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Abstract
Human conversations can evolve in many
different ways, creating challenges for auto-
matic understanding and summarization. Goal-
oriented conversations often have meaningful
sub-dialogue structure, but it can be highly
domain-dependent. This work introduces an
unsupervised approach to learning hierarchi-
cal conversation structure, including turn and
sub-dialogue segment labels, corresponding
roughly to dialogue acts and sub-tasks, respec-
tively. The decoded structure is shown to
be useful in enhancing neural models of lan-
guage for three conversation-level understand-
ing tasks. Further, the learned finite-state sub-
dialogue network is made interpretable through
automatic summarization.

1 Introduction

Increasingly, language understanding applications
involve conversational speech and text. Much atten-
tion has recently been directed at human-agent dia-
logue systems, including virtual assistants, interac-
tive problem solving, and information seeking tasks
(e.g., conversational question answering). How-
ever, automatic understanding of human-human
conversations is also of interest for problems such
as call-center analytics, conversation outcome pre-
diction, meeting summarization, and human-agent
interaction involving multiple people. The focus of
this paper is on human-human conversation under-
standing.

Like written documents, goal-oriented conver-
sations tend to have structure (openings, context
setting, problem solving, etc.). However, in human-
human conversations (both text and speech), partic-
ipant roles factor into the structure, and the struc-
ture is less rigid due to the need to accommodate
miscommunications and varying objectives. Yet,
most work on conversational systems treats dia-
logues like written text, i.e., the dialogue history is

We release our code for experiments at https://
github.com/boru-roylu/THETA.

a linear sequence of text. In this paper, we explore
unsupervised learning strategies for adding struc-
tural information to a state-of-the-art hierarchical
transformer-based model of text.

Linguistic analysis of conversations often in-
volves associating speaker utterances with dialogue
acts (DAs), e.g., question, statement, backchannel,
clarification, etc. (Jurafsky et al., 1997; Core and
Allen, 1997), and segmenting the conversation into
nested subsequences of participant turns that re-
flect a common topic or conversational goal (Grosz
and Sidner, 1986). Past studies have explored us-
ing such structure, particularly DAs, to improve
automated human-agent dialogues. Here, we use
hierarchical structure (both turn-level DA labels
and sub-dialogue states) to improve classification
of human-human conversations. Specifically, we
introduce Three-stream Hierarchical Transformer
(THETA), which integrates transformer representa-
tions of the DA and sub-dialogue state sequences
into a hierarchical transformer (HT) (Santra et al.,
2021; Pappagari et al., 2019) operating on the orig-
inal text. In addition to improving performance,
the use of discrete structural cues in classification
can support conversation analysis. For example,
we can identify seller strategies that are more likely
to lead to a successful outcome or use the sub-
dialogue state sequence to summarize frequently
visited states in unsuccessful interactions.

Since hand-annotation of structure can be costly
and inventories vary across tasks, there is substan-
tial interest in unsupervised learning of structure
for specific task domains. Here, the approach to
structure learning involves two steps. First, we
use a clustering algorithm to learn a mapping of
utterance embeddings to discrete categories, which
serve as an unsupervised version of DAs. Each
conversation is then represented by the discrete se-
quence of cluster identifiers (IDs) associated with
the sequence of utterances. Using the collection of
discretized conversations, we automatically learn
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the topology of a latent finite-state model over these
sequences, i.e., a hidden Markov model (HMM),
using a greedy state-splitting algorithm that maxi-
mizes the likelihood of the sequence data without
requiring any annotations. The states of the HMM
correspond to different sub-dialogues that may be
associated with specific topics, strategies or sub-
tasks. The sub-dialogue structure of a new conver-
sation is identified by finding the most likely state
sequence given that discretized utterance sequence.

The learned structure is assessed in experiments
on three conversation-level classification tasks:
buyer/seller negotiation outcomes on CRAIGSLIST-
BARGAIN (He et al., 2018), conversation category
in the Action-based Conversations Dataset (ABCD)
(Chen et al., 2021), and client callback prediction
in a private call center corpus. In each task, we
find that a combination of both utterance-level cat-
egory and sub-dialogue state information lead to
improved performance. Further, we use automati-
cally generated descriptions of the clusters and sub-
dialogue states to provide an interpretable view of
the finite-state topology and a summarized view of
a conversation. Anecdotally, we find that this struc-
ture lends insights into how participant strategies
(state paths) are associated with different conversa-
tion outcomes.

The contributions of this work are as follows.
First, we introduce a simple unsupervised approach
to learn a hierarchical representation of conversa-
tion structure that includes turn-level labels and
sub-dialogue segmentation, accounting for partici-
pant role. Using three conversation-level classifica-
tion tasks, we demonstrate that integrating the struc-
tural information into a state-of-the-art hierarchi-
cal transformer consistently improves performance.
Lastly, we show how the discrete representation of
structure combined with automatic summarization
can provide a mechanism for interpreting what the
model is learning or for conversation summariza-
tion and analytics.

