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Abstract

Recent years have witnessed a growing inter-
est towards learning distributed query repre-
sentations that are able to capture search in-
tent semantics. Most existing approaches learn
query embeddings using relevance supervision
making them suited only to document rank-
ing tasks. Besides, they generally consider ei-
ther user’s query reformulations or system’s
rankings whereas previous findings show that
user’s query behavior and knowledge change
depending on the system’s results, intertwine
and affect each other during the completion
of a search task. In this paper, we explore the
value of multi-view learning for generic and un-
supervised session-aware query representation
learning. First, single-view query embeddings
are obtained in separate spaces from query re-
formulations and document ranking representa-
tions using transformers. Then, we investigate
the use of linear (CCA) and non linear (UMAP)
multi-view learning methods, to align those
spaces with the aim of revealing similarity traits
in the multi-view shared space. Experimental
evaluation is carried out in a query classifica-
tion and session-based retrieval downstream
tasks using respectively the KDD and TREC
session datasets. The results show that multi-
view learning is an effective and controllable
approach for unsupervised learning of generic
query representations and can reflect search be-
havior patterns.

1 Introduction

Understanding user’s search intent is central in in-
formation retrieval (IR). Modeling user’s intent in-
evitably requires to capture search context. Search
history is arguably the most salient facet of context
that has been widely captured and used in previous
work (Teevan et al., 2005; Dehghani et al., 2017;
Aloteibi and Clark, 2020; Zhou et al., 2020). It
mainly includes the following: (1) the previous
user’s queries, generally recorded into physical ses-
sions (also called time-based sessions (Lucchese

et al., 2011)) or task-based sessions (also called
missions (Hagen et al., 2013)); (2) the retrieved
documents that the user subsequently selects (e.g.,
based on clicks), among those retrieved by the IR
system in response to her queries. Mining user’s
search intent from search history is challenging
because of phenomena such as vocabulary mis-
match between the query and documents, ambigu-
ity issues since two queries even with slight lexical
variations may underline different intents (Steiner,
2019; Sanderson, 2008), and topic change in user’s
search behavior which is particularly prominent
while completing complex search tasks (e.g., ex-
ploratory and multi-step tasks (Hassan Awadallah
et al., 2014; He and Yilmaz, 2017). To address
these challenges, recent years have witnessed a
growing interest in learning query representations
to capture hidden syntactic and semantic relation-
ships (Zamani and Croft, 2016; Grbovic et al.,
2016; Bing et al., 2018; Zhang et al., 2019; Zhou
et al., 2020). However, learning context-aware
query embeddings faces two main issues: (1) user’s
query formulations included in the search sessions
bring word contexts that do not extensively occur
at the training phase in web search data (Keller and
Lapata, 2003); (2) queries do not exhibit a clear
structure as sentences. In most of previous work,
query embeddings are learned based on search ses-
sion contexts modeled from relevant or pseudo-
relevant documents returned by the system (Zamani
and Croft, 2016, 2017; Zhang et al., 2019). These
methods are suited to supervised relevance ranking
tasks with sufficient training data. Other methods
learn distributed query representations based on
user’s query reformulations in the search session
(Grbovic et al., 2016; Sen et al., 2018; Zhou et al.,
2020). These methods are rather unsupervised and
applicable to a wide range of downstream language
processing tasks making them generic.

