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Abstract

Pre-trained multilingual language models show
significant performance gains for zero-shot
cross-lingual model transfer on a wide range
of natural language understanding (NLU) tasks.
Previously, for zero-shot cross-lingual evalua-
tion, pre-trained models are only fine-tuned on
English data and tested on a variety of target
languages. In this paper, we do cross-lingual
evaluation on various NLU tasks (sentence clas-
sification, sequence labeling, question answer-
ing) using prompt-tuning and compare it with
fine-tuning. The results show that prompt tun-
ing achieves much better cross-lingual transfer
than fine-tuning across datasets, with only 0.1%
to 0.3% tuned parameters. Additionally, we
demonstrate through the analysis that prompt
tuning can have better cross-lingual transfer-
ability of representations on downstream tasks
with better aligned decision boundaries.

1 Introduction

Large Multilingual language models (Pires et al.,
2019; Wu and Dredze, 2019; Conneau et al.,
2020) show surprisingly impressive zero-shot cross-
lingual transfer on NLP tasks, even though they are
only trained from monolingual corpora. Recently,
large-scale benchmarks such as XTREME (Hu
et al., 2020) and XGLUE (Liang et al., 2020) are
introduced for cross-lingual evaluation.

In a cross-lingual transfer setting, models are
only fine-tuned on the task-specific annotations
in one language and evaluated in other languages.
During fine-tuning, pre-trained language models
are used for initialization and the entire model pa-
rameters are tuned on downstream tasks. While
fine-tuning obtains strong performance, it is inef-
ficient. Also as shown in (Hu et al., 2020), the
cross-lingual transfer gap between the performance
on the English test set and all other languages is
large even with the best baseline XLM-R (Conneau
et al., 2020).

Recently, prompt tuning, where only a small
amount of additional parameters (i.e. prompts) is
added and tuned, but the original model is kept
frozen. Much fewer parameters or no parameters
are tuned and thus the training is a lot more ef-
ficient. Prompt tuning still performs worse than
fine-tuning in lots of NLP tasks(Brown et al., 2020;
Shin et al., 2020; Zhong et al., 2021). More re-
cently, Li and Liang (2021); Lester et al. (2021);
Hambardzumyan et al. (2021) indicate prompt tun-
ing is competitive with fine tuning on some of the
NLU tasks. Language model capacity (e.g., 10
billion parameters) is a key ingredient for these
approaches to succeed. More recently, (Liu et al.,
2022) shows prompt tuning can also be compara-
ble on several hard monolingual sequence labeling
tasks such as extractive question answers.

In this paper, we aim to investigate the effect of
prompt tuning in cross-lingual tasks.We freeze the
entire multilingual language model and tune task
prompts on the English training set for downstream
tasks (sentence classification, structure prediction,
question answering). Even with medium size mul-
tilingual language model (less than 1 billion param-
eters), prompt tuning achieves much higher perfor-
mance than fine-tuning on various NLU tasks.

According to the analysis results, prompt tun-
ing does fewer changes to sentence representations
than fine-tuning and keeps good cross-lingual sen-
tence representations. We also find that the decision
boundaries of different language sentence represen-
tations after prompt tuning on English data are al-
most aligned well. However, these decision bound-
aries of different languages after fine-tuning are a
large difference. These aligned decision boundaries
can lead to stronger cross-lingual transfer.

This work sheds light on the strong cross-lingual
ability of prompt tuning. Our results suggest
prompt tuning is better than fine-tuning on cross-
lingual transfer. Our contributions are summarized
as follows: we show that prompt tuning can per-
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form much better as compared to fine-tuning for
cross-lingual transfer; we also show prompt tuning
works better in the case of the cross-lingual transfer
due to the relative small robust changes it brings to
the originally learned representations.

2 Prompt-Tuning for Cross-Lingual Tasks

Multilingual Language Models. In the past
years, lots of pre-trained multilingual language
models come out: mBERT, XLM (CONNEAU and
Lample, 2019), XLM-R (Conneau et al., 2020),
etc. XLM-R (Conneau et al., 2020) significantly
outperforms multilingual BERT (mBERT; Devlin
et al., 2019) on a variety of cross-lingual bench-
marks XTREME (Hu et al., 2020). In some pre-
vious work (Luo et al., 2021; Zhang et al., 2019),
XLM-R is also used for initialization to do another
round of pretraining with parallel data to get the
stronger cross-lingual ability. Previously, in the
cross-lingual evaluation, models are fine-tuned on
the English training data but evaluated on all tar-
get languages. As far as we know, we are the first
to explore prompt tuning on several hard multilin-
gual NLP tasks including structure prediction and
question answering

Figure 1: Two different approaches for cross-lingual
evaluation when using large multilingual language
model. Left: In fine-tuning, all model parameters are
tuned on English task data. This setting is used in cross-
lingual evaluation before. Right: In prompt tuning, only
small ratio parameters are tuned. We use prefix prompts
and use layer prompts in our experiments.