2 Method

As shown in Figure 1, THETA represents the se-
quence of turns in a conversation using: i) a hi-
erarchical transformer (HT) operating on a turn-
segmented word sequence, ii) a transformer oper-
ating on a sequence of turn-level DAs, and iii) a
separate transformer operating on a sequence of
sub-dialogue states derived from the DAs. The
conversation-level vectors produced by the three

transformers are concatenated and used in a final
task-specific layer for conversation classification
tasks. The HT alone is the state-of-the-art model for
conversation-level tasks. The DA and sub-dialogue
states comprise the structural information that en-
hances the HT for improving performance of the
end task. In addition, the discrete nature of the
structure representation provides a mechanism for
analyzing the conversation classes via summariza-
tion of utterances associated with the DA labels or
sub-dialogue states.

2.1 Model Components

Definitions More formally, each dialogue con-
sists of a sequence of words (or tokens) X =
[x1, . . . , xT ] associated with T customer/agent (or
seller/buyer) utterances, where xt is the subse-
quence of words associated with the tth utter-
ance.1 The word sequence is decorated with
three special tokens: [CLS], [PTY] and [SEP],
where [PTY] indicates the utterance speaker
role ([AGT] for agent/seller and [USR] for cus-
tomer/buyer). The word sequence X is mapped
to two sequences of utterance-level embeddings
Uv = [uv1, . . . , u

v
T ], v ∈ {HT, DA}. The vector

uHT
t is output from the last layer of the HT that

is used to derive the text-based conversation-level
vector U. The vector uDA

t is the output of a separate
transformer, which is then mapped to a DA cate-
gory ct to produce the sequence C = [c1, . . . , cT ].
The sequence C is associated with a hidden subdia-
logue sequence that is represented using the HMM
state sequence S = [s1, . . . , sT ]. Additional trans-
formers derive conversation-level vectors C and S
from C and S, respectively. THETA enhances the
conversation representation by concatenating U, C
and S together for input to a task-specific layer.

Hierarchical Transformer The hierarchical
transformer (Pappagari et al., 2019) has been
shown to be useful for classifying long documents
(like customer support conversations), which ex-
ceed the length limits placed on transformer-based
models due to the quadratic complexity of the
self-attention module. At a high level, two trans-
former blocks, a lower utterance transformer and
an upper conversation transformer are stacked to-
gether for encoding dialogues. Here, the utterance-
level transformer first encodes utterances into ut-
terance embeddings, one for each utterance. In

1We use the term ”utterance” although some conversations
involve text-based interactions.
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Figure 1: Overview of THETA conversation encoding. The text of each utterance text is encoded by BERT, and
a 1-layer transformer further contextualizes utterance embeddings to generate the text vector U. For structure,
utterances are mapped to K-means dialogue acts (DAs), which are input to an HMM to decode sub-dialogue states.
1-layer transformers are applied to sequences of DAs and sub-dialogue states, yielding cluster vector C and state
vector S. The concatenation of U, C and S is fed into a linear layer to obtain the structure-enhanced vector for the
predictive task. For simplicity, Emb. and Trans. stand for embedding and transformer, respectively.

this case, the first contextualized token embed-
ding as the utterance embedding, which corre-
sponds to the sentence-level [CLS] token. The
sequence of utterance embeddings augmented with
a conversation-level [CLS] token are then fed
as inputs to another one-layer conversation-level
transformer to further contextualize the vector se-
quence. We use the output vector associated with
the conversation-level [CLS] token as the conver-
sation representation.

Dialogue Act Sequence Module To obtain the
DA labels, we first derive an utterance embedding
uDA
t by mean pooling the final layer of the BERT

transformer.2 The resulting embedding is mapped
to a DA class ct using a vector quantization (VQ)
approach: K-means clustering is used to learn the
classes, and vectors are labeled at inference time
by minimizing the Euclidean distance to cluster
means. The number of clusters is treated as a hy-
perparameter of the overall model. We apply K-
means clustering separately for utterances from the
two different participant roles, so the DA index re-
flects the role. This simple approach is motivated
by prior work on unsupervised learning of DA cat-
egories (Brychcin and Kral, 2017), which showed
that K-means clustering gives a performance that
is only slightly worse than HMM-based learning.

In linguistic analyses, a turn can contain a se-
quence of DAs. Our work assigns a single DA to
a user turn, as in other work using unsupervised
learning as well as the negotiation data set that we

2We also experimented with using the [CLS] token, but
mean pooling gave better results.

report results on. Since the prior work often uses
“dialogue act” for turn-level labels, we have chosen
to use the DA term here, acknowledging the abuse
of terminology. For complex tasks like the call cen-
ter data (and other data with real users), the turns
will involve multiple dialogue acts, in which case a
large number of clusters is useful.