In this work, we explore the unsupervised problem
of learning generic distributed query representa-
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tions, able to support a wide range of downstream
search tasks. As outlined recently, unsupervised
representation learning for IR has not received
much attention yet (Lin, 2021). This paper attempts
to fill this gap by following a query oriented fash-
ion. Specifically, we argue that by considering only
one facet of the search session (i.e., documents
vs. query reformulations) as done in Sen et al.
(2018); Grbovic et al. (2016); Zamani and Croft
(2016); Zhang et al. (2019); Zhou et al. (2020), or
by considering them both but without relating the
semantics underlying between the user’s search in-
tent and the system’s document results (Bing et al.,
2018), we lose valuable mutual information about
the interactive intentions (Xie, 2002) that could act
as a soft supervision during the search task. Based
on previous findings (Eickhoff et al., 2014; Liu
et al., 2019a) showing how user’s query behavior
and knowledge change from system’s results dur-
ing the search session, we propose a framework
for Session-aware Query rEpresentation learning
based on multi-View Learning (SaQuEViL).
SaQuEViL is a two-step architecture that con-
sists of two single-view query encoders, namely
user-view and system-view query encoders, and a
multi-view query encoder. Each single-view query
encoder is based on a bidirectional transformer
(Vaswani et al., 2017) at the session level. By inves-
tigating the use of unsupervised multi-view based
learning algorithms, namely Cross-modal Factor
Analysis (CFA) and Uniform Manifold Approx-
imation and Projection (UMAP), the multi-view
encoder takes as input the two single-view query
embeddings related to the same query and provides
a multi-view query representation. The underlying
objective functions aim to maximize the alignment
of features between both views which leans to re-
veal the underlying manifold. In the multi-view
embedding space, similar queries formulated in the
context of similar tasks have spatially close repre-
sentations.

Our key contributions are: 1) we model generic
session-aware query representation as an unsuper-
vised multi-view learning task using a two-step
framework architecture, SaQuEViL; 2) we exper-
imentally show the effectiveness of multi-view
based representations in query classification and
session-retrieval as downstream tasks; 3) we con-
duct quantitative and qualitative analyses showing
the potential of SaQuEViL in understanding user’s
search behavior.

2 Related Work

2.1 Distributed query representation

A common problem in IR is that queries —the piv-
otal parts of a retrieval process— are under-specified
which is prone to the vocabulary mismatch and
thereby, the poor performance of search-related
tasks. Recently, much attention has been paid to
learning distributed query representations. Previ-
ous work following this approach can be organized
based on the facet of query context and type of
supervision used to learn the distributed represen-
tations. In the first line of work, both query context
and supervision include user’s relevance signals on
documents (Zamani and Croft, 2016, 2017; Zhang
et al., 2019). The underlying assumption is that the
more queries share the same relevant or pseudo-
relevant documents among those selected by the
retrieval system, the more they have semantically
close intent leading to similar embeddings in the
latent representation space. Using a probabilistic
framework, Zamani and Croft (2016) propose to
learn relevance-based query representations based
on the embeddings of the query words. Then, the
closeness between the probability distribution of
the query representation, based on similarity met-
rics of word embeddings, and the query language
model is maximised. Zhang et al. (2019) propose
the GEN Encoder which learns distributed repre-
sentations of queries in two stages. The first stage
captures user’s intent based on document clicks
by using the assumption that queries with similar
clicks underline similar intent. The second stage de-
noises the representations and enhances their gen-
eralizability by leveraging human paraphrase label-
ing in a multi-task learning setting. The second line
of work relies on query context held by the search
history through query reformulations recorded into
physical sessions (Grbovic et al., 2016) or task-
based sessions (Mehrotra and Yilmaz, 2017; Sen
et al., 2018). Query embeddings are learned based
on the assumption that lexically similar queries for-
mulated in similar search sessions across users are
semantically related leading to close representa-
tions in the embedding space. Mehrotra and Yil-
maz (2017) propose task-aware query embeddings
by applying the skip-gram model on sequences of
queries belonging to the same task-based session.
These query representations learned in an unsuper-
vised manner are expected to be generic, thought
their evaluation has been limited to specific down-
stream tasks such as query expansion in sponsored
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search (Grbovic et al., 2016) and search task ex-
traction (Sen et al., 2018). A recent line of work
uses context built up on query reformulation in a
session and documents (Bing et al., 2018; Zhou
et al., 2020). For instance, Bing et al. (2018) model
a unified graph information where vertices con-
sist of queries in the session, clicked documents
and corresponding websites; and edges reflect un-
differentiated semantic relationships. The authors
propose a supervised model based on an objective
function that aims at optimizing, over session data,
the log-likelihood of reaching a leaf (i.e., query,
URL) in the corresponding Huffman tree.

In contrast to most all the aforementioned works
that model query representation as supervised text
representation learning based on the core idea of
“query sentence”, we model query representation as
multi-view learning of manifold underlying queries
and document results based on the core idea of in-
teractive intentions (Xie, 2002) that provide soft
supervision during the search session.

