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Abstract

Automatic International Classification of Dis-
eases (ICD) coding aims to assign multiple ICD
codes to a medical note with average length of
3,000+ tokens. This task is challenging due to
a high-dimensional space of multi-label assign-
ment (tens of thousands of ICD codes) and the
long-tail challenge: only a few codes (common
diseases) are frequently assigned while most
codes (rare diseases) are infrequently assigned.
This study addresses the long-tail challenge by
adapting a prompt-based fine-tuning technique
with label semantics, which has been shown to
be effective under few-shot setting. To further
enhance the performance in medical domain,
we propose a knowledge-enhanced longformer
by injecting three domain-specific knowledge:
hierarchy, synonym, and abbreviation with ad-
ditional pretraining using contrastive learning.
Experiments on MIMIC-III-full, a benchmark
dataset of code assignment, show that our pro-
posed method outperforms previous state-of-
the-art method in 14.5% in marco F1 (from
10.3 to 11.8, P<0.001). To further test our
model on few-shot setting, we created a new
rare diseases coding dataset, MIMIC-III-rare50,
on which our model improves marco F1 from
17.1 to 30.4 and micro F1 from 17.2 to 32.6
compared to previous method.

1 Introduction

Multi-label learning has many real-word applica-
tions in natural language processing (NLP), in-
cluding but not limited to academic paper label-
ing (Chen et al., 2020), news framing (Akyürek
et al., 2020), waste crises response (Yang et al.,
2020), amazon product labeling (McAuley et al.,
2015; Dahiya et al., 2021), and medical coding
(Atutxa et al., 2019). In contrast to multi-class
classification, an instance in multi-label learning
is frequently linked with more than one class la-
bel, making the task more challenging due to the
combination of potential class labels.

In real-world tasks, there are often insufficient
training data for rare class labels. Taking automatic
international classification of diseases (ICD) cod-
ing as example, given discharge summaries notes
as input, the task is to assign multiple ICD disease
and procedure label codes associated with each
note. The assigned codes need to be accurate and
complete for the billing purposes. As an exam-
ple, the MIMIC-III dataset (Johnson et al., 2016)
contains 8,692 unique ICD-9 codes, among which
4,115 (47.3%) codes occur less than 6 times and
203 (2.3%) occur zero times. Clinical practice re-
quires a high accuracy, hence, it is not acceptable
for a multi-label classifier to fail a disease diagno-
sis (or code assignment) because it is rare, since
such a diagnosis may be of the most clinical im-
portance for the patient. Therefore, the classifier
is required to perform with high precision even for
infrequent codes. This translates to data sparsity
due to availability of few training examples.

To mitigate the data sparsity problem, additional
structured knowledge could be applied. ICD codes
are organized with an ontological/hierarchical
structure where a text description is associated
to each code. For instance, ICD 250 (Diabetes
mellitus), shown in Figure 1, is the parent of sev-
eral child codes including 250.0 (Diabetes mellitus
without mention of complication), 250.1 (Diabetes
with ketoacidosis), and 250.2 (Diabetes with hy-
perosmolarity). Such child ICD codes are more
semantically different from each other than their
parent code 250.

Synonyms including acronyms and abbrevia-
tions are common in medical notes. For instance,
the description of code 250.00 is disease "type II
diabetes mellitus". However, this code can be de-
scribed in different text forms such as "insulin-
resistant diabetes", "non-insulin dependent dia-
betes", "DM2", and "T2DM". Therefore, one naive
way to assign ICD codes is to identify matching
between candidate code descriptions and their syn-
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Figure 1: An illustration of self-alignment pretraining from medical knowledge UMLS, including the usage of (a)
Hierarchy, (b) Synonym, (c) Abbreviation. Pink region is the dynamic margin ranges from π/2 to π where we wish
to pull negatives apart with a dynamic distance.

onyms in medical notes. In this work, we separate
synonyms from both acronyms and abbreviations
due to their importance in medical domain (Yu
et al., 2002). While synonymous relations could be
implicitly learned from pretrained language model
(LM) (Michalopoulos et al., 2022; Li et al., 2022),
previous researches show that language models are
only limited to biomedical (Sung et al., 2021) or
clinical knowledge bases (Yao et al., 2022) due to
the data sparsity challenge in the medical domain.
An explicit way of adding such medical knowledge
into language model should be explored.