Sub-Dialogue Sequence Module The DA se-
quence C is input to a hidden Markov model
(HMM) to derive the sub-dialogue structure. An
HMM is a statistical model that characterizes an ob-
servation sequence C in terms of a discrete, latent
(hidden) Markov state sequence S,

P (C) =
∑

all S

P (C, S)

=
∑

all S

π(s1)
T∏

t=1

η(ct|st)γ(st+1|st),

where π, η, and γ are start-state, observation, and
transition distributions, respectively. sT+1 is a
dummy stopping state. The HMM is used to decode
the hidden sub-dialogue state sequence S, which
provides a segmentation of the conversation into
different stages or sub-tasks in problem solving
or negotiation. The HMM topology and param-
eters are derived using unsupervised learning as
described in the next section.

2.2 Sub-Dialogue Structure Learning
Given a specified topology, inference and train-
ing algorithms for HMMs are well established
(Murphy, 2012); the Viterbi algorithm gives the
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Figure 2: The design of two split methods. The dark-blue state is chosen to be split. The light-blue state is the new
state after split. Transitions to other states are omitted for simplicity.

most likely state sequence, and the Expectation-
Maximization (EM) algorithm is used for param-
eter estimation. To automatically learn the HMM
topology, we apply a greedy state splitting algo-
rithm (Ostendorf and Singer, 1997), which learns a
left-to-right topology by constraining states to in-
herit the transition constraints of their parent. The
standard objective is maximum likelihood of the
DA sequence, which is unsupervised with respect
to the conversation-level task.

Topology learning is outlined in Algorithm 1.
The initial model has a 3-state left-to-right topol-
ogy, initialized (assuming 70% of the conversation
is associated with the middle state) and then itera-
tively trained until the improvement is lower than a
fixed threshold or the iteration count exceeds some
number. At each iteration, the state with the high-
est entropy of emission probability is chosen to be
split. The topology can change into two new config-
urations corresponding to temporal and contextual
splits (Figure 2). The EM algorithm is applied
again on each configuration and the topology that
leads to the higher likelihood is chosen. We itera-
tively conduct the splitting until the total number of
states reaches the desired value (a hyperparameter).
The HMMs of Ostendorf and Singer (1997) used
continuous observation distributions. The splitting
approach described below was designed for dis-
crete distributions.

Algorithm 1 Topology Learning Algorithm
1: n: number of split. τi: topology after i split.
2: Initialization: Run the EM algorithm on 3-state initial

topology τ0.
3: for i = 1 to n do
4: begin
5: Select state s ∈ τi−1 to split based on max entropy

of observation distribution ηi−1(c|s).
6: Apply temporal split and get new topology τi,t.
7: Apply contextual split and get new topology τi,c.
8: Run the EM algorithm on τi,t and τi,c.
9: Select the topology with higher likelihood as τi.

10: end

Temporal split The temporal split provides more
detailed sequential structure along a path. Fig-
ure 2(b) shows the result of a temporal split on
the selected state (dark-blue) in Figure 2(a). The
light-blue node is the new child state that inherits
all incoming and outgoing edges and the transition
probabilities of the dark-blue state except y and z.
Edges y and z are initialized to px/2 where px is
the probability of the original edge x of dark-blue
state. The old incoming edges of dark-blue state
are removed and outgoing edges are preserved.

Contextual split The contextual split allows for
alternate sub-dialogue paths. Figure 2(c) illustrates
the contextual split applied on the dark-blue state.
The light-blue state inherits everything but the ob-
servation distribution of dark-blue state. With the
aim of modeling different types of paths, when
copying the observation probabilities to the light-
blue state, we omit the top emission probability of
the dark-blue node and set it to 0 and normalize
the rest of probabilities. In terms of the transition
probabilities, the light-blue state inherits all from
the dark-blue one; px = pz where px and pz are
the transition probabilities of edges x and z.

2.3 Pre-Training and End-Task Training

Both for initializing the HT and for deriving the
DAs, we use the transformer-based BERT model
(Devlin et al., 2019) for encoding individual ut-
terances ut, pre-trained using masked language
modeling and next-sentence prediction. Due to
the style differences of dialogue data vs. written
text, we apply domain-adaptive pretraining (DAPT)
(Gururangan et al., 2020) to adapt BERT for di-
alogue applications. As shown later (section 3),
adapting BERT with DAPT provides substantial
improvement in terms of predictive power as well
as optimization stability.

For the HT alone, supervised training involves
learning the weights of the final task-level linear
layer, the utterance-level transformer, and the word-

5660



level transformer.
For THETA, supervised training involves learn-

ing the weights of the cluster- and state-level trans-
formers, in addition to all updates associated with
the HT component described above. The clus-
ter sequences are obtained using the word-level
transformer with DAPT and the associated cluster
mapping obtained from unsupervised learning, i.e.,
without task-level finetuning. Similarly, there are
no task-level supervision updates to the parameters
associated with the HMM that is used to derive the
state sequence.