2.2 Session-aware query reformulation

Session-aware query reformulation is involved in
retrieval-based interactive systems, including dy-
namic IR systems (Yang et al., 2016), multi-turn
Question Answering (QA) (Mensio et al., 2018),
and dialogue systems (Cui et al., 2019). Several
works studied the connections between search ses-
sions, intentions in query reformulation, and search
behavior (Lu et al., 2017; Liu et al., 2019b; Tamine
et al., 2020). Among the major findings, we par-
ticularly mention the following: (1) query refor-
mulation patterns can be observed in search ses-
sions providing insights on the search process char-
acteristics such as underlying search task stage
(Tamine et al., 2020; Eickhoff et al., 2014) and
success (Odijk et al., 2015); (2) during the session
search, system’s results often lead to a change in
both user’s knowledge and the complexity of sub-
sequent queries (Eickhoff et al., 2014; Liu et al.,
2019a); (3) user search process runs into sequential
phases, specialization, and intent shift. As user’s
search intents are gradually satisfied based on sys-
tem’s results, their subsequent queries lean to topi-
cally shift (Chen et al., 2021).

The main findings that have been drawn from the
literature review strengthen our motivation toward
learning single-view query embeddings that cap-
ture hidden session-related patterns from the two
perspectives of user’s sequence of query reformu-

lations in the one hand and system’s results in the
other hand, and then identify mutual information
that can reveal similarities across users’ search in-
tents.

3 Background

3.1 Multi-view representation learning

Multi-view representation learning (Li et al., 2019)
aims to recover a meaningful latent representation
of a target object using data provided by one or
multiple sources. The views correspond to mea-
surement modalities from such different sources,
such as text and images of the same scene (Hwang
and Grauman, 2012) but may also be multiple in-
formation from the same source such as document
text and hyperlinks (Bickel and Scheffer, 2004). Po-
tential applications of multi-view learning include
cross-modal retrieval (Hwang and Grauman, 2012;
Li et al., 2003) and machine translation (Faruqui
and Dyer, 2014). SOTA methods for multi-view
feature learning are the Canonical Correlation Anal-
ysis (CCA) (Dhillon et al., 2011) and Cross-modal
Factor Analysis (CFA) (Li et al., 2003) whose pri-
mary goal is to maximize the correlations of fea-
tures among multiple different views. These meth-
ods generally admit global solutions and ignore
the non-linearities of multi-view data (Viinikanoja
et al., 2010). Unlikely, k-neighbor based manifold
learning methods such as Laplacian Eigenmaps
(Belkin and Niyogi, 2003), IsoMap (Tenenbaum
et al., 2000), and Uniform Manifold Approxima-
tion and Projection (UMAP) (Mclnnes et al., 2018)
recover non-linear dependencies between views.
The core of these methods relies upon optimization
over a graphical representation of different data
sets that are characterized by the same underlying
manifold where edges in the graph are computed to
preserve the topological structure of this manifold.
This optimization yields a shared low-dimensional
space where the latent representations of semanti-
cally similar data are spatially close to one another.
Recently, several proposed methods for multi-view
representation learning are based on deep neural
networks. For instance, Deep CCA aims to learn
complex nonlinear transformations of two views in
a shared space (Andrew et al., 2013).

3.2 Definitions and notations

We introduce here some key definitions. Note that
we refer the term of embedding to either the user-
view query vector or system-view query vector and
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refer the term of representation as the final multi-
view query vector.

Definition 1. Search session. In the literature re-
view, there are two main definitions of search ses-
sions: (1) a physical session (Hagen et al., 2013)
is a set of consecutive queries automatically delim-
ited using a time-out threshold on user’s activities;
(2) a task-based session which targets an atomic
information need through a set of queries that are
possibly neither consecutive nor within the same
time-based session. SaQuEViL can be readily ap-
plied to both definitions of search sessions.
Formally, let S be the set of users’ search sessions.
A user’s search session S C S consists of: (1)
all on-session user’s queries q1,5, 42,5, - - - , ¢k, OI-
dered by time where each query ¢, g, consists of
K, words dm,S = {wmla Wm2 - - - 7mem}; )
the sets of IV top documents returned by the re-
trieval system as an answer to each query ¢, s,
denoted as D% g-

