct. Therefore, the main purpose of
this part of the experiment is to examine the effect of VA score prediction with a biased context
span. Compared with the first part of the experiment, the MAE of valence on context-level
decreases a little. The MAE of arousal decreases quite a lot. This proves that the correction of
context span matters.

Table 8. Prediction performance of dimensional VAI score on context-level in second
part of experiment.

Valence Arousal
Model
M2 M3 M2 M3
PM1 0.419 0.447 0.819 0.824
PM2 0419 0.447 0.819 0.824
PM3 0471 0.436 0.867 0.810
PM4 0.435 0.447 0.844 0.824
PM5 0.442 0.451 0.801 0.844

PM6 0.435 0.447 0.844 0.824
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4.5 Error Analysis

Based on the performance of the model, the PM3 model has well performance in experiments.

The paper presents an incorrect prediction case, as follows:
Sentence: “7R4F .. ZEIF Z5LFE T X-(“ (“Very good.... even the speakers are broken X-(*)
Context: “ZEIF 51 T (“even the speakers are broken™)

Judgement: The prediction results are shown in Table 9. The reason why the model judges
the valence to be 1.71 on sentence-level, may be that it judges “#”, “I 7 (“even, broken™)
as negative words. However, the post only indicated that the speakers are broken, which is
usually not perceived as highly negative. The lack of common sense may have led to the
failure to detect its valence correctly. In terms of irony, the prediction score is relatively large.
It is speculated that because the judgment of valence is relatively negative and the term “f§
7 (“very good”) is positive, there is a large emotional gap. The model therefore yields a
higher irony score. However, the sentence has no other span that emphasizes irony, so the

annotated score is lower.

Table 9. Prediction results of the example

Sentence-level Context-level
A\ A I A\ A
Annotated 2 3 1 2 3
Predicted 1.71 3.45 1.94 1.63 1.97

5. Conclusion

This paper established the CDV AI dataset which extended from NTU irony corpus. The CDVAI
dataset contains multi-dimensional sentiment annotation and irony context sentiment annotation,
which is helpful for developing Chinese irony detection methods that allow the model to learn
sentimental patterns in ironic sentence and context. The experimental results showed that the
annotation of CDVALI dataset provides a learning direction for the BERT based model to
understand the irony structure and sentiment contrast between sentence-level and context-level.
Using M3 can improve performance significantly. The paper has summarized our experiment
results below. First, M2 and M3 don't show significantly helpful while predicting VAI scores.
However, in the second part of the experiment that the information of the whole context may
not be important to improve the prediction performance but the critical part or words in the
context. Second, M2 and M3 show significant improvement in predicting score of context-level,
which proves the sentiment pattern of ironic context needs to combine sentence information.
Finally, the sentiment in ironic contexts is harder to learn for the model, which needs correct

spans of context to improve the performance.
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The weakness of the CDVAI dataset is that the corpus is relatively small and excludes the
whole ironic grammatical structure. Nevertheless, the paper is suitable to use as guide data to
obtain more samples or as a template for annotation guidelines. Furthermore, the proposed
CDVALI dataset could be combined with other ironic corpora to extend the training sample size.

Furthermore, the model can be improved in the future.
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Abstract

Taiwanese has been listed as an endangered language by the United Nations and is
urgent for passing on. Therefore, this study wants to find out how to make a
Taiwanese speech synthesis system that can synthesize any Taiwanese sentences via
anyone's voice. To achieve this goal, we first (1) built a large-scale Taiwanese
Across Taiwan (TAT) corpus, with in total of 204 speakers and about 140 hours of
speech. Among those speakers, two men and women, each one has especially about
10 hours of speech recorded for the purpose of speech synthesis, then (2) establish a
Chinese Text-to-Taiwanese speech synthesis system based on the Tacotron2 speech
synthesis architecture, plus with a frontend sequence-to-sequence-based Chinese
characters to Taiwan Minnanyu Luomazi Pinyin (shortened as T4ai-10) machine
translation module and the backend WaveGlow real-time speech generator, and
finally, (3) constructed a Taiwanese voice conversion system based on the
concatenated speech recognition and speech synthesis framework where two voice
conversion functions had been implemented including (1) same-language:
Taiwanese to Taiwanese voice conversion, and (2) multi-language: Chinese to
Taiwanese voice conversion. In order to evaluate the Taiwanese voice conversion
system, we publically recruited 29 subjects from the Internet to conduct two kinds
of scoring task: same-language and cross-language voice conversion and carried out
the subjective "naturalness" and "similarity" mean opinion score (MOS) evaluations
respectively. The test result shows that in the Intra-lingual session, the average
naturalness MOS is 3.45, 3.02 and 2.23 points, and average similarity MOS score’s
3.38, 2.99 and 2.10 points while using 10 minutes, 3 minutes, and 30 seconds target
speech, respectively; in cross-lingual part, the average naturalness MOS score is 2.90
and 2.70 points; average similarity MOS score is 2.84 and 2.54 points while using 6
minutes and 3 minutes target speech, respectively. From those results, it shows that
our proposed system indeed could synthesize any Taiwanese sentences via anyone's

voice.
BRGREE] © &SGR TR - AR A - DR

Keywords: Taiwanese Across Taiwan, Taiwanese Speech Synthesis, Taiwanese
Voice Conversion
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1. &% (Introduction)

1.1 Eff%ELHRY (Motivation)

BEBNEEE NIRRT GEEE > 2B RE

B NMESOE GRS - NIEAGRSCEHEEN  FEREEE (1) PO E AR

BHERRG > 1 (2) A EER N 2B S il B oA » B E RIS
BEEEEE » REAEZE N HGRERE - WAEETIDIH CHEENE S G G elst

iE,l‘- o

PEBEZER L HARA FEME R = Gt Eaatt - Wit » TFTE LS Bt GaEsEk
Fdse 2 Tk - B G EEEERE (Taiwanese Across Taiwan » TAT ) {E Fsift 3% &5k
EEE O RS B HAERE (1) TAT-Voll~2 » H IS &8k BIAY 100 /NEF/200 A

EEEsEE WY (automatic speech recognition, ASR) BB EE & (multi-speaker
text-to-speech, TTS ) FHzERE » Bl (2) TAT-TTS-M1~2 B TAT-TTS-F1~2 » L A{KEBEES
sEyRE (i) HEEIZGEES (G0 B & —-B—42 BA /NG QS G K

SERHEE o HAN - RGeS Y EAE R B A - Asw ¥ TAT-TTS 55k}
JEHELT A\ T a8 R B AT AR IEERI P B E Y E - BN B S RS
BUERC  DIE S HGEEEIRBREMGE - TMBIFI AL TAT SBkHE - Slikniil 2 a5k
FE O LR A 24 -

BESN - B AR TGS SR A RS - TR IR P
R GEEEEE > NI EE (state-of-the-art ) Y end-to-end ( E2E ) Tacotron 2 35
FERFLHRE > W EER convolution neural network (CNN ) 22 sequence-to-sequence
O AR G PR RS BT 45 B O] BIIF & AR & 1Y WaveGlow EH A % 4] -

i R S A EESN (W) B (EEFEREHTE - R
FA R RS WY (automatic speech recognition, ASR ) BHEE % &1k ( text-to-speech, TTS)
15i4H 7 cascaded ASR+TTS ZE## - H.rft ASR il TTS #54H » &5 FH LA end-to-end (E2E )
ZLHEHY Transformer S (HIZK4ERE

Wt > P P mean opinion score (MOS) THIFFA A2 It &3S & pL e
HEBR ARG BAE 0 BEEREE S ERAS AR S ER B sEE S ey AUE -
FEAE - AEIEA TRAY BARREE I SREBRIR A T - FHEEF ST ERREENEA
FERIARDLE - 2 58 S A 2 e ST A By B R

1.2 H& (Background)

HATERANEET KA 0 R PHEENEMEHEEH il - tE4 Google 2 HHY
Tacotron2+WaveNet Vocoder Z24#(Shen et al., 2018) » Tacotron2 H] BF $# DUSH S 4GRS » #E
T HRERERE » B — T 325 | # T Mel-Spectrogram | Y end-to-end Z2f#% - WaveNet
Vocoder 73 " Mel-Spectrogram | 8% " Speech Waveform | - JEZEREHIRLI% - 3B
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B E A T N - {HILEERY WaveNet Vocoder » Z—{[E LA sample y BEA7 i
HHFA R4S 204 - sample R — (B —(EIE AR EL - FRETREEMEE R
A > WA GETE » BEEE S EREEIEE 12 - M NVIDIA $2H 1) WaveGlow (Prenger et
al., 2018) R TE4F AT DA LR RE - WaveGlow & —{EZE AR AV AR B A » HOR Rt 2CEL
BREL i A pe B - BRI AR AT R E R 0 A BT eIRRE - &R PR E
EERIER D FHRE & 10 FPEUNAYRE S » K0E /DAY & R ] 48 4% P B2 AS IR Bl
Frapk 0 HHEARMEEE RS S (MOS) HE LRI > WaveGlow HYEE AT
WaveNet °