3 Experiment

3.1 Datasets and Evaluation Metrics.

We use three datasets with conversation-level clas-
sification tasks to evaluate our model. The detailed
statistics of the datasets are shown in Appendix B.

CRAIGSLISTBARGAIN (He et al., 2018) is a
public negotiation dataset where buyers and sell-
ers negotiate the prices of items on sale. In each
conversation, the buyer has a target price in their
mind and attempts to reach an agreement with the
seller. Following previous work (Zhou et al., 2020;
Joshi et al., 2021), we use the same list of 14 hand-
crafted utterance DAs and the 5-class sale-to-list
price ratio labels provided in their code base. The
14 handcrafted utterance DAs are used as compari-
son to evaluate if our unsupervised version of DAs
is learning good representations. Classification of
sale-to-list price ratio is used as the downstream
task, with accuracy as the evaluation criterion.

ABCD (Chen et al., 2021) is a public customer
support dataset that is introduced to study customer
service dialogues. In each conversation, an agent
follows guidelines to help a customer solve their
issue. Conversations are categorized with flows
and subflows. Flows are broad categories, such as
shipping issue, account access, or purchase dispute.
Subflows comprise 96 fine-grained labels, for ex-
ample, shipping status question, recover password,
or invalid promotion code. Each conversation is
annotated with a flow and a subflow. We use classi-
fication of the subflows as our conversation-level
task. Macro and micro F1 scores are used to reflect
the performance of imbalanced subflow classes.

CALL CENTER is a private collection of cus-
tomer service conversations. Phone calls are auto-
matically transcribed and private user information
is anonymized. Conversations are annotated with
a binary indicator as to whether or not there will

be a callback within two days. (Such callbacks
are an indicator that the problem was not solved in
the call.) For the task of callback prediction, we
measure area under the ROC curve (ROC AUC).

3.2 Implementation Details

Experimental Setup. We develop our K-means
and HMMs using the packages Faiss (Johnson et al.,
2019) and Pomegranate (Schreiber, 2018). The
number of DAs and the size of the HMM state
space are chosen separately for each dataset based
on development set performance. We initialize and
finetune our experiments based on uncased base
model of BERT downloaded from HuggingFace
(Wolf et al., 2020). We DAPT with dynamic whole-
word masking (WWM) on 128-token segments for
each dataset. During finetuning, the learning rate
and warm-up steps are 1 × 10−5 and 0.1 epoch,
respectively. Models are selected by the best score
on the development set for each dataset. Further
hyperparameter details are in Appendix A.

Model % Acc.

FeHED 42.3
HED + RNN 47.9
HED + transformer 53.7
DIALOGRAPH 53.1

HT 54.1± 2.4

THETA 66.1± 1.0

Table 1: Results on the test set of CRAIGSLISTBAR-
GAIN in accuracy. For models studied in this paper
(lower part), the median number is reported with stan-
dard deviation calculated based on 15 random runs.

ABCD CALL CENTER

F1
Model Micro Macro Weighted ROC AUC

HT 52.2 25.4 45.7 69.6
THETA 62.8 39.1 59.9 71.3

Table 2: Results on the test sets of ABCD and CALL
CENTER datasets.

3.3 Comparison Systems

We use the hierarchical transformer (HT) as a base-
line for all datasets in comparison to THETA. For
CRAIGSLISTBARGAIN, we also include three addi-
tional baselines from two works (Zhou et al., 2020;
Joshi et al., 2021) that employ the DAs extracted
by heuristic methods; our systems use K-means to
obtain primitive DAs.
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CRAIGSLISTBARGAIN ABCD CALL CENTER

F1
Model Accuracy Micro Macro Weighted ROC AUC

HT w/o DAPT 48.0 15.4 4.2 9.4 68.4
HT 50.3 52.2 26.9 46.3 71.2

THETA (cluster only) 60.2 59.8 35.3 55.7 72.2
THETA (state only) 51.7 58.8 32.8 54.1 72.1
THETA 61.3 62.6 38.6 59.5 72.8

Table 3: Ablation on the development sets of CRAIGSLISTBARGAIN, ABCD and CALL CENTER datasets. All
models with structure are statistically better than HT. THETA is better (p < 0.01) than the cluster-only alternative
except for the CALL CENTER.

FST-enhanced hierarchical encoder-decoder
model (FeHED). FeHED (Zhou et al., 2020) uses
an RNN-based sequence-to-sequence model with
finite-state transducers for encoding sequences of
strategies and DAs.

Hierarchical encoder-decoder (HED) + RNN
or transformer. HED encodes dialogue utter-
ances with a transformer (initialized from pre-
trained BERT), and the decoder generates the next
response. An RNN or transformer encodes strate-
gies and DAs. HED + RNN is based on the di-
alogue manager of He et al. (2018); Joshi et al.
(2021) replace the RNN with a transformer.