Definition 2. User-view query embedding. Each
on-session query ¢, s is embedded as a d;-
dimensional user-view query embedding, denoted
as qy, ¢ € R, that captures the user’s formula-
tion of his search intent. q“m g is encoded based on
its formulation {wy,1, W2 - . ., Wy K,, } as well as
all the formulations of the previous queries in the
session {gm—1,9, ¢m—-2,5 - - -, q1,5}-

Definition 3. System-view query embedding.
Each on-session query ¢, s is embedded as a da-
dimensional system-view query embedding, de-
noted as q,, ¢ € R%, that captures the system’s
understanding of the user’s search intent. gy, ¢ is
encoded based on document results obtained from
the concatenation of the query ¢, s along with
previous queries in the session.

4 Session-Aware Query Representation
By Multi-View Learning

4.1 Problem statement

Let S = {Si,..., Sk} be a set of sessions such
as S; = {q1,i,92,i, - - - » Qki.i }» including a total of
n on-session queries g, ; with n = (3 ki)ZE.
The objective of SaQuEViL is twofold: (1) encod-
ing ©! € R™% (resp. X2 € R™*%) the vector
space embedding and user-view query embeddings
d,, ; (resp. system-view query embeddings q;, ,);
(2) learn a multi-view latent space ¥* € R™*¢
(with d < min(dy, dz2)) and query representations
dm, € X" by jointly achieving pairwise align-

ments between the user-view embedding q;, ; and
system-view embedding qy, ; and recovering an op-
timal alignment of manifolds over all the query rep-
resentations q,, ;. Final representations are picked
to match the downstream task, either when docu-
ment matching is required or session-aware query
is required.

The two key assumptions of multi-view learning
are satisfied (Blum and Mitchell, 1998; Foster et al.,
2008): (1) each of the user-view and system-view
are independent conditionally to the sessions; and
(2) the two single views provide a redundant esti-
mate of the session.

4.2 Multi-view query representation learning
4.2.1 Framework overview

Figure 1 presents an overview of the SaQuE-
Vil framework. For encoding the single-view
query embeddings qg;, ;, 4y, ;» we opted for BERT
(Devlin et al., 2019) as transformer embedding
and followed the standard CLS encoding strategy
(BERT¢c1s). So, q“m’i (resp. qun,i) is obtained
by applying I‘(BERTCLS([C_LS] Qm,i)) (resp.
®1=1'BERT 1,5 ([CLS|head(d), ;))), where @ is
a vector concatenation operator, head(-) is a func-
tion that returns the title and first tokens of a given
document, and I" is an expansion function such as
broadcast used to match the dimensions.
Following, we detail the key principles of multi-
view query representation learning g, ; using lin-
ear (CFA (Dhillon et al., 2011)) and non-linear
(UMAP (MclInnes et al., 2018)) methods.

4.2.2 CFA-based representation learning

Given the two mean centered matrices Q% €
R4*" and Q% € R%2*"_ where columns refer re-
spectively to the user-view embeddings q;;, ; and
system-view embedding gy, ;, CFA learns two lin-
ear and orthogonal transformations A € R4 >4 and
B € R%x*4d gych that the distance between ATQ"
and BTQ? is minimized. The CFA objective is:

A*, B* = argmina g(|| ATQ"—BTQ° ||p) (1)

where ATA =1 and BTB = [ and || - || is the
Frobenius norm. The solution of Equation (1) is ob-
tained through the Singular Value Decomposition
(SVD) of Z = (Q")TQ%, such as Z = S,V.D,
and A* = S,,B* = D, (Krzanowski, 1988).
Thus, we obtain the multi-view query represen-
tations q“ and g°® as the rows of the user-view or
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Figure 1: Overview of the SaQuEViL framework.

system-view transformations Qv = (Q“)TA* and
Q°f = (Q®)TB* respectively.