IMAERE B A 5 T > BIFEFZE EBEAE 2016 > 2018 F1 2020 4F > 53 RIERHZE Y voice
conversion challenge (VCC) #iEE - 2020 FHYELEE(Zhao et al., 2020)57 5% T Taskl : [EEE
SHYEE/TEE S EHR (Intra-lingual semi-parallel VC) » il Task2 : F5:E=2E =88 # ( Cross-
lingual VC) WifE{EFS < £ VCC 2020 H » X2 EBURATE S R R A (& In et i 25 1Y 128
FEAE 1 Fror o HH Taskl WUREE A S AE B NS AR UUE L EGE R (06 2 Frs) 0 8
REERESMER T » 348 ASR Al TTS Ffifdr & FaVihasgfE » — RN B 2R
E &% (phonetic posteriorgram » PPG) » BiiE ASR i TTS ZEfEAVEE S HEIHAR fl7 » F3ES
AT RN B A AR UUE b #5 dmad F (B DRV B B4R i5Es (Auto-Encoder ) B2
RIS (GAN) E44% - M Task2 LLEAESR: (2018 3 Aon) B AEHZK » PPG

s P A7 A ’ N
Fil cascaded ASRHTTS HyJ774 » #IRME & FIAEFSHE = o o P A L -
Team ID Task 1 Task 2
VC model Vocoder VC model Vocoder
TOl PPG-VC (Tacotron) Parallel WaveGAN NIA N/A
TO2 PPG-VC (Tacotron) WaveGlow PPG-VC (Tacotron) WaveGlow
TO3 AutoVC WaveRNN AutoVC WaveRNN
To4 VQVAE WaveNet N/A N/A
TOS N/A N/A PPG-VC (IAF) WORLD & WaveGlow
T06 StarGAN WORLD StarGAN WORLD
TO7 NAUTILUS (Jointly trained TTS VC) WaveNet NAUTILUS (Jointly trained TTS VC) | WaveNet
TO8 VTLN + Spectral differential WORLD VTLN + Spectral differential WORLD
T09 AutoVC Parallel WaveGAN AutoVC Parallel WaveGAN
TIO ASR-TTS (Transformer) / PPG-VC (LSTM) | WaveNet PPG-VC (LSTM) WaveNet
Ti1 PPG-VC (LSTM) WaveNet PPG-VC (LSTM) WaveNet
T2 ADAGAN AHOcoder ADAGAN AHOcoder
T3 PPG-VC (Tacotron) WaveNet PPG-VC (Tacotron) WaveNet
T4 One shot VC NSF N/A N/A
T15 N/A N/A AutoVC MelGAN
Ti6 CycleVAE Parallel WaveGAN || CycleVAE Parallel WaveGAN
T17 Cotatron MelGAN N/A N/A
TI9 VQVAE Parallel WaveGAN VOQVAE Parallel WaveGAN
T20 VQVAE Parallel WaveGAN VQVAE Parallel WaveGAN
T21 CycleGAN MelGAN N/A N/A
T22 ASR-TTS (Transformer) Parallel WaveGAN ASR-TTS (Transformer) Parallel WaveGAN
T23 Transformer VC (Jointly trained TTS VC) Parallel WaveGAN || CycleVAE WaveNet
T24 PPG-VC (Tacotron) LPCNet PPG-VC (Tacotron) LPCNet
T25 PPG-VC (CBHG) WaveRNN PPG-VC (CBHG) WaveRNN
T26 One shot VC Griffin-Lim One shot VC Griffin-Lim
T27 ASR-TTS (Transformer) Parallel WaveGAN PPG-VC / ASR-TTS (Transformer) Parallel WaveGAN
T28 Tacotron WaveRNN Tacotron WaveRNN
T29 PPG-VC (CBHG) LPCNet PPG-VC (CBHG) LPCNet
T31 Multi-speaker Parrotron WaveGlow Multi-speaker Parrotron WaveGlow
T32 ASR-TTS (Tacotron) WaveRNN ASR-TTS (Tacotron) WaveRNN
T33 ASR-TTS (Tacotron) Parallel WaveGAN || PPG-VC (Transformer) Parallel WaveGAN

B 1. VCC 2020 2EE (& /HETIEIEF4E(Zhao et al., 2020)

[Figure 1. Summary of adopted approaches in Voice Conversion Challenge

(VCC) 2020/




ATl E PRt R R IRLZ G At A TR AT 93

Task 1, English Listeners, Scatter Plot

100% ngr 127 T10 TAR
01 T3 77 T‘g
90% T30
T16 T4
80% T‘%& ;ﬁ;}
T32
E
< 70%
T T
g U g
£ 60%
g T26 T21
& s0% TO8
Foy
5 40%
= ° TQ9
5 )
30% TQ6
20%
10% TP SQU
% . . . . . . .
0% 2.0 25 3.0 35 4.0 4.5
MOS Score

B 2. VCC 2020 Taskl LEEEELZFE(Zhao et al., 2020)
[Figure 2. Benchmark Results on Taskl of Voice Conversion Challenge

VCeo) 2020]
Task 2, English Listeners, Scatter Plot
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& 3. VCC 2020 Task2 [LEELEH(Zhao et al., 2020)
[Figure 3. Benchmark Results on Task2 of Voice Conversion Challenge
(VCO) 2020}
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BEAh - RS ELEGERAE - [FEE S EHHY E A B 8 # e8] DI
HEFHE TR - SRS AT E > NEER s £ 8 AREEREAED 2
[ > AEFES ST REE ERE L8 TS EIRAY R

1.3 W% H7E (Approaches)
E AR AR O EEE Gk
AR oA 8 (2) BEEE

WHFE A -

SRR E AR - DUTSRBARMTEE (1) 200

BLE
SR 2 B4 A SR 3 E

1.3.1 B A EEEEET & A4 (Single-Speaker Chinese Text-to-Taiwanese Speech
Synthesis)

FEZ & sequence-to-sequence-based H 3 X FHE G EE G EPF E IS BIGERTAR - BB
Tractron B E &K F2248 - B WaveGlow sEE &Rk %4k - LE IR &8 HEG 2 588
BAKERS - HAGOREWE 4 For - B AR SOCF R - o B esdieEsom S
JER) G EESE AN G BB SUA » FE I Tacotron 2 & EEHF S UABIAR G eE& EES
HIBHEE » fc1% H WaveGlow & 5l 0 & HVHEE SN E IR G EEEE S » AR R
k43 48 H (http://tts001.iptcloud.net:8801) » ZNBEHEA FLHIES o

2 ppae LRHE
£ )
PUXF =
TLPA
...) lll} &
’ aEEE

Chinese Text to ))

Taiwanese Speech

B 4. BN GHEEE SRR
[Figure 4. Block-diagram of the Single-Speaker Taiwanese Text-to-Speech System]
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132 FGEETHRNEREH L BB T B AL (Cascade ASR and TTS-
based Taiwanese Voice Conversion System)
Iﬂ:ﬁ[? 3% FH Cascade ASR+TTS Z2f#(Huang et al., 2020)E{TEEES @?ﬁl%%ﬂ’j@j*@
 HZUEAE 5 Fin - HEE=EEN > phleaE Gl o WalnEE B
Transformer based ASR model » & EF R H EEEE S EHY X-Vector » L/U;_Z%\ HikiEHE
Th 2 X-Vector » #{TEESES &K HY Multi-speaker Transformer-TTS model °
HAEINGRIEE: - A/ V& RS > SKEUEE X-Vector » A {## (fine-tuning )
RICTARA I 208 TTS A > FE2k BARGR#AY TTS B8 - (NI FE IR B - ?jEAl:ﬂE[J
Fi ASR Fijgh » HEACEEEE BB RS S W ARMEEFR TTS Gt B BiAEE
ERHEEEEAE -
BESE  Feffith et PS50 = a8 S TS - KR St VCC 2020 Task2 Y HER I GLEEHY
B2 (Kamo, 2021) » AR EERE & 5ERYRE S A 24 -

,.m m Source
speech

Trained
ASR model

Transcription

Trained
TTS model
Converted
acoustic
features

Trained
neural vocoder
v
Converted
speech
B 5. GEEeEEPERR SR Gt BB AT eI
(Huang et al., 2020)

[Figure 5. Flowchart of the Cascade ASR and TTS-based Taiwanese Voice
Conversion System]




96 FIXE F

2. THEATZE (Related Works)

2.1 sEFEHE (Text-to-Speech)

sEE G B RO GEES (Text-To-Speech » TTS) AYRLily » fE i FHINYEHE
BEEAE > BRI AEEE TR . —HERS I EHSHER - B SEGEE
BEOKR TR FIRE A EUERE -

2.1.1 Tacotron2

Tacotron2 HYZEf#[E (Shen et al., 2018) & 6 i~ » H{#HF encoder-decoder + Location
Sensitive Attention [YZ2f% o AR EHE A encoder 1% > encoder FHTHASAERE HETT LA ST
M > ZEELH I A SR SCARFF 23 decoder B (IR SUARFH 28 > DA attention fEEE
el > 7% (alignment ) By ASCFELE K S RGE S IS IAEEEE > 5% 5 H WaveNet
Vocoder Fitg l ARG AT TRENS - SRS mBREEE -

Waveform

Mel Spectrogram Samples

5 Conv Layer + WaveNet
Post-Net 1 : MoL

A

Y
2 Layer 2LST™M
Pre-Net Layers

Location

Linear
Projection ]_b ST IEG

A

Sensitive
Attention

Character 3 Conv Bidirectional
Lzt _—[ Embedding ] l Layers I i LSTM ]
[& 6. Tacotron2 ZEfE 7 F2/5/(Shen et al., 2018)
[Figure 6. Architecture of the Tacotron2 Speech Synthesis System]

B[] Z Google 2 HiHY¥#f AT — (LAY Tacotron (Wang et al., 2017)fHEL » H FZ X B ZH
75 CBHG > I %3/ LSTM F1 Convolution layer » #E45—2 decoder p i H Al — 1@
frame > WGAEZ SN T —E 5 @AYIRE CNN 4EEE - 2R (60U Mg B AR 5 (R > fef&
BB EH Tacotron 7&IFHY Griffin-Lim » {UARE S EEE A S8 1Y WaveNet
Vocoder °
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2.1.2 WaveGlow

A FRE]AY Tacotron2 TL4KH] LIS R & pl H 22T N IS HE > {H1&HAY WaveNet Vocoder
B 5B A i G218 I GG < i NVIDIA #2417 WaveGlow Z2f#(Prenger et al., 2018)
BN B fE A T 7% - WaveGlow & —7F& flow-based generative networks @ HZ2f% E 40
7 PR 0 EER A — O] DLSESE RN T A N S A R T IR S e A A R 2R
TE4E i A SHERAS B IEARRE AR T » AT A FIRERVEE S SRR P B B — =T
S3AR z ZEfE o HIL - AR HEEE z ZM R ERUE - FHARIBAA E & R 8 0 S FEAH
FRROE > BIR] DUST A B T R IR Y z M & AT B B SRR
BRI o R By o B R A A A i S AR - RO DU THETCEA TR B - P DARS%

A LB & s dn B w B o

mel spectrogram mel spectrogram

]

]

]

E :