Prompt Tuning. Fine-tuning on large pre-trained
language models leads to strong performance
on downstream tasks, however, it is memory-
consuming and lots of parameters need to save
for each task. In prompt tuning, only a small part
of the parameters ( e.g., prompts or task classifier
) are tuned during learning. However, it usually
performs not as good as compared to fine-tuning.
Recently, Lester et al. (2021) find prompt tuning
can be better than fine-tuning when the model

size is not extremely large (10 billion parameters).
Prefix-tuning (Li and Liang, 2021) obtains compa-
rable performance for natural language generation
tasks. Liu et al. (2022) shows prompt tuning can be
matched to fine-tuning on language understanding
tasks even at hard sequence tagging tasks.

We investigate prompt tuning on cross-lingual
understanding on a pre-trained multilingual lan-
guage model. The framework is shown in Figure 1.
Our setting is similar to Li and Liang (2021); Liu
et al. (2022). The continuous prompts are added
as prefix tokens and tuned during learning. In the
implementation, the prompts are operated as past
keys and values in each transformer layer. Each
transformer layer has separated prompts. These
continuous prompts are optimized, but multilingual
language model parameters are frozen.

3 Experiments Setup

3.1 Datasets.

We perform experiments on four datasets included
in XTREME: cross-lingual natural language infer-
ence (XNLI; Conneau et al., 2018), cross-lingual
adversarial dataset for paraphrase identification
(PAWS-X; Yang et al., 2019), part-of-speech tag-
ging on the Universal Dependencies (UD-POS;
Nivre et al., 2018), cross-lingual question answer-
ing on XQuAD (Artetxe et al., 2020) and TyDiQA-
GoldP (Clark et al., 2020). Three categories of
downstream tasks are included: (1) sentence clas-
sification); (2) structure prediction; (3) question
answering.

3.2 Training Details.

Our frozen models are built on the top of the pre-
trained XLM-R checkpoint of LARGE size with
about 560M parameters. Previous work (Hu et al.,
2020) shows it achieves stronger performance than
mBERT1. All our experiments were run with Hug-
gingface (Wolf et al., 2020). More details are in
the appendix.

Prompt Length. Prompt length usually plays an
important role in prompt tuning. In our experi-
ments, we treat this as a hyper-parameter. Longer
prompt length often leads to have higher perfor-
mance. In our experiments, prompt length is set to
16 or 32 and tuned on the English validation set.

1Some preliminary results are obtained with mBERT.
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Model Sentence Classification Structured Prediction Question Answering
XNLI PAWS-X UD-POS XQuAD TyDiQA

Metrics Acc. Acc. F1 F1 / EM F1 / EM

Fine Tuning

MBERT* 65.4 81.9 70.3 64.5 / 49.4 59.7 / 43.9
XLM-R-LARGE* 79.2 86.4 72.6 76.6 / 60.8 65.1 / 45.0
XLM-R-LARGE+ 79.2 - 75.0 77.2 / 61.6 64.3 / 45.8
XLM-R-LARGE (OUR) 78.8 (0.2) 87.9 (0.5) 74.4 (0.7) 77.3 (0.4) / 61.8 (0.5) 70.1 (0.6) / 51.7 (2.7)

Prompt Tuning

XLM-R-LARGE 79.9 (0.1) 88.4 (0.3) 75.4 (0.2) 79.0 (0.2) / 64.1 (0.4) 71.5 (0.4) / 55.1 (0.6)

Table 1: Zero-shot cross-lingual transfer evaluation results (with standard deviation) on XTREME structured
prediction, question answering, and sentence classification tasks. For both fine tuning and prompt tuning, models
are only fine-tuned on the English training data but evaluated on all target languages. Baseline fine-tuning results
with “*” and “+” are taken from (Hu et al., 2020) and (Ruder et al., 2021) respectively. More results are shown in
the Appendix.

4 Results

Tuned Parameter Sizes Comparison For the
prompt tuning test results in Table 1, we did limited
tuning on prompt length. The prompt length is 16,
except prompt length for task XNLI is 32. With
only 0.1% to 0.3% additional prompt parameters
as compared to the original model, the framework
already demonstrates strong cross-lingual results.