4.2.3 UMAP-based representation learning

Let G(V,&) be the graph where the vertices V
correspond to queries ¢, € U(Si)fil and ¢ the
edges that reflect a weighted neighborhood rela-
tionship q,, ~ q,, defined in matrix V¥ such as
W(m,m’) > 0 if q;, q, are neighbors. The
two key differences between SOTA graph-based
manifold learning algorithms (Belkin and Niyogi,
2003; Tenenbaum et al., 2000) lie in the construc-
tion of the k-neighbor edges ¢ and the choice of
the weights W(i, j). Specifically, in the multi-view
setting of the UMAP method, for each query g,
there are two induced local graphs: (1) the user
graph Gt (V*, &) where V" is the set of k-nearest
neighbors of q¥, denoted as F'set"(qy,) and &, is
the set of outgoing edges directed from g, to its
set k-nearest neighbors ¢, ; thereby inducing the
similarity relationship qy;, ~ qj;; defined in ma-
trix W*(n, n) ; (2) the system graph G5, (V*,&5))
where V* is the set of k-nearest neighbors of q;,
denoted as F'set®(q,,) and &, is the set of out-
going edges directed from g, to its set k-nearest
neighbors gy, ; thereby inducing the similarity rela-
tionship q;, ~ q,; defined in matrix W* (n,n).
Pairwise alignment between the user-view and
system-view of query g, is ensured by building the
graph G(V, &) as a graph intersection between user
graph G¥ (V% &%) and system graph G5 (V*,&5)
for each query ¢, € U(S;)X . This intersection
builds the weighting matrix YW (n, n) based on the
weighting matrices WW* and W?. Spectral opti-
mization of the multi-view query representations

is then achieved by functions f : ¥V +— R that
recover the optimal alignment of manifolds under-
lying queries ¢, € U(S’i)fil through the mini-
mization of a cost on graph G(V,¢), defined as
(Mclnnes et al., 2018):

L= >

Se€S;qm. a5, €S

S = o Wlm, )

(2)
subject to scale and translation constraints f7 f =
Land fTe = 0.

The optimization process of UMAP is detailed
in Belkin and Niyogi (2003); McInnes et al. (2018).

5 Experimental Setting

We address the following research questions:
RQ1) How does the SaQuEViL framework
perform in query classification and session-based
retrieval as downstream tasks?

RQ2) To what extent the SaQuEViL embedding
space preserves the similarities of each of the
single-view embedding spaces?

RQ3) Can we use SaQuEViL framework to
understand user’s search behavior?

5.1 Downstream tasks
5.1.1 Query classification

The goal of query classification consists in assign-
ing an incoming query the most appropriate topic
labels (categories). Labels are pre-defined and
search-related data are available to train each label.
Data. As previously done by Zamani and Croft
(2016); Zamani et al. (2017) to evaluate query em-
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bedding performances, we used the KDD 2005
dataset (Li et al., 2005). The dataset consists of
800 queries recorded from MSN search log. The
dataset also includes 43 categories -that act as can-
didate task-based sessions- labeled by human as-
sessors. Accordingly, we assume that the set of
queries belonging to each target category c repre-
sents a session S.. To solely measure the qual-
ity of the query representations and ensure com-
parability across query representations, we opted
for the classification strategy proposed in Zamani
and Croft (2016); Zamani et al. (2017). We first
compute the probability of each category (session)

oy — _6(Sei,d)
piSale) = £56ta

Sc; is the centroid vector of category (session) Sc;.
Se; is computed by averaging the query vectors gr;
of queries g; belonging to session S¢;. Then we
select the N top sessions with the highest probabil-
ities as the more likely ones to be assigned to query
q.

Evaluation metrics. We consider the evaluation
metrics used in the KDD challenge (Li et al., 2005),
Recall and F1 measures, and carefully followed
their description to implement our evaluation script.
Statistical tests are performed using two-tailed
paired t-test. We depict a significant increase for p
< 0.05 as *.

Baselines and scenarios. We reported tradi-
tional SOTA pre-trained embeddings as query en-
coders GloVe (Pennington et al., 2014), Word2vec
(Mikolov et al., 2013) and BERT (Devlin et al.,
2019), as well as RPE (Zamani and Croft, 2016; Za-
mani et al., 2017), a SOTA relevance-based query
representation model. To show the impact of user-
view and system-view alignment, we also com-
pared our multi-view CFA-based and UMAP-based
query representations q to the representation vec-
tor obtained by concatenation of q“ and q°® vectors.
The latter scenario is denoted w/o Align.