; @ [T e
]

|

]

[ ]

Train Synthesis

B 7. WaveGlow FlJ8% R = /5 38 F2(Prenger et al., 2018)
[Figure 7. Training and Synthesis processing of the WaveGlow Approach]

Hrp o A5 ET AR SRS RS A B PR AL E A0 8 AR o FIISRIHRIR ALY
i A Bl A ALY cost function 5[ » {RIBAGEMN G ERESEEFRIF - 2 XFIH
n] 35 (invertible convolution ) Eifi& g (coupling layer ) 4% » T =0 > 520
B2HENEFEEEET R ARGE x o SR E—H & i 2 SRR 2z iy m 8220 - WA
N SREFFR ] mapping b0 A2 A= - 200 - WaveGlow {E4 plaE = R AN - BIA{ERE
JECE R z ZEREETTEURR - P KIBAE E Y & B TEAREE R - & air =R - 2
z A& » ENEEEERIZHIE X
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-
E affine : T T
I | coupling layer | | affine
x12 | | 2 ! xform
' | invertible 1x1 |
|| convolution |! » WN
L ___ 4 _____ -l

squeeze to Xq Xp
vectors 1

mel-spectrogram

B 8. WaveGlow #8545 1E/E(Prenger et al., 2018)
[Figure 8. The architecture of the WaveGlow System]

2.2 EEZ i (Voice Conversion)
R EE T L > A TEERIVBEIE T - Bfat=A R EARXmE T L - fla
S HE &R ( Gaussian mixture model, GMM ) B EL 7 5 2 4% 1 fix A (locally linear
embedding, LLE)WEE S #H J774A% « Hph > gint =B AN T 22k E - RiEgiig
FriSEInVRE S S AR BN E - RIMPEE T 3B B EeEE A UE - AR
BHEHOTENEE > AR TJEEAGMETE - HEEABENS B2 EingiEs
HEE - T HEEENEE R g EE R AREN RS

WE IS AR Y = RS I - A S GRS 1Y RE B AR Sl M A B R - (B2
L HE4RIESS (variational autoencoder, VAE ) Z2f#(Hsu et al., 2016) » B DL AR ERLE
—HHEEARASENERE - HUERAVEEEETENNEE T  EBiEfEE S
R 2 & > A0 9 P -

Source Speech Input
Speech Parameters Vectors

Speech Converted
Parameters Speech

=T > e

'
Fennany

Deep Neural Network

B 9. BRI EEYGHESS (variational autoencoder, VAE ) 2325
BEHE 7% (Hsu et al., 2016)

[Figure 9. Variational autoencoder-based voice conversion]
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IEoh - INE AR S PR E REHEIRY 304 - B0 DIGEE e » StEEE PN
I ERESE ( phonetic posteriorgram > PPG ) (Sun et al., 2016) » WK HEFEE (FEES
SREENAEVERR - FHDAEEBIRE SR - WE 10 Fron o PREUATT DIS DR AT aEE & s
HYSE AR L B GRS EIR S AR -

Training Stage 1 Training Stage 2 Conversion Stage
( Standard ASR i) ( f\
Corpus | {TWE“ Speech o Source Speech ()
Parameter Parameter Parameter LogF0
Extraction Extraction Extraction | AP
MFCC
MFCC # MFCC
SI-ASR [:& Trained SI- MCEDs Trained SI-
Model Training ASR Model * ASR Model *
PPGs — - — PPGs Linear
i Conversion
i [ DBLSTM Traimed )
| Model Traming [:} DBLSTM Model )
S Converted
MCEPs "
+ means these two models are the same

B 10. ZEREBZBEEE (phonetic posteriorgram » PPG ) 255 EFEEH&
22 (Sun et al., 2016)
[Figure 10. Phonetic Posteriorgram-based voice conversion|

3. Taiwanese Across TaiwanzEk}EEZEE (Taiwanese Across Taiwan Corpus)

R TRIBE G SCH - frill 2 GREREE G ERE S 24558 TRV R E askaiit
R TR E e BN R E — R & GRS 5 RHE (Taiwanese across Taiwan > TAT) -
HA$E TAT-Voll~2 » 35 200 {i755% > 49 100 /NG RBE S WY/ 2B E B S A
sEft B TAT-TTS-M1~2 8 TAT-TTS-F1~2 » FE GRS (&) Bsesh (&1h)
WE > EEBIZL > FALY 10 /N A EEEE S S R AR o DUTEREA TAT sEklENYE
B SR AEEMEERF 0 N IR IE(EERE BN EETERF -

3.1 BRI EHRVEEET (Corpus Design)

Ty B # 2 A B —(E fE S M & SC SRR FEN » W Kl 7y G eBIEEr &3¢
sEEEERHE - ARRMBRRELYENREGHE K > TEEESHHEEEEREEA
BEATERRISE - WA R % B R B E K (metadata) AYET(LEHRIE - FTlL > &
FERE AR
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o HIEGREANS  (FHZEEMNGREIRAEE CrHEEEE ) AT RIEE
BLEFEM AN - WHEE HEAEHES - 85 tukSEE HsEa) > DB RE S Pl
B G RER -

o HIEGEREEY B SEEBHHEER M EELCHE G5EEE - WEKEREH
CFEIEEBAAR S  DURESERE B A EE AN E GBS -

o HIESREIRT | SrEEE S WRIEN - J|EASEE TR - £ R A =R S
DA e 2ot gr v i 18 BRI B b - SHEEEE S RIER] - AR #E B = B IE o B 2]
VNS E > ISP EANE TR - shl ] RIE S R e e a5 -

o BELAEFERKR | FBREVAE S S AN NERNE T EEEE REPATF A
—{l& Microsoft Waveform #&=HVEEE SHE » Bl a—(EH FERY json #8XCF4E - Halsk
TATRIERELENGERTH > SERESCERN S S AN SEHAE R - K
EaFIAE 11 frw o

Bt
pt-lal 18 Y

D "REAMNETE SR LEL N,
"gua tshi-14i & tidn-ug siI khéng ji sam sam lio'k lio'k kit khéng ngéo su",
am": "gua2 tshu3-lai7 e5 tian7-ue7 si7 khong3 ji7 saml saml liok8 liok8 kiu2 khong3 ngoo2 su3l®,
a chhi-14i & tisn-Se si khéng ji sam sam lio'k lio'k kid khéng ngé ™ si",

B 11. TAT s json XHEEGH]
[Figure 11. Recording Metadata Example]

3.2 3R ZTEXWE (Recording Protocol)

e BBk iy > FAAETE T UL T eBRE B s BB E AR > A 12 s
BRECARE ~ FRRBUE - 5 AHE - 85 A ASETHE - By - ATRIEHESE
THERE SRR - DUT B3 B 8BS 12 Py T 7 = -
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[—
. . Speaker |+ Prompt Sheet Assignment
Text * Article Collection Preparation |* Pronunciation Exercises

Material + License Authorization

+ Speaker Metadata Survey

+ Automatic Téi-16 Transcription | Recording | Microphone Calibration
Prompt « Transcription Proofreading N9 1. Test Recording

Sheet + Prompt Sheet Compilation « Official Recording (turn-by-turn)

l ) . . —t— + Automatic Tai-lé Recommendation
Speaker | « Taiwanese Min Proficiency Test| |  Validation |+ Manual Transcription Correction
Recruitment | + SOP Notice + Tai-16 Transcription Proofreading

+ GitLab Repository Creation
+ Issue Report

B 12. TAT 5/ EEETFE
[Figure 12. The recording protocol of the TAT corpus]

Release

3.2.1 EEEEA AR EHEE R FRI/E (Native Taiwanese Prompt Sheets)
PRI SR EEAR  TEARANRRTAIGE X EEeY > HHBE Y ERESEHK
rhEE TR CEENY 50 LEE » T AL 6000 FHYSCA - Eﬁﬂiﬁéézﬁ%xﬂﬁﬁﬂﬁmm
W HEEERIESOM - BRI BE M A A VB T 58 ~ EEEESRIE I I SR FRE A

g BISOA - BEHAYEY 50 (iR - ERNEEE =K d@piE 13 - & 14
DUKJE 15 Fm o 3 ilR(WEFER » goEitiit - HEf - E5EES > BAQHEEEEL
FBYESE » RILVE SR EESE (1-3 fh)) BEA&ERERYZ - B—EaT - FRiE
L\mj{ﬁl/j’% CIRE R (RIRMHIEHSZ ) ANEEREF M ERAREE

%ﬂiiﬂm%ﬁﬁ[ﬁqﬂﬁﬁﬁﬁﬁ

pan-kong-sik té-tsi/tué-tsi sT Sin-tsng-khu tiong-ping 160 439 ho

2
FH2016FHRBHHE
gua jT khong it liok nf ui tai-hak pit-giap

3
THRITEBER+A

siong-guan tsiat sT t7 kd-lik tsiann--guéh/tsiann--géh/tsiann-guéh/tsiann-géh tsap-goo

B 13. #FELETF-BUFEIVE 70
[Figure 13. A typical exampleof prompt sheet: address, date and digits]

! i kang khioh taiwanese cultural and educational foundation
https://www.tgb.org.tw/
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HyEEE NBIORME - &g > BEn RANERE > AERGER— Al - #83LEUsREH 30

SYEHEEE -

1
BN R

an-tdng koo kian-khong

2
TsiannA BB H, {RE--£REBkhahE,

tsiann ka bo kinn-bin, i khuann-khi-1ai G khah san,

3
kohttiEgike tsiokB TR !
koh pi tsin-tsing ke tsiok 0 guan-khi!

B 14. #RELET - HEHEE 780

[Figure 14. A typical exampleof prompt sheet: daily conversation session]

1

ThatE
that-tshia

2
B, SEETHENIEthatfE&K ?

ah, thau-tsing m tsai koh that gua-tfig?