DIALOGRAPH. (Joshi et al., 2021). The state-
of-the-art HED-based model on CRAIGSLISTBAR-
GAIN dataset leverages graph attention networks
(GAT; Veličković et al., 2018) to encode strategies
and DAs.

3.4 Prediction Results

Performance on Negotiation Dialogues. Table 1
reports the results of different systems on the test
set of CRAIGSLISTBARGAIN dataset. All mod-
els are based on the BERT-base model. HT with
only text outperforms the state-of-the-art DIALO-
GRAPH which leverages a graph-based represen-
tation of conversation structure. This verifies our
hypothesis that DAPT with target data indeed im-
proves BERT for dialogue tasks. Compared with
HT, THETA achieves better prediction accuracy and
smaller variance, which suggests that integrating
the structure view helps stabilize training with dif-
ferent random seeds. THETA provides a 24.5%
relative gain in accuracy over DIALOGRAPH, set-
ting a new state of the art. This further validates
the advantage of our learned conversation structure
for a predictive task.

Performance on Customer Support Domain.
Similar to the results on the negotiation dialogue
domain, Table 2 shows that conversation structure
effectively enhances the performance in the cus-
tomer service domain, ABCD and CALL CENTER.

Ablation. Table 3 reports the results of ablat-
ing different components of THETA on the vali-
dation sets of all datasets. The first rows show
that DAPT is useful on all tasks particularly for
ABCD with its skewed class distribution. We
also observe that THETA consistently achieves
the best performance over all tasks. The cluster-
based DA sequence provides more information
than the sub-dialogue states, but incorporating
all three views together leads to the best perfor-
mance. Statistical significance is tested using boot-
strap resampling (Efron and Tibshirani, 1993; Berg-
Kirkpatrick et al., 2012).

Prior work (Zhou et al., 2020; Joshi et al., 2021)
on CRAIGSLISTBARGAIN use domain knowledge
in rule-based annotation of DAs. To assess the
use of K-means clusters for learning DAs, we also
trained an HMM using the provided DAs. The
resulting model obtained 66.5% accuracy on the
test data, which is not significantly different the
66.1% results obtained using K-means (cf. Table 1).

4 Interpretation and Analysis

In this section, we leverage automatic summariza-
tion of clusters and states to derive insights into
the learned conversation structure, both for inter-
pretability of the model and for applications such
as conversation analytics and summarization. As
an example, we analyze fine-grained components
from the learned topology, i.e., most frequent paths
and individual state n-grams, to investigate their
associations with different dialogue characteristics.

We apply graph-based unsupervised summariza-
tion (Boudin and Morin, 2013; Shang et al., 2018)
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over utterances in each state (decoupling partici-
pant roles) and in each cluster. On CRAIGSLIST-
BARGAIN and ABCD, this leads to more than 3×
reduction in conversation length.

Figure 3 shows the 8-state topology of
CRAIGSLISTBARGAIN with selected state sum-
maries. Based on the summaries, it is easy to
see that S1 and S8 capture opening and closing
DAs, respectively, while S5 and S6 correspond to
different negotiation strategies. We also find that
conversations with shorter paths are likely to in-
volve a less experienced seller or lower buyer inter-
est, e.g., 92% conversations with path S1-S2-S8
lead to under listing sells. On the other hand, sell-
ers that say offers are too low are more likely get
better prices, e.g., 91% conversations with path
S1-S2-S3-S5-S7-S8.

ABCD Table 4 shows an example with both clus-
ter and state summaries. Based on the cluster
summaries, we see that K-means learns typical
DAs associated with customer service, e.g., in-
formation requests from the agent and the corre-
sponding customer replies (<name>, <email>,
<address>). States correspond to sub-dialogues
where the agent follows certain protocols in re-
solving a sub-task (e.g., verifying account infor-
mation). Alignment of flow labels with the most
frequent paths through the HMM topology shows
that paths are highly indicative of the correspond-
ing dialogue flow. The high confusions are among
certain flows, such as storewide_query and
single_item_query, which one would ex-
pect to have have similar DAs.

5 Related Work
HMMs have been leveraged for learning structure
in language for many years, such as in early work
on inducing word-level part-of-speech tags (Meri-
aldo, 1994). Accordingly, most work on unsuper-
vised learning of both DAs and conversation struc-
ture leverages HMMs.