Overall Results Table 1 shows the zero-shot
cross-lingual results on four different tasks. Prompt
tuning performs much better than fine-tuning, espe-
cially for hard sequence task question answering.
And prompt tuning is also with smaller variance.

Previously, although with parallel data or
more monolingual data, cross-lingual transfer re-
sults (Zhang et al., 2019; Luo et al., 2021; Ruder
et al., 2021) on question answering and structured
prediction tasks improved only slightly. With
prompt tuning, there is larger performance gains
for question answering and structured prediction
tasks. It suggests that prompt tuning is a better
tuning method for cross-lingual transfer.

Cross-lingual Transfer Gap According to the
above result, on average, prompt tuning achieves
better performance than fine tuning. Table 2 shows
the cross-lingual transfer gap of the two different
tuning methods. Prompt tuning can also reduce the
gap significantly.

Discussion In our preliminary experiments, for
the smaller size model (e.g., mBERT), prompt tun-
ing perform a little worse than fine tuning on En-
glish, and match the performance of fine-tuning on
all languages. The language model size still matter.
There is still some space for smaller size model.

XNLI PAWS-X UD-POS XQuAD

Fine Tuning 10.2 12.4 24.3 16.3

Prompt Tuning 9.7 8.7 20.7 14.5

Table 2: Cross-lingual transfer gap of the two tuning
methods. The cross-lingual transfer gap is the perfor-
mance difference between English test set and the aver-
age of the other languages. The smaller is better.

This also indicates potential for future work with
better prompt tuning method.

5 Analysis

In order to perform some analysis on prompt tuning
and fine tuning, we select 1000 samples for each
language (en, de, es, fr, ja, ko, zh ) from PAWS-
X (Yang et al., 2019) dataset. For each English
language sample in our selections, there is a human
translated sample from the other six languages. 2

Figure 2 shows t-SNE visualization of sample
representations from frozen multilingual language
model XLM-R. Samples’ representations are clus-
tered well respect to languages, however, there is
weak correlation with labels.

5.1 Language Representation Changes
For each tuning method (fine-tuning and prompt-
tuning), Table 3 shows the cosine similarity of rep-
resentations from frozen language model and tuned
model. According to the results, both of two tuned
method make notable change on sentence represen-
tations. However, the average cosine similarity of
fine-tuning is much smaller. It indicates that fine-
tuning leads much larger changes on sentence rep-

2Each sample in PAWS-X dataset is a sentence pair. In the
following experiments, we treat the representations at CLS
token as the sample sentence representations.
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(a) Visualization before fine tuning (FT). (b) Visualization before prompt tuning (PT).

(c) Decision boundaries after fine tuning (FT). (d) Decision boundaries after prompt tuning (PT).

Figure 2: T-SNE visualization of representations of four languages (en: English; de: German; ja: Japanese; zh:
Chinese) before and after two different tuning methods on English task data. The decision boundaries after prompt
tuning is aligned much better.

resentations than prompt tuning. We can also see
representation changes is larger when tuning is on
MNLI, while prompt tuning still has less changes
on representations.

en de es fr ja ko zh

Training on PAWS

FT 25.2 26.5 24.5 25.2 18.9 15.0 22.6

PT 57.6 56.8 57.2 57.7 58.7 59.4 59.5

Training on MNLI

FT -16.9 -19.1 -16.3 -14.5 -16.7 -11.8 -14.9

PT 32.2 32.1 31.2 32.1 33.8 36.0 35.8

Table 3: Cosine similarity (%) of representations after
tuning for each language. FT: fine-tuning; PT: prompt
tuning. These checkpoints are on tuned on two English
datasets: PAWS and MNLI.3

5.2 Cross-lingual Alignment After Tuning

We compute the averaged cosine similarity of all
the 1000 translation pairs for each language pair
<en , xx>, where xx is de, es, fr, ja, ko or zh. We

also compute averaged cosine similarity of all the
1000*999/2 non-translations for each language pair.
As shown in Table 3, both fine tuning and prompt
tuning are doing well. Prompt tuning has the ad-
vantage in the sense that they change the represen-
tation more mildly, still have high cosine similarity
on translation pairs. This resulted in more robust
transfer and less overfitting.

5.3 Decision Boundaries

Prompt tuning keeps high cross-lingual alignment
with fewer changes in the previous subsections.
The general level of the learned representations’
quality is still unknown, though. The learned repre-
sentations quality are examined in this subsection.