3
Tshua—E55H, BREMAR, RHRR0MH:

tshua tsit tsiah oo-niau, khia sau-se/sau-sue pue/pe, tsin tshut-mia & a-ki:

B 15. #REFHETF-F X E7EPT

[Figure 15. A typical exampleof prompt sheet: short article session]

3.2.2 ASR§FZTERF (Recording Procedure for ASR Corpus)

3.2.2.1 $#Z BIHE ST B TEA (Speaker Recruitment)

BER A REHET R > RMEGESAVEIREIE - SRR - HEEENG
sEEE A 0 MR E HATE AR R REVARTE - EORHESORER - QIR RIS o M
WE R E SIS EAE GREER GEEEH# - £ TAT-Voll~2 FEfEH#FHIEE
o PSRBT B A - BEAE KR RN - GFAEREG NS B RE
BIFEEY > PIERBEERPPETIAR I NERREE 5% - HER e &I AE 16 Fs
BB AFHEEE L 50 rsE# - RIb—Mmn R - &% HgaesaluE A -
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& @@@@mﬁ
gﬂd[@w
- accent
: m&g@@g
£ mcccnt
r S “-
_. [@ﬁanﬁa@ﬂ
i a@@@ﬁnﬁ
\ B nﬂt
E@“ﬁm

B 16. TAT B/ ERR RS (FEF 7 17 B ]

[Figure 16. Distribution of locations of recording campuses]|
3.2.2.2 #EERMEECE (Equipment Configuration)
ASR FERIESE » BEBEELFN—RINAE  GREBEF R EEE - #f5R 0 &
TR FIRYEE AT N R BIRVERS o BE sk mECENE 17 Frr > (EHEE - Bl
USB 7 > #H 5% Zoom HO> S fir #5355 /1 1Hi - [ERFTUAR 6 228w My aRat » —ReR%L 6
FEAE - DURSEA [F 2 vl M gk 5 SR Y 2 2

2 ZOOM CORPORATION, H6 Handy Recorder Operation Manual, Available:
https://www.zoom.co.jp/sites/default/files/products/downloads/pdfs/E_H6v2.pdf
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Condenser Microphone :
Face to speaker, distance 5~10 cm

Pop filter

Z0OOM H6 6-Track Digital Recorder : Speaker

Face to speaker, distance 100cm _—~

Lavalier
| microphone

‘HMTE‘ = Prom pTer_
Face to
speaker,
distance

1520 cm

iPhone
Supervisor

Console stance 15~20 cm

18] 17. TAT 1 ERR R TP R AR

[Figure 17. Configuration of the recording equipments]

Hrp > Zoom H6 HYf = HUGARE - AI DI EF] 192 kHz - [ b /< & 28 v A e (5
FIIESE » vl B =8 > B2 R mEZE R - QR EE 1 AR 250k
ZOOM XYH-6 /£ 61 ZOOM XYH-6 53 iE » AL a2 el S 8UE » Hea
HE 2L 7 PR BB Y S0 ¢ S AR PR R AT Y R (I8 2R e - SUREREESRE T S E 10 8
5y SRR AT 3 A ERT TV E A R T E - R Y H e 28 v E > FH 2L
WS GEEE - HETEZ R oA R © E =R LIIERESR S 15 8 20 5y > fufE
T RAR ios F4% » LLR TN J7{m7=HY android TSRS, » 70 B 2K 23—+
RERBE TaE b -
3.2.2.3 %t Z 2 (Recording Procedures)

BERS REEE 18 fiR 0 H—HEESFEFHES > PUTEBRERKEHREN
SpeechRecoder FEH} BLEESF EHAS ° 0 — N —HRHE R RN » IR EEE NERTTTHE
ARERE (IMEER)  GREANBE - FEE NIRRT RER RS TR
[EIRF - Bagk SAHE - BiZEEE £ 8 R [ SpeechRecoder §5 = AR AT 25 HIAY /N = AR
o T BRI VR - MElEReE - SEEEIA/NE » SEEEEN S KR
SEIEIG S & RS » FHEFEERBER R R N —[ES0H - M EEETEE 25

RekFEEE

3 SpeechRecorder. Available: https://www.bas.uni-muenchen.de/Bas/software/speechrecorder/
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B 18. ASR #% E 555 E/E
[Figure 18. Photo of the recording site]

323 TTS#EERF (Recording Procedures for TTS)

3.2.3.1 $EZ EHEEIF T ETER (Speaker Recruitment)

TTS E 7 AIEEE R LA Gl LRSS T AW BW 2L 4 48 (387 5k M1
M2 > F1 B F2 > 4 fysBEEiUHRBA &A% 1 F]5R 4 For o Hoh M1 DU F1 SBEIRER F
BEGERENE (RN SR ) > M2 iR F2 R B5&ss e (R EINEY/&dbE) - 1t
Pafir st NIRRT AR R 2S5 el NN EREES » DURE R EEE
B HEER o

7 1. M1 FZEH &
[Table 1. Personal information about Speaker M1]
PR Flie BERE AR B EH frea
% 34 5% RE adtitME | GIbmEARE | REE

7 2. M2 FHEHEE
[Table 2. Personal information about Speaker M2]

PR iR LERE tH AN, HEH R
5% 55 % RE Bty k& | Brdbmiv b | RN
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7 3. F1 FZE &=
[Table 3. Personal information about Speaker F1]
P! Fle BERE AR B EH Kz
<8 52 5% (i s AT | AL VRN

K 4. F2 iHE &R
[Table 4. Personal information about Speaker F2]

4 Fe BEEE HH A= 34 PR fE I e
z 41 % = BRmiEREE | adbmHiEE TR
3.2.3.2 #ZERMHEECE (Equipment Configuration)

ELASR A[E - TTS A& HGHEMA AP SRS SR e 8y - [NIE TTS 5
sHEHEEREMRE T RIEE (A0 19 Z25F7R) RANFIZEREE (068 19 G5F7R) /Y
BEER T E kT o W HiR TTS RV AE A B E R ir s R EE A E TR - ITEgEE
TTok%d -

N,
I R

H 19. BFEptE s EE
[Figure 19. Photos of the professional recording studio]

3.2.3.3 8t Z 2 (Recording Procedures)

TTS FEREENSF B R B B AE 20 fin o FFH—2 S8 LI2AT » BRIFHEER T TE
UEERRS » MER SRR R AR — B (/N ~ BREERRERES) - Ih4h  WWREHEMNE
—HHGRBEMERNE TSR - AN —a— a5 EE0 GRS IR - 1A
F—REFER - T ERIES  EREA - IR RERRHTIYEE TME (session)
Al > fEIAE S AHREE - S8 ARCER R B 2t « i B > —RekE LIFAYRERE A
RERE » AR E NARMIRERE - R SR —30 FE R -
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[Figure 20. Photo of the recording workstation]

3.24 ATHIE (Transcription)

PREUFHVEEEAE - e A AL S EEEHE R (AE TAT-Voll~2) » HZTHIGEE
XEEeE WIEANE (AE TAT-TTS-MI1~2 Bd TAT-TTS-F1~2) - F| I B ERHLHIER
FEERHEREEEI LR (218 21 Fror) » AT AR FERIE AR - BURIZS = A DY
BIEHE  IE LR EHERT - EARRAHEERE -

Rk ke
a a8 E
L AR
. S = 28 z
D3 - WERER RE.  BER A s prrT bl AT
I W
tshuél@  tshué 28 s
mA? sidnn-
mih
lang? BLUREA
tshueE  tshué
E¥ - Ong
F--%&-  Tsing-
e kng,
Ong--
sin-senn
MR - sénn
fnig Ngdo.
behid Li sTbeh
et ? phah
kui hé ?

8 21. BERHE ERIEBE) LR &

[Figure 21. User interface of the online corpus annotation tool]
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3.3 sERERNESET (Statistics of TAT Corpus)
LUF 4858021 TAT-Voll1~2 8 TAT-TTS-M1~2 £2 TAT-TTS-F1~2 sBRHEN &L

3.3.1 TAT-Vol1~2

TEEE S PR SRR ) - KB — AR R - RSHEE T B I &
A E GREERN GaiaE EH L4y 200 A > BFEFSAE 91 A 2048 109 A - HAEGERHIS
INBOIARANE 22 Fros > Sl fe 18 21 80 pREhA » s i dlE 23 For -

Region Distribution

[B] 22. TAT-Voll~2 B » #% FaEZ BT
[Figure 22. Distribution of speakers in TAT-Voll~2 corpus]

79

42

~20 2130  31~40 41~50 5160 61~70  71~BO ‘l

18 20 19 18
, m

Age Distribution Gender Distribution
B 23. TAT-ASR 8¢ 5 a2 Z 8 770 R I FIEE

[Figure 23. Distribution of ages and sexs of recorded speakers in
TAT-Voll~2 corpsu]
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H ATSE AR ERARET Bt 4 104.36 /NEF - €855 B TAT-Voll~2 WEEHfEHE » &
st TEEVAEANTERRERES 2R ) *ARRT - ST RN R R
et BB E 24 Fios -

TAT-ASR-Voll

100 28833 339592 51.94

- Characters
100 28978 340607 52.42
Speakers Sentences Characters Hours
200 57811 680199 104.36

[B] 24. TAT-ASR 51 1801 Bl
[Figure 24. Statistics of the TAT-Voll~2 corpus]

3.3.2 TAT-TTS-M1~2EATAT-TTS-F1~2 (TAT-TTS-M1~2 and TAT-TTS-F1~2)
LB A B FINE R T T » AR T 2 OB 2 St RER - SRS
R SRR By — (A RO (EARIEIAE 440 json B « It json REARESY » ANIE] 25 FF
T SERERAY - BN - S EENE ST ANE IS -

EMI_]-].j@onﬂ'
1 B
2 Ir‘!{:tl: ng_33",
3 DS WAL R A,
4 di-udn su-iiju tsi-tong & kco-tuann sd-bl tii-sin”,
< &H": "taiS-uan5 sul-iau3 tsu2-tong7 e5 kool-tuannl su7-bu7 tai7-sin5",
6 "T4di-0dn su-idu chi-téng & ko -toar sfi-bfi tdi-sin",
5 "
8 ;o oM) 1
9 "Ml 1-17,
10 g
11 In
12
13 n.om )\,ﬁiﬁ_u'
14 "L AR,
15 EALAT A",
16
17
18
19
20 Ly

B 25. TAT-TTS json XfE&iH)
[Figure 25. A typical example of the recording metadatal