Unsupervised Learning of Dialogue Acts.
Since dialogue act recognition can be thought of
as a sentence-level tagging task, initial work on
unsupervised learning of DAs was similar to word
tagging, involving some use of language models
or fully-connected HMMs to account for sequen-
tial dependency of labels. Ritter et al. (2010) use
an HMM with a factored state space with a topic
model to decouple speech act from topic character-
istics. The observation model η in the HMM is a

bag of words (unigram) model. The approach was
later extended by incorporating speaker informa-
tion (Joty et al., 2011; Paul, 2012). Brychcin and
Kral (2017) further extend this work with a Gaus-
sian mixture observation model (GMM) where the
utterance representation is the average of GloVe
word embeddings. They compare the results to
a simple K-means clustering, which is not as ef-
fective as the HMM but gives similar results to
the method proposed by Ritter et al. (2010) when
applied to the Switchboard corpus. Hierarchical
clustering of delexicalized utterance embeddings is
used by Gunasekara et al. (2019), who use domain
knowledge in preprocessing to identify phrases
such as “Indian food” as “CUISINE_TYPE,” for
example. Our work on utterance categorization is
similar to the K-means approach in Brychcin and
Kral (2017), but we use more recent transformer-
based utterance embeddings.

Unsupervised Learning of Dialogue Structure.
Task- or goal-oriented conversations typically have
structure above the level of the sentence in that
a sequence of turns are associated with a com-
mon function. In more complex conversations,
the structure can be hierarchical, with tasks and
sub-tasks. Bangalore et al. (2008) used a parsing
model to automatically recognize dialogue acts and
segment a conversation into sub-tasks, leveraging
hand-annotations of both DAs and sub-tasks. Since
sub-task structure varies depending on the task and
there is little hand-annotated data, most work has
focused on unsupervised approaches with a flat
segmentation. Note that the problem of unsuper-
vised learning here involves jointly recognizing
sub-dialogue segment boundaries, learning an in-
ventory of sub-dialogue types, and learning (or con-
straining) the sequential structure of these types.

Early work on unsupervised learning used fully-
connected HMMs to identify structure in docu-
ments (Barzilay and Lee, 2004) for extractive sum-
marization and information ordering. The obser-
vation model was based on word bigrams with the
aim of capturing topic coherent segment. A similar
idea is applied to task-oriented dialogues using la-
tent Dirichlet allocation for the observation model
(Zhai and Williams, 2014).

Studies that leverage constrained left-to-right
HMM technologies include (Althoff et al., 2016),
which aimed to learn stages/strategies of coun-
selors in mental health counseling, and (Ramanath
et al., 2014), which used a hidden semi-Markov
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CRAIGSLIST
BARGAIN

ABCD
CALL
CENTER

# dialogues 6682 10042 949410
# turns / dialogue 9.2 22.1 71.6

# tokens / turn 15.5 9.2 16.3
# tokens / dialogue 142.6 202.5 1167.1

Table 5: Data statistics of the datasets.

CRAIGSLIST
BARGAIN

ABCD
CALL
CENTER

train set # dialogues 4828 8034 711310
dev set # dialogues 561 1004 95540
test set # dialogues 567 1004 142560

Table 6: Train/dev/test split of datasets

report the median and Std. Due to the computation
limitations and the size of corpus, we only conduct
a single run for CALL CENTER for each experiment
setting. The total number of GPU hours for all ex-
periments, including different runs with random
seeds, is 1536 hours approximately.

B Dataset Details

We follow all original data preprocessing scripts
for CRAIGSLISTBARGAIN4 and ABCD.5 For the
private collection of customer service conversa-
tions, CALL CENTER, all private user information
is anonymized. The data statistics is summarized
in Table 5 and Table 6.

C Topology with Summaries

The Figure 4 shows the detailed topology with
both cluster and sub-dialogue state summaries. For
each sub-dialogue state, we add the cluster sum-
maries with top 3 emission probabilites and the
sub-dialogue state summaries for the buyer and the
seller. The thickness of edges indicates the levels
of negotiation success and the edges with probabil-
ities lower than 0.01 are pruned for simplicity.

D License of Artifacts

The license of code for Wolf et al. (2020) and
Schreiber (2018) are Apache license version 2.0.
The license of code for Joshi et al. (2021), Rasley
et al. (2020), and Chen et al. (2021) are MIT Li-
cense. The terms for use of our artifacts will be
included in our released package.

4
https://github.com/rishabhjoshi/

DialoGraph_ICLR21.
5
https://github.com/asappresearch/abcd.

S1 buyer: hi i am interested
seller: hi how are you interested ?

S2 buyer: how about its condition ?
seller: it s in great condition .

S3 buyer: i can do <price>. i can pick it up
seller: that s too low. i can go with <price>

S5 buyer: i can do <price>. <offer>
seller: the lowest i can do is <price>

S6 buyer: that s a deal. i can do that
seller: great. that s a deal

S8 buyer: <accept>
seller: <accept>

Table 7: The state IDs and their summaries. Due to
space limit, we only show 6 states.

Figure 3: The 8-state topology on CRAIGSLISTBARGAIN dataset. The thicker edges indicate higher levels of
negotiation success; in contrast, the thinner edges represent lower levels. Due to space limitations, only 6 state
summaries are shown. The detailed topology with all cluster and state summaries is in Appendix D.