Figure 2 (a) and (b) show t-SNE visualization of
representations before two different tuning meth-
ods. Each dot in the two figures is a PAWS-X
sample from four languages: German (de), zh (Chi-
nese), en (English), ja (Japanese). The blue sam-
ple is a paraphrase, the orange sample is a non-
paraphrase. Samples of the same language are
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en-de en-es en-fr en-ja en-ko en-zh

Training on MNLI

FT 81.5 85.4 83.0 71.8 68.2 73.9
FT-neg 52.6 53.1 52.8 51.5 50.6 50.0

rel-diff (%) 54.8 60.8 57.2 39.4 34.8 47.8
PT 96.4 97.3 96.6 94.8 93.8 95.0

PT-neg 91.0 91.1 90.8 90.5 90.1 90.2
rel-diff (%) 5.9 6.8 6.4 4.8 4.1 5.3

Training on PAWS
FT 90.4 92.1 88.8 76.8 75.3 82.0

FT-neg 13.3 13.2 13.4 14.3 14.4 13.6
rel-diff (%) 580 598 563 437 423 503

PT 98.4 98.6 98.3 96.3 96.0 96.7
PT-neg 88.1 88.1 88.3 89.1 89.4 88.9

rel-diff (%) 11.7 11.9 11.3 8.1 7.4 8.8

Table 4: Cosine similarity (%) of translation pairs after
tuning on two English dataset: MNLI and PAWS. “-neg“
means the average cosine similarity of non-translations
for each language pair. “rel-diff“ means the relative dif-
ference between translation and non-translations. Two
different tuning method are shown, one is fine-tuning
(FT), the other is prompt tuning (PT).

grouped together. However, label information is
missing from sample representations.

Figure 2 (c) and (d) shows t-SNE (van der
Maaten and Hinton, 2008) visualization after fine
tuning (FT) and prompt tuning (PT). After tuning,
both have reasonable and nice separated represen-
tations. For each language, we also plot logistic
regression decision boundary for these t-SNE em-
beddings. The decision boundaries for various lan-
guages vary significantly after fine tuning. The
English decision boundary can not separate well
on German samples. After prompt tuning, the deci-
sion boundaries of the four languages are surpris-
ingly aligned well. This suggest that prompt tuning
learns better language-independent classifier than
fine tuning, although the tuning is only on English
training set.

6 Related Work

Recently, several previous works show prompt tun-
ing for multilingual language models. Winata
et al. (2021) shows the multilingual skills of large
pre-trained models with few examples. Zhao
and Schütze (2021); Huang et al. (2022); Qi et al.
(2022) shows new proposed prompt tuning meth-
ods. The goal of our work is different from theirs.
We show prompt tuning is better than fine-tuning
for cross-lingual evaluation. We have a conclu-
sion that our prompt tuning achieves higher perfor-
mance than fine-tuning consistently in the setting.

Previous work (Zhao and Schütze, 2021; Huang

et al., 2022; Qi et al., 2022) only experimented on
the sentence classification task. Hard sequence tag-
ging tasks and question answering is not explored
or the settings are in low resource regimes. We
investigate cross-lingual transfer ability on various
NLU tasks from XTREME (Hu et al., 2020), which
is one of the important cross-lingual transfer evalua-
tion benchmarks. Sentence classification, sequence
labeling, and question answering are included.

7 Conclusion

In this work, we compared prompt tuning and fine
tuning on cross-lingual understanding with mul-
tilingual languages models, finding that prompt
tuning achieves a better performance. This sug-
gest that it is promissing to use prompt tuning on
cross-lingual transfer.

Limitations

In this work, we investigate the effects of prompt
tuning on cross-lingual understanding and empiri-
cally demonstrate some promising outcomes. We
need a lot of GPU resources to complete our exper-
iments. The experiments on large size pretrained
multilingual language models are conducted on
A100s with 40G memory. Training can be acceler-
ated by using large batches.