4 https://www.aclclp.org.tw/corp_c.php
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HERBRHE & ZEE THEVE AT EREETEE SRS, AMET - HATL5EK 4
UsEE > FAEEELY 10 /NIEIEERL SR EIL4Y 40.6 /Y - SZAESFAIE SHANE] 26 Ao
DI B BRI 4 R UEE » FE TAT-TTS-M1~2 Bl TAT-TTS-F1~2 » Hft M B F 435l B 5B 4
B A SEFNARER - 1 B 2 RISy il Ry s SARE B R S BA E N 4R TS o

Sentences Hours Extension  Channels Sample Rate Precision Sample Encoding
9625 10.4 wav 2 192000 24-bit 24-bit Floating Point PCM
Sentences Hours Extension  Channels Sample Rate Precision Sample Encoding
11532 10.1 wav 2 192000 25-bit 32-bit Floating Point PCM
Sentences Hours Extension  Channels Sample Rate Precision Sample Encoding
12917 10.0 wav 2 48000 24-bit 24-bit Signed Integer PCM
Sentences Hours Extension ~ Channels Sample Rate Precision Sample Encoding
12422 10.1 wav 2 48000 24-bit 24-bit Signed Integer PCM
B 26. TAT-TTS-M1~2 B8 TAT-TTS-FI1~2 3ERIEE S L4 2 fi ) s 78t -
RF B F R

[Figure 26. Statistics of the TAT-TTS-M1~2 and TAT-TTS-F1~2 corpus]

34 EEBFHEEBEEERAESE (Annotation of Tone and Prosodic
Boundary)

LA TAT-TTS Y M1 sBEAE R SREERL » SER A GREE T G AR BB AHE

HEA GRS EIEAY R B T 2R E YR AT 7R E TAT-TTS-M1~2

B TAT-TTS-F1~2 B » HDIEFEARFMAT - WA GEEH » BT A TRIE » 5

I EEEEEFEDE - Rt - oMM TAT-TTS-MI GERHE » 0 o SCHlE - 2

S EEEE I G BRI R R SRR -

3.4.1 sER}EEEEET (Corpus Design)

FAMETE T LU T S 0 B B A S T AR R (R 2ERR T » BREE U7 A R E R SaE R json AEHE
F TR o Rl ENEE - QGBS TR IED R (3) I AR TE ¥ Ba 8 ST 5%
G RT3 - Hrig s & IR json FERY AT LLELAIE 27 R
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l.E"EE‘é:‘I“E'F%t‘&—""EFS‘C"
2E"ARUFH E N MIE—1T S2HEETLPA"

Before > After
B 27. TAT-TTS £&3Z3ZFHCIERTELEEE

[Figure 27. Comparison of metadata before and after Chinese Text, tone
and prosodic boundary annotation]

HAp AR SUE Ry T PR RE ST th S0 5 S o SO 5 R 1 WO R A S5 B2 - e
IES A HETHYW T BREERT SR - 2R 1 laE T S AR - w] ISR E SR AR HI B R
S -

3.42 ATAEZFERFIE (Annotation Protocol)

W IEHE TSRS — A GBS g » DA TR AEREER RN ST IGTE json FHAIA
—{THR ST - #fIAE 28 AR

_::'r-n 114 34u

G "HMEILESAEERIEN R -
: "t 6 1 kdu-pah-ban lang tiann-tidnn @ koo-tuann & kam-kak,"

Before

.. -‘:‘- ||: n4 34"
" "gAEN [\'1'1 A JE SETT LAY B
;R UETH AR IR -

“TEE": "tid 0 kdu-pah- ban lang tiann-tiann @ koo-tuann & kém-kak,",

B 28. TAT-TTS GaZ2R A FXEVERE )
[Figure 28. A typical example of Chinese translation]

AN IEET A — G E S PSSR B AR S kR
BRI TR ETEE - N RANVAYEEEFENILE - SEE I HIM T 4 R ZE g e
REBERTSE Ry IR > NP o gl B A RE R0 5 W Ry SR B R RS R o (B B 2
%) WAZHE S - (HATEE B AN T R ZERE EIJﬁﬁﬁ%%ﬁ%ﬁ%ﬁzéﬁﬁéﬁﬁ%ﬁ
KT Em R B M e ZR Wit Y BRERTF9R - 70l Ry(DERE S - ARFFR Rhnse "+ » (2)BaE:
F &8 REFFIR R R " - json B IETE AR AV EI BN 29 Frow » PLEafIE 1 Fs TAT-
TTS-M1 {##EHH M1_1-6.wav ZF5 -

, m
r

After
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kah kok-tsé kuan-h& & koo-tuann na-tshifinn koh hé pan,",
: "kokd- La' e5 ui7-ti3 kahd kok4-tse3 kuanl-he7 e5 kool-tuannl na2-tshiunn? kohd4 ho2 pani,”,
"kok8-kal+ed ui3-tid kah8 kok8-tse2+kuan7-heT+e7_koo7-tuannl nal-tshiunn3_koh8+hol+pan7,",

R0 0B | A EE G NE | B8 g

BRFE  ZEAREE
18] 29. TAT-TTS GaZ 71 B IR T I [E AT

[Figure 29. A typical example of tone sandhi and prosodic boundary annotation]

3.4.3 BRIEERMGET (Statistics of Corpus)
KaEREIE AN BHYE5 77 HRTE&E M1 B E BRI 2 BIRIET &2 ﬁ:E%W?ﬁE’J%Mﬁ‘ Json
SCAEFEBIAIE 30 s o REHGEHEFITHY M2 > F1 FI F2 sEEHVRERETRIE -

[ M1_1-16.j50n E3 |

B e, g 3w,
L= = 2
RLE Y A= e

7 S JBRAMIE - °,
- "lan sin-khu-pinn Q bo lang kbéo & lau-tua-lang, ",
= A": "lan2 sinl-khul-pinnl u7 bo5 lang5 koo3 e5 lau7-tua7-langs, ",
3) - LPA": "lanl+sin7-khu7-pinnl u3_bo7+lang7+koo3+e3_lau3-tua3-langs,",
" ~": "lan sin-khu-pir @1 b6 lang k¢ & lau-tba-léng,",
" n13n
10 " | - "Ml l"
11 o Rt "Ml 1= 16"
12 = Mgt "Ml“
13 i x wERw
4

& 30. TAT-TTS-M1 FZIEZE json EEEE 01
[Figure 30. A typical example of recording metadatal

4, P Y VFHESEEST A ALY (Chinese Text to Taiwanese Speech
Synthesis System)

TS AR & 58 F IR R GAT > TPV A GHEE T AR AT B EE - 1t
UK ERERE S G EHB R e - REHEEES AGHEET el AS  IRaEETE
BARS - IS WASBANEEERS G SR EHE - NILRMEEIME & 5EREE S

ZERH R > FDI_E— (8 SO S EE S I SRR - BUE— T HooeEEs

.
BB E O AR, o
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4.1 Z4ZERE (System Architecture)

XN GEEE AR AT EE » DIATmAY S & 251 (Chinese to Taiwanese Tai-
L6 Pinyin (TLPI), C2T ) #&2SEIZEFE4H » i1 18 ImAY Tacotron2+WaveGlow 353 & i 28R
Fy baseline ° |4 Tacotron2 Y & EEERIAIZEH TAT-TTS-M1 §y 5B 4 iR EAHERE T - WiSE 5
json REH T SEEHTHE | EEIIGRSIA > SBR[ FEERAT B R Z iCorpus ZHESF
1T I RE R R - 2 4R MR (Sih4, 2015) - ELES 24 24808l 31 w58 F Eim A R o0d%

C2T i Sk S ER PR (k1% T 2 BRI FREE S TIPS T 1 GAE T > 2008) > &4k
PFEE B SUARg A Tacotron2 B R AHEE » i {% i WaveGlow [RFAHEE RIS AVEE Ky R 20

EHGEET -

seq-to-seq based

Chinese to TLPA

Machine Translation

AEF - EREREGEN®RBE L and - T
iy . —
Encoder . L% | % |
affine T .
coupling layer affine
N xform |
invertible 1x1 1t
t + convolution
T squeeze to I Xy
.ocation
Sensitive vectors 1‘
Decoder Afaeten
. . e Chasacter 3 Come Bvectonal L 2 upsampled
TS ke he? - goal 57 hong? taiS giZ €5 ki Khid langS input Text Embed Layers LSTM mel-spectrogram

B 31. FXFBEEEE CHRT
[Figure 31. The architecture of the Chinese text to Taiwanese speech
synthesis system]

4.1.1 P FEEEPZTH4ESEIEE (Chinese to Taiwanese translation)

TES SR LR 2SR A (E AV TP SCH E S REPF - TeErt i - (EA TR iCorpus 2
AT R B E S EZ R R (Sihd, 2015) » DL FAfEER A - BT AL EREA S
a0 A R ANREILS  DUR/DERS HhSCEERRAYIN DT o (EEISRSCA T Fy IR > &CEHTR
35 60323 H)JFIEFATEERE « TRLEH iCorpus FATRERNE A B S AEEFT5E - R
Z RN RE A B R ANV IR R SR - A SR RHET DU T iR -

WOE R SCARE BN 1% » B— I AFIA—TEEERT9E - o al RiEsk - a5k - B
WEST - [5% - B 9tEL St SRR o AW A R > B BTEE RIS R AEE
BRFSRR o BEfREE L —WREI T BORYEATRER SRR SR IR AT B N — R AT
H7750 0 BERERERLFFIRIVF R A B 2R - (HREEE R IR pe IEMELpE ISR 2 - IR FAT
st SZHVER oy DAZE MR B B — S0 BEEPFEAVER Y IR I DAZE RS R
FEPATEERI DL phone ¥ phone YT UEIE « DL ELE AR IR HTER /3 ® I 5= 5 B3
6 7R e
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F 5. iCorpus F{TaE F X7 EEHY

[Table 5. Examples of the Chinese transcriptions in the iCorpus corpus]
HEERREEASTENFHE UBME —RKRBEIZ=852T
EE BB R EZHAEYE RGN E DR E %L