Party Utterance Cluster Summary State Summary

Agent Welcome to AcmeBrands! How can I help you? How can I help you? A: How can I help you today?
C: I want to check my order.Customer Hello, I would like to change my shipping details I want to check my shippingas they have changed recently due to a move

Agent I would be happy to help you with that I can help you with that

A: Can I have your account/order?
C: My account/order is _______

Agent Is there an outstanding order? How long have you been waiting?
Agent Or is this just an update to your account? I have pulled up your account.

Customer Yes my order id is 4870952797 My order/account ID is _______
Agent What is your name please? What is your name?

Customer Crystal Minh <name>
Agent What is the shipping status of the order? What is the shipping status?

Customer In Transit In store/ In transit
Agent Next I need to validate your purchase. I need your nameI will need your username and email.

Customer cminh948, cminh948@email.com <email>
Agent Thank you Thank you
Agent and the new address please? Can you tell me ______? A: Can I have the address?

C: My address is _______Customer 9756 Primrose Street Newark, MI 85971 <address>
Agent All taken care of! Your order has been updated
Agent Is there anything else today? Anything else? A: Anything else I can help?

C: That’s all. Thank you.Customer Thank you that is all That’s all. Thank you.
Agent Have a great one! Have a good one!

Table 4: An example of ABCD with cluster and state summaries. A and C stand for agent and customer, respectively.

model for unsupervised alignment of privacy pol-
icy documents. Both used unigram observation
models. HMM-based conversation stages are com-
bined with a topic-based segmentation by Chen and
Yang (2020) for dialogue summarization. The use
of unigram and bigram word models emphasizes
topic in segmenting conversations. Our work dif-
fers in that the automatically learned speech acts
are observations of the HMM, since word distribu-
tions are captured by the HT.

Most similar to our work is (Zhou et al., 2020),
which uses two finite state transducers (FSTs) to
map a sequence of dialogue acts (or strategies) to a
sequence of state embeddings, which are then inte-
grated into a hierarchical encoder-decoder model
for prediction of the next strategy in a negotiation
dialogue. The FSTs are analogous to our HMM,
but the inputs are based on learning from hand-
labeled strategies and rule-based dialogue acts.

There are other approaches to modeling conver-

sation structure that do not rely on HMMs. DI-
ALOGRAPH (Joshi et al., 2021) uses a graph atten-
tion network to encode discrete DA and strategy
label sequences. A variational recurrent neural net-
work is used to model structure by Shi et al. (2019).
These approaches are less amenable to the interpre-
tation methods used in our work.

Two key differences in our approach compared
to all these studies are: i) the use of HMM topology
learning via successive state splitting, and ii) the
integration of structural information using a multi-
stream neural sequence model.

6 Conclusion

In summary, this work combines two simple ap-
proaches for unsupervised learning on top of em-
bedded utterance representations (K-means clus-
tering and HMM topology design) to derive a hi-
erarchical representation of conversation structure,
which is useful to enhance a hierarchical trans-
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former in three conversation-level classification
tasks. The K-means clusters are intended to approx-
imate DAs and the HMM is intended to learn sub-
dialogue structure. Unlike prior work in this area,
the sub-dialogues build on DA sequences rather
than unigram/bigram statistics, and the HMM incor-
porates forward-moving dialogue flow constraints
in topology learning, with the goal of capturing
sub-dialogue function.
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Limitations

First, our experiments explore only two types of
dialogues (negotiation and customer support) with
conversation-level tasks (identifying the topic or
assessing some measure of conversation success).
Although THETA shows promising results, it re-
quires further exploration with other types of con-
versations (e.g. information gathering, tutoring),
including more examples of spoken interactions,
as well as extending THETA to multi-party discus-
sions. In addition, it would be of interest to assess
the utility of automatically learned structure for
other types of tasks, such as call center analytics or
state tracking to support dialogue management or
online agent support.

Second, we use K-means and HMMs for deriv-
ing the conversation structure, both of which re-
quire dataset-specific hyperparameters that are un-
likely to transfer well to new datasets. Additionally,
we only study a late fusion strategy for combining
discrete structure and text-based representations. A
more tightly integrated approach might be more ef-
fective. For example, our K-means DA is based on
a single utterance; however, sequence models have
been important for past work on unsupervised learn-
ing of DAs. Future work could leverage sequential
DA dependencies in joint DA and sub-dialogue
structure learning or explore continuous DA-like
representations, as in (Cheng et al., 2019).