This is a preliminary exploration of prompt tun-
ing on cross-lingual transfer. In this work, encoder-
only models are explored on natural language un-
derstanding tasks in the paper. Future work may
also involve encoder-decoder models and other
tasks.
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A Appendix

A.1 More Training Details
For prompt tuning, we train with the Adam opti-
mizer (Kingma and Ba, 2015) with no warmup step.
Batch size is 32 for tasks, and with the exception
of answering questions, which has a batch size of 8.
Linear learning rate scheduler is used. We tune the
learning rate in {5e−2, 1e−2, 5e−3, 1e−3, 5e−
4, 1e−4}. We train all prompt tuning models for
30 epochs. Finally, tuned prompt length for MNLI
is 32. It is 16 for the other tasks. We use A100s
with 40G memory and all experiments can be done
in few hours.
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Method en ar bg de el es fr hi ru sw th tr ur vi zh avg

88.2 77.4 82.3 82.6 81.1 83.7 82.0 75.2 79 71.0 76.7 77.5 71.4 79.1 78.6 79.1
88.3 76.9 81.9 81.9 81.4 83.6 81.6 74.3 78.1 70.1 75.8 77.6 70.7 78.8 77.6 78.6

FT 88.1 77.5 82.4 81.8 81.3 83.4 82.6 75.0 78.9 70.3 75.6 78.1 70.8 78.5 78.3 78.8
88.4 77.4 81.7 82.0 81.5 83.3 82.3 75.4 79.0 70.2 75.5 78.1 71.2 79.1 77.9 78.9
88.2 77.6 82.5 81.7 80.9 83.2 81.9 75.1 78.2 69.5 76.5 77.6 71.0 78.8 78.6 78.8

88.5 78.3 82.8 82.2 82.5 84.2 83.0 76.1 80.4 71.0 77.6 79.2 72.5 80.0 78.3 79.8
88.7 78.7 82.9 82.1 82.8 84.3 83.2 76.1 80.4 71.0 77.6 79.2 72.5 80.0 78.3 79.8

PT 88.8 78.1 82.7 81.7 81.9 84.0 83.2 75.9 80.7 71.4 77.5 79.3 72.5 79.4 78.7 79.7
89.1 79.2 83.2 82.1 82.4 84.1 83.0 76.2 80.8 70.7 77.7 79.5 72.5 79.9 78.4 79.9
89.0 78.7 83.2 82.2 82.8 84.3 83.4 76.2 80.8 71.3 77.9 79.2 72.5 80.3 78.2 80.0

Table 5: XNLI accuracy scores for each language with fine-tuning (FT) and prompt tuning (PT).

Method en de es fr ja ko zh avg

95.6 90.8 81.4 91.3 82.7 81.8 84.5 88.3
95.7 90.5 91.0 91.3 81.7 81.2 84.0 87.9

FT 95.4 89.4 90.8 90.9 80.5 80.6 84.0 87.4
95.4 90.2 90.6 90.5 80.6 80.4 83.4 87.2
94.7 91.0 91.4 92.1 82.4 93.2 84.2 88.6

96.2 92.3 91.4 92.1 81.3 83.2 84.8 88.8
95.3 91.6 91.1 92.0 82.7 83.1 84.2 88.6

PT 95.4 90.9 91.4 91.8 82.1 82.8 84.7 88.4
95.9 90.7 90.7 91.6 81.4 81.6 84.6 88.1
95.6 91.6 90.5 91.7 82.2 81.7 83.0 88.0

Table 6: PAWS-X accuracy scores for each language with fine-tuning (FT) and prompt tuning (PT).

Method en es de el ru tr ar vi th zh hi avg

75.2 / 87.2 61.2 / 80.7 62.7 / 82.5 60.2 / 78.7 63.5 / 80.1 57.8 / 74.3 58.6 / 75.5 59.9 / 79.4 59.9 / 73.2 58.7 / 68.5 56.6 / 74.7 61.3 / 77.7
75.0 / 86.8 61.6 / 79.8 61.9 / 80.0 59.6 / 78.6 62.7 / 79.6 57.6 / 73.3 56.6 / 74.4 57.8 / 78.6 61.3 / 72.4 60 / 67.5 58.2 / 74.6 61.1 / 76.9

PT 75.5 / 87.0 64.0 / 81.3 64.8 / 80.9 62.4 / 80.0 63.8 / 80.1 57.7 / 73.8 55.9 / 72.8 60.2 / 79.5 62.3 / 73.4 61.4 / 69.6 59.8 / 76.1 62.5 / 77.7
75.8 / 87.0 63.0 / 81.4 62.4 / 79.4 62.1 / 79.9 62.9 / 79.8 56.9 / 73.6 57.4 / 74.6 59.6 / 78.5 62.8 / 74.7 60.5 / 70.5 57.5 / 74.2 61.9 / 77.6
76.0 / 87.4 62.8 / 80.8 65.0 / 80.2 61.2 / 78.3 63.1 / 79.5 56.3 / 72.3 57.3 / 73.9 57.6 / 77.5 62.9 / 71.6 61.0 / 68.7 58.4 / 74.2 62.0 / 76.8