EFEFCRBEENZTH LBEBRMEE TEAAE -+ E
=

2 6. iCorpus F1T5E0 B ED EE 785

[Table 6. Examples of the Taiwanese transcriptions in the iCorpus corpus]

tsu3 bi2 tik8 phai3 uan5 tso5 hiok4 hunl hua5 hu2 po3 to7 , tshut4 hai2 liah8 tioh8 tsit8 tiau5
ua2 beh4 sannl pah4 kongl kinl

tshua3 ingl bun5 ma7 tamS5 kau3 si5 sinl ingl kail tiau5 tsing2 ? tak8 kang1 khail iong7 si3
tiam?2 tsing! ti7 hun3 lian7 bin7 ting2

tsit4 ma2 tu2 ho2 suainn7 a2 tua7 tshut4 e5 kui3 tsiat4 : pak4 poo7 tsa2 am3 ke7 unl kho2
ling5 tsi2 u7 ji7 tsap8 too7 ting2 e7
RFIF-PATEERR - TS 54EEE LRRIRNY fairseq HEESEHEEHE HA(Hsy, 2021) » H
TN sequence-to-sequence 224 > 4GRS ANE 32 AR 0 ELFE— encoder Hijli#l— decoder 1%
Ui » Hiflis encoder B FHATEM A P SSLF A1 - o i HEE BRI H SCIRE R & - 120
decoder F X ARE A= 2~ [E 0 attention 7 {4l Ei convolutional neural network 7 3/l 4#
PHAEI T {8 encoder HEEE » A SCHIE GREPFE FATRBRE TSR » DU EIE(E
NG &SR -

b |

AKEF - REMESE DN M BV A <end

Encoder

Attention /

Decoder

Tak8. ke ho2 - pgoa2 si7 kong2 tai5 gi2. e5 ki khi3 langs

B 32. FREBEED s aa | R
[Figure 32. The architecture of the Chinese to Taiwanese machine
translation system]
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4.1.2 Tacotron2+WaveGlow

A TAT-TTS-M1 £ 10.4 /N EY S EEEER] > DL 22050 FR2ZHY S A& HUBEAES » DURR
1B T SRR | B ESUA 0 LT Tacotron2 HYF4E(Valle, 2020) - WaveGlow EHHE 2%
EEERHEEGNEES - IR EFEARENEE - AHEICE A » BEIEHEREE
= Bl Tacotron2 G fE{EZE o [tk WaveGlow YE7 » B = C&E BRI
B E T SCRERE LT Speech Fll4R Hi Y WaveGlow 7R (Valle, 2020) » R/E{# H & 58
sERHEE B4R o

MRt T RIE A DA BRI TAT-TTS-M1 5k} - #REHrbg Yy &
FaERE TLPIME RydlllBRSCAS > B B AT 7518 - Ok +" DA S JEE 4R "B b 2 253 s 1Y
=5 AV RFR TR » SISk T —hi5 e S 38 DR b R AR BR R T 957 Y Tacotron2 » {E By (%48
HERAIEbE: -

4.1.3 A2 4R E (Prototype System Demonstration)

WS E T OE S EPF SRS E A GEE T a AR T — B H
WkE 33 Fors o (B FEEA R XOUFR » #% NE i R B O B G585 WRE—
PR R R RN G E IR TR - H9NEET T il A G aEPF i - &
A MR G SR AR A B v DU AR R B W S AEE N G35 -

SN Chinese to Taiwanese Text-to-Speech(TTS)

Yuan-Fu Liao, National Taipei University of Technelogy, yfliac@nutecu.tw

Update by Wen-Han Hsu (188 BRi ..

Approach:

Key in Chinese sentences { BASXE ) :

et FH el N

Show TLPA and speak Taiwanese ( BRI S BB EEAE ) Just show TLPA ( SRS )

« TLPAdisplay :

1ak8 ke1 ho2 , gua2 si7 &7 konga tai5 gi2 €5 ki1 khid lang5

Finish!

Synthesized speech:

> 0:04/0:04

® i

8 33. PR XFHBE A E /KRN IR

[Figure 33. Demo website of the Chinese to Taiwanese machine translation]

5> NTUT's Chinese to Taiwanese Text-to-Speech(TTS), http://tts001.iptcloud.net:8801/
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5. EmE e ek o 2 HEEE G S B RS (Multi-Speaker
Voice Conversion System based on Cascade ASR and TTS framework)

BT Gt E GRS ERN B2t - IMBBRITE G G S ERUET )% - |

B —(E IR AT T G RERE S R A4 -

50 FRBEZEREHEEETHBBRAHKEE (ntra-Lingual Voice
Conversion)

FefMLL VCC 2020 F7 IR Y Cascade ASR and TTS J57£(Huang et al., 2020) % baseline > H

HEE AN G T ER AN - AR AR AE 34 o BRFEERENERE > Db

rhnh B LR B PR 1R 0 A DK TH DL B AR EE R R B G RE S sE EEE

BERE AR AR ALK B RS B i S R A -

Conversion
Training e Souree
speech
— - - I
ASR model Trained
_w ,W‘,, —p | ASR model J ASR model
ASR dataset ’
] — J=]] Transcription
M =l | TTS model
pretraining L ) |
TTS dataset | Tg"“ﬂ: | I
mode
< CE—
TTS model
T ”' TTS model
fine-tuning - mam  Converted
= acoustic
e
— ( \
Neural vocoder m Neural Trained
training — | vocoder | [ neural vocoder ]
VC dataset ’

Converted
speech

B 34. G555 E PR R G BB G atas & PR A
(Huang et al., 2020)
[Figure 34. The architecture of the Taiwanese voice conversion system]

PETT AR A= TE THAII GRAE AT By BLBRE - 73 A1/ (1)X-Vectors » (2) Transformer-based ASR
model DA Bz (3)Multi-speaker Transformer-TTS model - {735 S HAAYSEI » R fy b b BI:E
YR o R SRRV EE S R B S = T o TN e = (E P SR AL (5 A Y
Bt A T (DTAT-TTS- M1~2 81 TAT-TTS-F1~2 PUfirsEs - 22 552 2 FA
&IH 10 /NEFEERL - SERTEL Ry 40.6 /NI > DUR(2) TAT-Voll~2 sERHEEREEIAY 200 fiz 4
HEEE 0 91 55109 % - G ALIH F/NEFRER] > SEEELFy 104.4 /N
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FERNGROOAR YRR | TR E A" S B TR" > WR SRRV SR RON - DIEg
BT T Rl B aePILiE 35 Aon - S J7 I i PRSI GREVEERE > thm] L
PRAZ IS TE = (17 (F AV SERERE RHEUM (R A S E -

sl A1 Al bing5 e5 hoo7 tsiau3 ho7 be2 si7 pat4 ngoo2 su3 it4 ji7
saml liok8 ngoo2 ngoo2

Al#3ZA2  ah4 gua2 bing5 bing5 toh8 ka7 kong?2 tai5 gi2

= tioh8 sui5 u7 be2 tsit8 kil lian7 a2 ku3 lai5 tso3 khang1 khue3
3T e5 sim1 liam7

18] 35. GBIV L E ) EA)

[Figure 35. A typical Example of the Taiwanese speech transcription datal

i & i i 2 A E F AR Y Parallel WaveGAN (PWG) » [RIAEIEE N GRERE S &K
{1 WaveGlow » BEHEZRAYEN 53 A T S EHralll 4R -

5.1.1 EE M E4REIESS (Speaker Embedding)

{5 T L Ry BERERY X-Vectors J77%(Snyder et al., 2018) - 41lE] 36 Firow i AHYSEH #L
B g —/ N EE S (S 5 (H AV R R — (8 mean LK variance 3 H concat AR -
A DNN &7 HE 2 —/NREE S ML sE E B E &N » Mk S/ NEREEF Y45 A
By speaker embedding ° & 204 A\AYEEZHELL train set 194 A - test set 10 ARVEREHEST
FBE [A) 2 4R T 25 HY )| 4R (esdeboer, 2020) -

mean °

8 <
x-vector ~ DN — o Which
[Snyder, et al., ICASSP’18]  variance g‘ peakers:
x-vector

statistical pooling A
f A\

f f f f t

DNN DNN DNN DNN DNN

whole utterance
& 36. X-Vectors ZEJE(Snyder et al., 2018)
[Figure 36. The architecture of X-Vector speaker embedding encoder|



118 e

5.1.2 EEEEEE PSS (Taiwanese Speech Recogntizer)

DA i ASR ZRf#(Dong et al., 2018) » 41[&El 37 o » DLEsE S REFIE ERY SCAS » F1 E i
EL4E ISR 4F 1Y X-Vectors » #{T Transformer-based ASR model Al &f(shirayu, 2021) - 1F
BRME . B {E AR FAGEEE 1 S 4RTEES — 1 194 AN train set » AGEFAHIE 10 AHY test
set 43 H 5 A4E dev set o

Output
Probabilities
Softmax
Encoder
Outputs Linear
[ m r Norm
e orwar eed Forwar
Networks Networks
r Norm r Norm
Ngx ¢
Multi-Head Multi-Head
Attention Attention N x
d
Layer Norm Layer Norm
L
;_/ \\:

Positional o)
Encoding £ Input Masked

. Multi-Head
Encoding Attention
( Linear ]
(" Additional | J
i Additional ! i
1
Mx | N}gdlsle E J Positional
' D ; Output O— 9 Encoding
Encoding
Character
Embedding
Inputs Outputs

[& 37. E2E-ASR ZEf#(Dong et al., 2018)
[Figure 37. The architecture of Taiwanese speech recognizer|

5.1.3 ZEEEFETAHRES (Multi-speaker TTS)
LB E RS B SRR o B A S DL & 38 224 (Chen et al., 2020) » DL & E S IEFIETE
NS » Rl E 28| SR 471y X-Vectors » #E{T Multi-speaker Transformer-TTS model [y

3|4k (shirayu, 2021) - ERHEESEC FHIER Filt ASR 524 —%( » train : dev : test=194 : 5 :
5
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_