Ethical Considerations

The automatic learning of conversation structure is
dependent on having data that is matched to the task

of interest. A potential challenge is that biases in
the data could result in some conversation strategies
not being well represented. The summarization
approach provides interpretability of the model, but
imperfect summarizations could lead to incorrect
interpretations.
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A Experimental Setup Details

We pretrain and finetune on BERT (Devlin et al.,
2019) downloaded from Huggingface Transform-
ers (Wolf et al., 2020)3 and use the uncased base
model of BERT in most of our experiments. To
feed lengthy conversations to the model, we em-
ploy gradient checkpoint and DeepSpeed (Rasley
et al., 2020), a deep learning optimization library,
to reduce GPU memory usage and accelerate the
training process.

The details of the model hyperparameters are
as follows. 1-layer and 2-head transformers with
300 hidden size are applied to encode sequences
of utterance-level embeddings in text view and se-
quences of clusters and states in structure view.
Thus, the total number of parameters of our best
system THETA, including base model of BERT
and 3 one-layer transformers, is about 113M. For
in-domain adaptation pretraining (DAPT), we use
5 × 10−5 as learning rate and 5000 steps for
CRAIGSLISTBARGAIN and ABCD and 30000 steps
for CALL CENTER. 0.1 epochs are used as warm-
up steps with linear learning rate decay. Gradient
accumulation and PyTorch (Paszke et al., 2019) dis-
tributed data parallel GPU training are applied to
achieve the equivalent training batch size 4096. For
finetuning, we set 1× 10−5 as the learning rates, 4
epochs in total and 0.1 epochs for warm-up steps
with linear decay. The equivalent training batch
size is 16 during finetuning. Besides, the layer-
wise learning rate decay is utilized to stabilize the
training results; the rates are from 0.7, 0.8, 0.9 and
the 0.9 leads to the best performance. For the rest
of the training hyperparameters, we follow the de-
fault values in HuggingFace’s training script.

For K-means, we use Faiss (Johnson et al.,
2019)4 with GPU to speed up clustering process
for large private corpus. For HMMs, we develop
our splitting algorithm via Pomegranate (Schreiber,
2018),5 a Python package that implements fast and
flexible probabilistic models, to build our topol-
ogy learning algorithm. The predefined numbers
of clusters vary for different datasets. To compare
with handcrafted DAs provided in CRAIGSLIST-
BARGAIN, we define number of clusters k = 14
for each party. For customer service domain, we

3https://github.com/huggingface/
transformers

4https://github.com/facebookresearch/
faiss

5https://github.com/jmschrei/
pomegranate

set k = 60 for ABCD and k = 120 for CALL CEN-
TER. For all datasets, we try the number of states
from 5 to 20 and find the best numbers of states are
8, 12, and 12 for CRAIGSLISTBARGAIN, ABCD,
and CALL CENTER, respectively. Each training
run takes at most 2 hours on 2 Nvidia GeForce
RTX 2080Ti GPUs for CRAIGSLISTBARGAIN and
ABCD and 54 hours on 8 GPUs on CALL CENTER.
All models are saved based on the best performance
on the development sets. For each experiment on
CRAIGSLISTBARGAIN and ABCD, we conduct 15
random runs and report the median and standard
deviation. Due to the computation limitations and
the size of corpus, we only conduct a single run for
CALL CENTER for each experiment setting. The
total number of GPU hours for all experiments, in-
cluding different runs with random seeds, is 1536
hours approximately.

CRAIGSLIST

BARGAIN
ABCD

CALL

CENTER

# dialogues 6682 10042 949410
# turns / dialogue 9.2 22.1 71.6

# tokens / turn 15.5 9.2 16.3
# tokens / dialogue 142.6 202.5 1167.1

Table 5: Data statistics of the datasets.

CRAIGSLIST

BARGAIN
ABCD

CALL

CENTER

train set # dialogues 4828 8034 711310
dev. set # dialogues 561 1004 95540
test set # dialogues 567 1004 142560

Table 6: Train/dev./test split of datasets

B Dataset Details

We follow all original data preprocessing scripts
for CRAIGSLISTBARGAIN6 and ABCD.7 For the
private collection of customer service conversa-
tions, CALL CENTER, all private user information
is anonymized. The data statistics are summarized
in Table 5 and Table 6.

C Topology with Summaries

Figure 4 shows the detailed topology with both clus-
ter and sub-dialogue state summaries. For each sub-
dialogue state, we add the cluster summaries with

6https://github.com/rishabhjoshi/
DialoGraph_ICLR21.

7https://github.com/asappresearch/abcd.
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top 3 emission probabilites and the sub-dialogue
state summaries for the buyer and the seller. The
thickness of edges indicates the levels of negotia-
tion success and the edges with probabilities lower
than 0.01 are pruned for simplicity.

D License of Artifacts

The license of code for Wolf et al. (2020) and
Schreiber (2018) are Apache license version 2.0.
The license of code for Joshi et al. (2021), Rasley
et al. (2020), and Chen et al. (2021) are MIT Li-
cense. The terms for use of our artifacts will be
included in our released package.
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