Training and inference. We performed a 5-fold
cross-validation over the queries and used the docu-
ment rankings provided by the ClueWeb12! corpus
to learn the SaQuEViL multi-view query represen-
tations. The ClueWeb12 corpus was indexed using
the respective default configuration of Anserini’
while the retrieval was done using the default con-
figuration of Pyserini? search. With respect to Fig-

where ¢ is a query vector,

'https://lemurproject.org/cluewebl?.
php/

https://github.com/castorini/anserini

*https://github.com/castorini/pyserini

ure 1, projected q vectors are averaged in order
to obtain a unique vector per query. The number
of labels assigned to each query was tuned on the
training set from 1 to 5.

5.1.2 Session-based retrieval

The goal of session-based retrieval consists in eval-
uating document rankings over user sessions rather
than isolated queries (Carterette et al., 2016).

Data. We use the TREC 2014 session track
(Carterette et al., 2016) which provides the follow-
ing: (1) 1,257 full sessions among which 1,021 of
these have at least one reformulation. On average
there are 4.33 queries per session, among which
the final query in the session is referred to as the
current query; (2) the ranked list of documents for
each past query; and (3) human annotations about
type of search for 54 sessions; the latter are labeled
using 4 categories of user search behavior w.r.t. the
classification designed by Li and Belkin (2008):
known-item, interpretive, known-subject, and ex-
ploratory.

It is worth noting that we did not use the users’
clicks in our experiments since they are consid-
ered as weak supervision. The corpus used is the
ClueWeb12 collection. The relevance of a docu-
ment was judged for the results of the current query
but judgment is based on the whole session.

Evaluation metrics. We use the TREC session
track’s official metrics. These are: nDCG@10,
ERR@10, nERR@10, and PC@10. All runs are
evaluated using the official evaluation script*.

Baselines and scenarios. We used classical base-
lines including Current and Aggregated query. The
latter is a concatenation of all the session’s queries
as suggested in Van Gysel et al. (2016).

Training and inference. In contrary to query clas-
sification, projected q vectors are not aggregated
as each is used for document ranking. We first
compute a neural score by calculating the cosine
similarity between the session vector Z;”:_ll q;,s

s .
and the document vector qmm:gs in the SaQuEViL

space. Then we obtain the final score used for doc-
ument ranking by linearly combining the neural
score with the BM25 score as commonly done in
neural IR (MacAvaney, 2020).

*https://trec.nist.gov/data/
session2014.html
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Model Precision F1
GloVe 0.3643 (+22.0%) 0.3912 (+28.3%)
Word2vec 0.3712 (+19.7%) 0.4008 (+25.2%)
BERT 0.4143 (4+7.2%) 0.4537 (+10.6%)
RPE 0.3961 (+12.2%) 0.4294 (+16.9%)
SaQuEViL
w/o Align  0.4274 0.4827*
CFA 0.4443* 0.5020*
UMAP 0.4246 0.4802*

Table 1: Performance of SaQuEViL query representations
and baselines (GloVe (Pennington et al., 2014), Word2vec
(Mikolov et al., 2013), BERT (Devlin et al., 2019), and RPE
(Zamani and Croft, 2017)) in query classification. The im-
provements over each baseline of our best scenario, SaQuEViL
CFA, are reported in brackets. The highest values are high-
lighted in bold. Improvement significance w.r.t. BERT is
indicated by the superscript “*’.

6 Results and Analysis

6.1 RQ1: Effectiveness evaluation of
SaQuEYViL in downstream tasks

6.1.1 Query classification

Table 1 presents the performance results in terms
of Precision and F1. Note that one strong base-
line is obtained by encoding the query with BERT
(0.4143) which clearly outperforms a supervised
alternative (0.3961), e.g., RPE which is trained
on relevance signals (Zamani and Croft, 2017).
It can be explained as RPE do not use contex-
tualized embeddings as BERT. We can interest-
ingly see that SaQuEViL, even trained without su-
pervision, outperforms (0.443) both unsupervised
(GloVe, Word2vec, and BERT) and supervised en-
coders (RPE model). This result clearly indicates
the value of the alignment to identify relevant mu-
tual information between user’s view through query
reformulation and system’s view through document
rankings to enhance the query representation. We
can also see that even without alignment, SaQuE-
ViL (0.4274) outperforms BERT (0.4143) indicat-
ing that each view information is helpful on this
task. Finally, our best scenario corresponds to the
SaQuEViL CFA setup that achieves a minimum im-
provement of 7 % in terms of Precision and F1 w.r.t.
reported baselines. This result leads us to consider
that linear dependencies are revealed from session-
based query reformulations and corresponding doc-
uments.