Di 1 _I Mel Linear I l Stop Linear I

Con_:traint
ﬁdd & Norm
Feed Forward
Nx
Add & Norm
-Pl Add & Norm |
Feed Forward
|_Add & Norm |
|_Add & Norm | Masked
Add & Norm Multi-Head
Attention N
Multi-Head X
Attention ! ! ’
t ‘k Er L E
—1 Module “3 : Q ,
Positional

‘ E)_.,EB Softsign C Encoding
A Ii Dense :
L

Positional Decoder Prenet

Encoding Layer Norm
Speaker I (Bottleneck) |

Embedding

| SgeaI‘(er ID |
[& 38. E2E-TTS Z2f#&(Chen et al., 2020)
[Figure 38. The architecture of multi-speaker Taiwanese speech synthesis]

Phec e

52 BEREEZERHNOERTHIRALREE (Cross-Lingual Voice

Conversion)
1E VCC 2020 tf > tEEE N 57 fy Taskl : FERES (LA Task2 © FSEES (T > 208 39 Fr
TR o MAEBESEBT - bETRE B EEENRES o RiEsE - SEENUARE > RS
F P RE S R A B AR VRE S R EER B s a7 -
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English English
Sentence 1 Sentence 1
=p Parallel <=
Task 1 Sentence 20 Sentence 20

Training Sentence 21 Sentence 21
= Nonparalleit=—
Sentence 70 Sentence 70
English Mandarin
=nglisa /IGerman/Finnish
Task 2
Training

Sentence 70

English English
P ——
Conversion 1 g
{ Input - [ - Converted t ...

sentence model \ sentence |

B 39. VCC 2020 EEEEM4H(Zhao et al., 2020)
[Figure 39. The Intra- and cross-lingual voice conversion tasks in VCC 2020]

Cascade ASR and TTS J57AR R AUEAYRHE - o] DUSEIRS 58 = AsE S i HfIk
HIEE IR S S R iEss - HARRE (M el yE R Ay - REESVEE
HE A TR ARGHEE - IR S RRIERAER TTS IfyE sy - AfE 40 AR - B
oA HIRE B B NEEER - BMEEEE S AR R R A BT RN G5 2 fEE S
A REERE S SRR E RS Bk o



G IRER R SR 2 B a5 e B AR 121
Conversion
Training Source
d‘!\ﬁ/\r speech
, , I
ASR model — ASR model [ Trained ]
training | ASR model
ASR dataset
— — "=]] Transcription
IIS model m-ot-ie.' m = | TTS model
pretraining L J |
Wit 4 At Trained
EIRIAE -+ BIREE TTS model
TTS model m_ _‘,—
fine-tuning TTS model mam Converted
Target speaker TR acoustic
dataset features
Neural vocoder [ Neural [ Trained ]
training — | vocoder | neural vocoder
VC dataset ’ Converted
A\JIW speech
B 40. $FEEEHERR IR 2 ErE B L E it IR A
(Snyder et al., 2018)

[Figure 40. The architecture of the cross-lingual voice conversion framework]|

BMAEERES ARy WA T RSt H librispeech S5 SCRERHFTH 4K X-Vectors » il

DLFESZHY X-Vectors EEH I G EEMN 2 E

FiBE O T ISR

SR RS

PERVE AR K - RILERSEESIVELY - WFIE X-Vectors HYES3 G T RS 00E

IR -
AHGAF T PWG -

H

ifi ASR BYEL 73 e EIRE =

(E75 E 3 ey e -

5 as R EE (L R

FE PR FE FI T P ol = 5t & ARV EEEERERE - & VCC 2020 H » Cascade ASR and TTS 5

FAE R SR SRR T

e

FHATEERL - £47% By csmse » F£FH 10000 25515

A sk SR EERERE A -
Fo T EEERE AR B 58 XA —
BEFHI SR ASE Ryl SRS

I

RO = &;gﬁgggé&%%(Kamo 2021)&1‘{%

» AR IERY 11.86 /N - Fy— REREZL

B M R T R G RE A
oy E A0 E 41 Fros
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AlfESIA1  zhao4 di2 yuel cao2 yun2 teng2 qu4 gui3 wul

A#RSZA2 gaolyal tie2 ta3 xiad de5 dil ai3 peng2 wul

FE&3ZA3  yong4 bu2 yong4d wo3 ti4 ni2 wu3 zhe5 zui3

B 41. FEEZE ISR B 7 &)
[Figure 41. A typical example of the Mandarin speech transcription datal
R R (o8 A T W3 5 (F Rl SRCA > By T @y SURIEE S B - R AR S AT
M EFESW > MFSCTHE Fy<en_US> > FEXXFA fy<zh ZH> > WAHEGFETTHAET B
<tw_TW> - fil 58 S MR A SRSCAES 7y S B4 E 42 Fror -

TS_TSM0020 99 <tw TW> hiong3 kok4 tse3 tshut4 siannl ting7 gi7?
csmsc_000001 <zh ZH> ka2 er2 pu3 pei2 wai4 sunl wan2 hua? til
B 42. Bat = #aE =ia 0 #h)

[Figure 42. A typical example of the language code embedding for cross-lingual

voice conversion task|

FEMEF csmse FEREERL LUK FIRE S (BB ERAGREER - DUR R e s SRS
X-Vectors » JREHISREFER S B E RS G Es(Kamo, 2021){% » FfIpEE T—
(EEsHE S 2 B At TR A -

6. ‘BEs (Experimental Results)

61 EASEETAHAHKEE (Single-Speaker Taiwanese Speech
Synthesis)

Pl (s PR o 1E DU R DIBR IR SR AV BT SO - ISR G sBRE S S AT H A » DA
JR A F G A 25 DU 278 25 8 AR T A B R RT 9 1 88 SO R iy S R AR g L > fi B
BT T AT E RS o oy BERS 10 &) SO TR IE BN G EEPE S - 1F Fy R
AXAKRERES  RMEFEREANELMERAIAE 10 E@EH T8 T IED
TRFFFRARN - 1F R ARy SO &SRB © 10 A E AT (S1~S10) RIERTE
()& EEHE R ELE A 43 PR - R0 AL Ay H T By 8 5 B IR FIBR AT SRR B T -



ATl E PRt R G IR G At A TR AT 123

(SHARY - BEBRAFIHBEA -

[R#%% tak8-kel ho2,gua2si7 e7 kong2 tai5-gi2 5 kil-khi3-lang5.

rEE tak4-ke7+ho2,gual_si3_e3+kongl+tai7-gi2+e7_ki7-khi2-lang5.

JRAEE kinl-a2-jit8 thau3-tsa2 khi2-lai5,thinn1-khi3 tol huil siong5 pik4-juah8.
HEEL kin7-al-jit8_thau2-tsa2_khi2--lai3,thinn7-khi3_to3_hui7 +siong5_pik8-juahs.

(S3)—FmEa=+TIUBATF "Et+/\RTAER -

B tsit8-tshingl nng7-pah4 sannl-tsap8-si3-ban7 goo7-tshingl lak8-pah4 tshit4-tsap8-
- peh4-tiam2-khong3-kau2 bi2-kim1.

a1 tsit4-tshingl+nng3-pah8+sann7-tsap4-si2-ban7_goo3-tshingl+lak4-pah8+tshit8-
’ tsap4-peh8-tiam1-khong2-kaul+bil-kim1.

[RHEE tsitd-ma2 ui7 lin2 po3-to7 am3-si5 sinl-bunb.
FEE tsit8-ma2 ui3_linl_po2-to3_am2-si5+sin7-bunb.
(SS)EEMARLIR - BSHRMABEBREHOSE -

bu2-han3 hi3-iam7 e5 tshut4-hian7,hoo7 tsuan5-se3-kai3 e5 lang5 long2 khail-si2 ti3
tshui3-am1.

s bul-han3+hi2-iam7_e7_tshut8-hian7,hoo3_tsuan7-se2-kai3+e7_lang5_longl_khai7-
’ sil_ti2_tshui2-am1.

[R#%ZE tsoh8-jit8 te7-tang7 si5,gun2-taul e5 huel-kanl lak4-loh8-lai5 siak4-phua3-ah4.
HriREY tsoh8--jit8_te3-tang7+si5,gunl-taul+e3_hue7-kanl lak4--loh4-lai3_siak8-phua3--ah4.
[FA2E! sitd-paiT7 uib singb-kongl tsil bo2.
MAEE sit8-pai7 ui7 sing7-kongl+tsiT+bo2.

(S8) ik i FBS » 3% P14 Mo ?
424 huanl-ging5 kngl-1im5, tshiann2-bun7 u7 kui2-ui7?
& huanT-gingbtkong7-1imb, tshiannl-mng7 u3 kuil-ui7?

[RER

SNAREM K ERNGFRE  PRLREF TSRO EEREELRE B -

[EAEEY u7 hongl-thail tuid thai3-pingd-iunnd laid eb sib-tsun7, tiongl-iangl-suannl-meh8
tiann7-tiann7 pangl taib-uanb eb sel-pooT tong3-khi3d tsinl-tsue7 tsail-tsing5.

BAEE u3_hong7-thail_tui2+thaiZ-ping7-iunn5+laib_e7_siT7-tsun7, tiong7-iong7-suann7-
’ meh8_tiannd-tiann3_pang7_taiT-uand+e7 seT-pooT_tong?-khiZ_tsinT-tse3_tsai7-tsingb.

CLO)EXERE  EXERE -

[R#E2 kul tshio3 pihd4 bo5 bueZ, pih4 tshiod kul tshool-phueb.
¥AEE kul tshio? pihd boT+bue2, pihd tshio? kul tshoo7-phueb.