77.2 / 88.4 65.1 / 83.1 64.8 / 81.4 63.7 / 81.2 58.7 / 80.2 58.7 / 74.6 60.3 / 77.0 61.4 / 80.6 66.4 / 74.7 60.3 / 68.6 61.8 / 78.1 63.5 / 78.9
77.4 / 88.5 64.4 / 82.3 64.8 / 81.2 63.5 / 80.8 64.7 / 80.7 58.3 / 74.1 60.3 / 76.8 61.0 / 80.3 66.6 / 75.0 61.7 / 70.2 61.5 / 77.5 64.0 / 78.9

PT 77.4 / 88.6 65.4 / 83.4 64.5 / 80.9 64.0 / 81.2 64.1 / 80.7 58.7 / 74.9 59.8 / 76.5 62.1 / 81.4 66.6 / 75.4 61.3 / 69.9 62.8 / 77.8 64.2 / 79.2
77.1 / 88.5 64.7 / 82.9 63.9 / 80.7 62.7 / 80.5 64.7 / 80.4 59.2 / 74.6 59.7 / 76.3 60.8 / 80.7 66.6 / 74.6 61.0 / 69.1 61.6 / 77.6 64.7 / 78.7
77.9 / 88.7 65.0 / 83.0 64.2 / 81.2 63.4 / 80.2 64.8 / 80.9 58.2 / 75.4 60.2 / 77.0 62.9 / 81.3 67.3 / 75.9 60.7 / 69.8 61.1 / 77.9 64.2 / 79.2

Table 7: XQuAD results (EM / F1) for each language with fine-tuning (FT) and prompt tuning (PT).

Method en ar bn fi id ko ru sw te avg

60.5 / 74.2 51.5 / 71.5 50.4 / 68.6 51.0 / 67.6 62.5 / 78.6 49.6 / 60.9 45.3 / 67.7 44.7 / 65.7 56.7 / 75.7 46.2 / 70.0
57.7 / 71.8 51.5 / 71.0 50.4 / 70.4 53.5 / 70.3 61.4 / 77.1 53.6 / 64.5 47.8 / 68.6 50.3 / 70.3 57.0 / 75.7 53.7 / 71.1

FT 57.7 / 73.2 51.9 / 72.5 48.7 / 66.4 53.6 / 69.7 59.8 / 77.0 50.7 / 59.6 50.7 / 68.0 49.1 / 69.1 58.0 / 77.8 53.4 / 70.4
58.6 / 71.7 53.0 / 71.6 46.0 / 62.5 53.7 / 68.4 59.8 / 75.7 52.5 / 63.0 40.4 / 65.2 48.9 / 69.2 58.4 / 76.3 52.4 / 69.3
59.8 / 72.3 48.3 / 70.6 52.2 / 68.6 49.7 / 67.5 60.4 / 77.7 55.1 / 65.5 38.9 / 65.2 45.4 / 66.6 56.8 / 75.4 51.8 / 69.9

61.8 / 75.0 53.7 / 72.3 48.7 / 67.0 58.2 / 73.0 63.0 / 77.9 52.9 / 63.6 50.2 / 70.0 47.5 / 68.5 57.5 / 75.3 54.8 / 71.5
60.7 / 74.0 53.1/72.2 45.1 / 64.5 55.9 / 71.8 63.5 / 78.3 51.8 / 61.9 52.3 / 71.0 48.9 / 68.9 58.4 / 76.2 54.4 / 71.0

PT 60.2 / 73.6 54.8 / 73.9 52.2 / 70.0 56.6 / 71.4 64.8 / 78.7 52.5 / 62.3 53.1 / 71.4 51.1 / 70.7 61.6 / 79.1 56.3 / 72.3
62.0 / 75.3 53.6 / 73.0 46.0 / 64.9 57.3 / 71.3 63.7 / 78.6 53.3 / 62.0 52.7 / 71.8 48.1 / 69.0 58.7 / 75.5 55.0 / 71.3
61.4 / 74.5 54.9 / 72.8 46.9 / 66.3 56.8 / 71.4 63.2 / 77.6 54.3 / 63.0 53.1 / 71.1 47.9 / 68.4 58.6 / 76.4 55.2 / 71.3

Table 8: TyDiQA-GoldP results (EM / F1) for each language with fine-tuning (FT) and prompt tuning (PT).
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