Model NDCG@10 ERR@10 nERR@10 PC@10
Current 0.1659 0.1639 0.2332 0.3190
Aggregated 0.1834 0.1952 0.2645 0.3460
SaQuEViL
w/o Align 0.1841 0.2021 0.2749 0.3340
CFA 0.1843 0.1950 0.2646 0.3473
UMAP 0.1835 0.1951 0.2644 0.3450

Table 2: Performance of SaQuEViL query representations
and baselines (Aggregated (Van Gysel et al., 2016)) in session-
based retrieval. Best results are highlighted in bold.

6.1.2 Session-based retrieval

Table 2 presents the performance scores of SaQuE-
ViL scenarios and baselines in the session-based
retrieval downstream task. As expected, including
session information outperforms (0.1834) the use
of the single query (0.1659) in terms of NDCG @10,
but also for all the other metrics. Moreover, we can
notice that SaQuEViL slightly improves the Aggre-
gated (Van Gysel et al., 2016) results but none sce-
nario shows a clear wining. SaQuEViL w/o Align
setup outperforms in terms of ERR@10 (0.2021)
and nERR @10 (0.2749) but SaQuEViL. CFA ob-
tains the best scores for NDCG @10 (0.1843) and
PC@10 (0.3473). Nevertheless, the improvements
for the session-based retrieval downstream task are
modest>. We can also notice that CFA and UMAP
methods exhibit the same performance trend.

6.2 RQ2: Analysis of the SaQuEViL
multi-View embedding space

Our main objective here is to analyse to what ex-
tent the SaQuEViL framework builds a shared em-
bedding space that preserves the structure of the
single-view spaces. Grounded with the results ob-
tained above (Section 6.2), we achieve this goal
by analyzing the discrepancies between the single-
view spaces and the shared space obtained with
SaQuEViL using the query representations learned
in query classification. For each target query ¢, we
consider the k-neighbors of q in the SaQuEViL.
shared space as the gold standard and the plurality
vote of the k-neighbors in each of the single-view
spaces, namely, q* and q°, as the prediction. We
used the cosine similarity to find neighbors and
then compute Precision, Recall and F-measure met-
rics under a multi-label setup, where each query

SNote that stronger results on the TREC session 2014
dataset are reported by Aloteibi and Clark (2020), but we only
focused on an extrinsic use of SaQuEViL and integration to
task specific models is out of the scope of the paper.
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Figure 2: F1 performances when comparing SaQuEViL CFA (left) / UMAP (right) multi-view space and the concatenation of
both views embedding. Number of neighbors and ranked documents are in log scale. Better in color as brighter color indicates

higher values.

Model First k& queries into the session
1 3 6 9 all
Aggregated 0373 0.573 0.553 0.535 0.535
SaQuEViL
w/o Align 0462 0.571 0.607 0.589 0.589
CFA 0.516 0.569 0.625 0.625 0.625
UMAP 0498 0.571 0.625 0.589 0.589

Table 3: Fl-micro performances of SaQuEViL and baseline
(Aggregated (Van Gysel et al., 2016)) encoders in search type
classification using TREC session 2014. Highest values of
F1-measure are highlighted in bold.

identifier is considered as a target class. In particu-
lar, we analyze the impact of two key parameters
of the SaQuEViL framework: number of neighbors
(k) and number of top documents (/V) used to learn
the query representations. Results for different val-
ues of k (1, 2, 4, 8, and 16) and N (2, 4, 8, 16,
32, and 64) in log scale are presented in Figure
2. Three main conclusions can be grasped from
Figure 2: (1) increasing the number of neighbors
increases the similarity between the spaces until
8-16 neighbors then it stabilizes for both methods
(CFA and UMAP) in terms of F1; (2) adding extra
documents impacts in the same way, e.g., posi-
tive at early increments and then stabilizes, but for
the two multi-view learning methods; (3) a higher
preservation of original similarities in SaQuEViL
spaces correlates with higher performances on the
downstream task as SaQuEViL CFA obtains a max-
imum score close to 0.20 of F1 while UMAP is
0.06 points behind (0.14 of F1)°. These results
might shed light on possible controllable room of
improvements of a wide range of downstream tasks
including, but not limited to session-based retrieval.