B 43. FIEFTEHIGEHF EFILEE
[Figure 43. Comparison of Taiwanese transcriptions before and after tone
sandi annotation]
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BAFIFRIEE B FR A LR s A 2% 10 (85 TSR ey BT B RS HIRF T - &
fRUTSEE 27 U IEE ATy > R DL RS R A B Bt SR AN TR 44 K [8] 45 A -

RERBARED M ARBETS

ol &k &+

B

1=

)

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
aFHRR

B 4. R E 28 B G R =

[Figure 44. The box-and-whisker plot of naturalness scores of the baseline model]

MIERBAED Y _AKRBHETS

& i olll 04 5

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
FER

B 45. BB R R
[Figure 45. The box-and-whisker plot of naturalness scores of the improved model]
HEBRERGH - I ARRBRERA SRS IIEES - i A DU F SR 224
B REREERF IR SOAR S R YRR S - AR R R A AN E A AE S8 E — ashis e A Y
NEHE RS - B/ DG AE Ay BRI D A0 o PRI — (& HAR - RIS (o0 L s ekl Sk ae 2 =
REREEAR Ay oSO S SERER B - DASe R (B SRBaE 2 S ARSIV E -
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62 GEMEPRRCHMUEY CHESFERTHRAGER Multi-

Speaker Voice Conversion)

DUR 48 TAT-ASR DUK: TAT-TTS & SCGRRHEASE 204 4557 - 247 145 /N\IFHY
BrbaeChall SRV AR - DU G GaB 5 P R G A 2 B e el B R SRR H R E
B

6.2.1 FEE M ELHFIESSEEREER (Performance on Speaker Recognition)

B 204 NV EEEETEL train set 194 A - test set 10 NAYEE HEfTaEE 7] & 4R 5 254k
(esdeboer, 2020) - i A test set Y EFAEHEHENE EER HYMIEAEZE - K 10 MG E HLH
1m’uﬁﬁ%%’#ﬁ@%%m&ﬁ$ﬁmﬁ%%9mﬂ@ B EEE PR -
A B PAE 775K 10 A HEREEE 2l Mese s - JHIEE 2280 oy s faiE 46 Frs - Hie M
w4ké%%ﬂ%ﬁﬁ%%%ﬁ%%%%’%ﬁTEwﬁij%%%ﬁ%%’mﬂmF
1F p-target = 0.01 AYEL T B 0.7101 » {F p-target = 0.001 Y5 T 5 0.8318 «

[U_IUF0023_1 IU_IUF0023_22 target
IU IUF0023_1 U [UMOO17_43 nontarget

[U_IUFQ023_1 IU_IUF0023_184 target
IU_IUF0023 1 KH_KHF0030_190 nontarget
[U_IUF0023 1 [U_IUF0023 214 target

IU_IUF0023_1 KH_KHM0O024 38 nontarget
IU_IUF0023 1 IU_IUF0023 2 target
JUF0023 1 KK_KKF0015 105 nontarget
_IUFOOQB 1 [U_IUF0023 169 target
[U_IUF0023 1 KK_KKMOO15 81 nontarget
[U_IUF0023 1 ITU_IUF0023 19 target

|

U TUF0023 1 TA_TAF0020 248 nontarget
IU_IUFQ023 1 1U_[UF0023 O target
[U_IUFQ023 1 TA TAMOOZ0 55 nontarget

IU_IUF0023 1 [U_IUF0023 112 target
IU_IUFOO23 1 TH_THFOO22_317 nontarget
U_IUFQ023_1 TU_IUF0023_83 target

IU [UFQ023 1 TH THMO018 44 nontarget

U_[UF0023 10 1U_IUF0023 14 target

IU [UF0023_10 1U_IUMOO17 115 nontarget
IUF0023 10 1U_IUF0023_16 target
[UF0023 10 KH_KHF0030 234 nontarget

E§A46 Pl o F i

[Figure 46. A typical example of the speaker tranacriptions for speaker recognition]

6.2.2 SEEEETIEEESSEEA®R (Performance on Taiwanese Speech Recognition)

EEREEC EEE AR iR A E 4RSS —FE 194 AfY train set> 7 FFAH[E] 10 AHY test

set ﬁﬁ 5 N4 dev set » Bef&alll G HZRIVEE B YRS » SEA R4 Ry 2.9% » sEIEA0NE 47 Fir
o S SR ABFEAHRE loss EENAIE 48 FR
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| SPKR | #8Snt #Wrd | Corr Sub Del Ins _EBrr  S.Err |
T RV T A R W W R Y RPN TP
T R VTP B X A R B F W RPN
R A R R A T P T
R A R R R I P N
R R R A R R R

Sum/Avg I 1274 12680 | 97.2 2.6 0.2 0.1 22.3

| 254.8 2536.0 | 97.2 2.6 0.2 0.1 2.9 22.4
S.D. I 21.4 1282 | 0.9 0.8 0.2 0.1 0.9 5.6
Median I 262.0 2506.0 | 97.0 2.5 0.2 0.2 3.1 23.7

Hean 1254.8  2536.0 | 2465.2  65.4 5.4 3.6 . .
S.D. I 21.4 128.2 1 120.9 22.6 4.2 2.3 259 14.4
Median 1262.0  2506.0 | 2431.0  61.0 5.0 4.0 .

B 47. G 2E a5 B Dk e | AR

[Figure 47. Experimental results of the Taiwanese speech recognitizer|

| SPKR | # Snt #Wrd | Corr Sub Del Ins Err  S.Err |
oo 1w e a s 1 s 40 1
hedmooty T s T e 61 i /R a7l
| khkhrooso TR e T s T s 2 4 s 57
| khkmoond T2 Rs0s e 7R T 4 e &l
riikfools 1 se e 1 a0 loo T g 7 1us %]
i Sum I 1274 12680 | 12326 327 27 18 372 284

:

|

12 1

== main/loss
—— validation/main/loss
i —»— main/loss_ctc
—— validation/main/loss_ctc
—»— main/loss_att
g == validation/main/loss_att
E-
4-
: emeflassks 0 K\ [ WY
21 ’ '_"w‘&_}.;o%‘!’ ot ; -
04 T T T T T T T
50 60 70 80 90 100 110
epoch

[ 48. G EE B PR 5T B 7E loss

[Figure 48. The learning curves of the Taiwanese speech synthesis system]
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6.2.3 EEESETER AL EE: (Taiwanese Voice Conversion)
Bef% > Pt B G RH A GRS PRl R G A 2 GRBE T A4 » 3%
SHTEREAE T B 0 T AEOE ) B BRI - R E R AR T 29 R
HEE &SR - BF A RIA R E P EEBE IR S EEA L REARHHIEES
HHRASEE AL - GEEZATDL N FEIER =054 -
6.2.3.1 EB8 75745 (Experimental Settings)
HEME (D EEY G T BN Q Y G T B E 7 80 A 4
HIEEEEMN ST - 58 0A 3 L HEEENGRERE - & 1 il B E A RERE
SUELTRE TG RCEE - F0 1 (B R 4AE 1E DAL S -
(1) BB EEEEERAE T - 12 ([EERERE 7 A
(1-1)4 {E{E Y 10 735 fine-tuning FERFR M AR S EHR S EE
(1-2)4 {El{E &Y 3 738 fine-tuning FHFHE MUHAVEEE IR S ECEAE
(1-3)4 {E{E %Y 30 F fine-tuning B} Bl AV FE S EHA S RCETE
(2) FEFEHOEETEHAAEY - 8 (EE RS A K
(2-DA {E{EHIZY 6 734 fine-tuning SRS MU HVRE S EHRE R E1E
(2-2)4 {E{EI4Y 3 734 fine-tuning FERFE MU HVRE S EIRE R E1E
S BERETARERER - RIB TE R S E SRS ER R T B -
(—) BAE T
RIFIESIEY T HRE ) 1T 1.0 3] 5.0 BY5F5 » et 8/ INEEE—Ar
BED 1.0 7 REe NG EA#SENES
EE7r 5.0 07 REeBrEE ANENES
(MR EE 8
FRIEEESIEY T AHDUE | #E17 1.0 3] 5.0 BY5F5 » et 8/INEGEE—Ar
& 1.0 77 <JFIAERE>TI<G RS 8> 5% 2 AR —E A g
EE7r 5.0 77 <JFIAERESTI<GEE> w2 B E —E \HEaEaEs
6.2.3.2 FEESHEBERESE (Intra-Lingual Voice Conversion)
BB G RERE E IR T RENT MOS 43 #&x52[8 (Box-Plot)
(1-1)10 7% fine-tuning 3L & - B 2R 7T BOFIAE DU 73 B & 49 FfE 50 fow
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BRAED M_ALRBETF

5 —
* o, [ .
9 * 7T [05 0.5] 345 ppgan o
B 5| [05 05 0.525 08
,E _ }
5 2 1
2

—
L

21 51 %2 582
aEBiREE_AN105 Efine-tuningz& i}

B 49. [FES{EBES 10 778 fine-tuning 7B 8 2 H 287 B 2K E
[Figure 49. The box-and-whisker plot of naturalness scores using 10-minute
fine-tuning data for intra-lingual voice conversion]
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[Figure 50. The box-and-whisker plot of similarity scores using 10-minute
fine-tuning data for intra-lingual voice conversion]
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[Figure 51. The box-and-whisker plot of naturalness scores using 3-minute
fine-tuning data for intra-lingual voice conversion]
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[Figure 52. The box-and-whisker plot of similarity scores using 3-minute
fine-tuning data for intra-lingual voice conversion]
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[Figure 53. The box-and-whisker plot of naturalness scores using 30-second
fine-tuning data for intra-lingual voice conversion]
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[Figure 54. The box-and-whisker plot of similarity scores using a 30-second
fine-tuning data for intra-lingual voice conversion]
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[Figure 55. The box-and-whisker plot of naturalness scores using 6-minute
fine-tuning data for cross-lingual voice conversion]
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[Figure 56. The box-and-whisker plot of similarity scores using 6-minute
fine-tuning data for cross-lingual voice conversion]
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[Figure 57. The box-and-whisker plot of naturalness scores using 3-minute
fine-tuning data for cross-lingual voice conversion]
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[Figure 58. The box-and-whisker plot of similarity scores using 3-minute
fine-tuning data for cross-lingual voice conversion]
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7. 455w (Conclusions)
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[Figure 59. Experimental results on the naturalness of the single-speaker
Taiwanese synthesis with and without tone snadi and prosodic
boundary annotations]
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[Figure 60. Experimental results on the naturalness of the intra-lingual
voice conversion]
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[Figure 61. Experimental results on the similarity of the intra-lingal voice
conversion]
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[Figure 62. Experimental results on the naturalness of the cross-lingual voice
conversion]
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