®Note that this correlation must have an upper limit lower
than 1.0 (F1) as exactly similar spaces may lay on similar
performances to our strategy w/o align in downstream tasks.

6.3 RQ3: Search behavior understanding

Our aim here is to understand in what extent the
SaQuEViL representation space helps understand-
ing behaviors in user session. To do so, we used
the type of search annotations provided in the
TREC session 2014 dataset (known-item, interpre-
tive, known-subject, and exploratory). A standard
5-cross fold setup with k-nearest neighbor clas-
sifier is used to draw the intrinsic capabilities of
the encoders to distinguish user search behavior
types. Average results of Fl1-micro across the 5
folds are presented in Table 3. To perform the clas-
sification at the test stage, we used as context the
first k queries of sessions (columns 1, 3, 6 and 9)
as well as the full session (column all). As can
be seen from Table 3, SaQuEViLL CFA encoder
(0.625) clearly outperforms the proposed alterna-
tives, the BERT encoder for the Aggregated queries
(0.535) and the SaQuEViL w/o Align (0.589) when
considering the full session. Looking at the im-
pact of context length (k) in the classification, we
can note that the Aggregated query representation
starts with a low performance (0.373) and, when
up to 3 queries are used in the session, it achieves
the maximal performance (0.573). However, the
SaQuEViL w/o Align encoder starts in a higher
performance (0.462) and achieves the maximal per-
formance when up to 6 queries are used from the
session (0.607). In both cases, the performance
drops when the size of the session increases. This
also points an advantage of SaQuEViL CFA en-
coder as it shows a more stable performance (0.516
to 0.625) regardless the number of used queries.

To further our analysis, we plot in Figure 3 distribu-
tions of distances between adjacent query pairs for
each session w.r.t. corresponding search type and
by using different query encoders: GloVe, SaQuE-
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Figure 3: Distribution of cosine similarities for (a) GloVe, (b) SaQuEViL-w/o Align, and (c) SaQuEViL CFA between adjacent
queries per session categorized by search type known-item, interpretive, known-subject, and exploratory.

ViL w/o Align, and SaQuEViL CFA’. We can see
that the distribution of CFA encoder significantly
differs from the other encoders. Interestingly, we
note that CFA better separates the four search types
and gradually differentiates the trends of query sim-
ilarities based on the two dimensions of search
namely “goal-quality” and “product” of the search.
Indeed, the curves with more spread query simi-
larity values (0.87-0.99) correspond to interpretive
and exploratory sessions which reflect non-factual
task products with either specific or amorphous
goals leading to issue semantically different queries
along the sessions. Unlikely, the curves with high
density of narrow and relatively high similarity
values (0.93-0.99) reflect factual search as charac-
terized in known-subject and known-item search.

7 Conclusion

The paper presented SaQuEViL, a framework that
learns query representations that reflect users’ in-
tents within a session-based search. By relying on
the key finding that system’s results affects user’s
query behavior and knowledge, we advocate the
use of unsupervised multi-view learning to capture
manifolds in a shared distributed representation
space. Through experimental evaluation in two
downstream tasks, we show the effectiveness of
SaQuEViL over supervised and unsupervised pre-
trained encoders, though improvements are limited
in session-based retrieval that inherently requires
relevance supervision. A series of experiments
and qualitative analyses also show the potential
of SaQuEViL to control the representation space
through key parameters that directly influence per-
formance of downstream tasks and additionally, to

"UMAP exhibits the same distribution trend than CFA and
has not been presented for limited space.

clearly separate user behavior patterns in search ses-
sions. We believe that this work opens avenues of
research in the design of unsupervised distributed
representations able to support search tasks, which
has not received much attention yet.
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