In this paper, we present a simple but effective
Knowledge Enhanced PrompT (KEPT) framework.
We implement and evaluate KEPT using a LM
based on Longformer because clinical notes are
typically more than 500 tokens. Specifically, we
first pretrainmimic a Longformer LM on MIMIC-
III dataset. Then, we further pretrainumls on struc-
tured medical knowledge UMLS (Unified Medical
Language System) using self-alignment learning
with contrastive loss to inject medical knowledge
into pretrained LM. For the downstream ICD-code
assignment fine-tuning, we add a sequence of ICD
code descriptions (label semantics) as prompts in
addition to each clinical note as KEPT LM input.
This allows early fusion of code descriptions and
the input note. Experiments on full disease cod-
ing (MIMIC-III-full) and common disease coding
(MIMIC-III-50) show that our KEPTLongformer
outperforms previous SOTA MSMN (Yuan et al.,

2022). In order to test its few-shot ability, we create
a new few-shot rare diseases coding dataset named
MIMIC-III-rare50, and results show significant im-
provements compared between MSMN and our
method. To facilitate future research, we publicly
release the code and trained models1.

2 Related Work

2.1 Prompt-based Fine-tuning
Prompt-based fine-tuning is effective in few-shot
tasks (Le Scao and Rush, 2021; Gao et al., 2021),
even when the language model is relatively small
(Schick and Schütze, 2021) because they introduce
no new parameter during few shot fine-tuning. Ad-
ditional tuning techniques such as to tune bias-term
or language model head have shown to be effi-
cient on memory and training time (Ben Zaken
et al., 2022; Logan IV et al., 2022). However, most
previous works focus on injecting knowledge into
prompt on single-label multi-class classification
task (Hu et al., 2022; Wang et al., 2022a; Ye et al.,
2022). To the best of our knowledge, this is the first
work that applies prompting to multi-label classifi-
cation task.

2.2 Entity Representation Pretraining
Many recent researches use synonyms to conduct
biomedical entity representation learning (Sung
et al., 2020; Liu et al., 2021; Lai et al., 2021; An-
gell et al., 2021; Zhang et al., 2021; Kong et al.,

1https://github.com/whaleloops/KEPT
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2021; Seneviratne et al., 2022). Our work is most
similar to Liu et al. (2021), which uses additional
pretraining scheme that self-aligns the representa-
tion space of biomedical entities from pretrained
medical LM. They collect self-supervised synonym
examples from the biomedical ontology UMLS,
and use multi-similarity contrastive loss to keep
the representation of similar entities closer to each
other, before fine-tuning them to the downstream
specific task. However, their work differs from ours
in (1) their testing being limited to only medical
entity linking tasks and (2) not using hierarchical
information, which has been shown to be useful in
KRISSBERT (Zhang et al., 2021). In contrast to
KRISSBERT, our contrastive learning selects neg-
ative samples from siblings (1-hop nodes) instead
of random nodes in the graph. Our method follows
InfoMin proposition that selected samples should
contain as much task-relevant information while
discarding as much irrelevant information in the
input as possible (Tian et al., 2020).

2.3 ICD Coding

ICD coding uses NLP models to predict expert
labeled ICD codes given discharge summaries as
input. Currently, the most straightforward method
is to take the best language model for encoding
notes, and later use the label attention mechanism
to attend labeled ICD codes to input notes for pre-
diction (Mullenbach et al., 2018). In comparison,
we apply attention between codes and notes way
before within the encoder with the help of prompt.
The label representations in attention played an
important role in many previous works. Li and
Yu (2020) and Vu et al. (2020) first randomly ini-
tialize the label representations. Chen and Ren
(2019); Dong et al. (2021); Zhou et al. (2021) ini-
tialize the label representation with code descrip-
tion from shallow representation using Word2Vec
(Mikolov et al., 2013). Yuan et al. (2022) further
add description synonyms semantic information. In
comparison, we use deep contextual representation
from Longformer pretrained on both MIMIC and
UMLS with contrastive loss. Similar pretrained
language models have shown to be effective in pre-
vious works (Wu et al., 2020; Huang et al., 2022;
DeYoung et al., 2022; Michalopoulos et al., 2022).

As stated previously, the high dimensions of
available label codes, such as 14,000 diagnosis
codes and 3,900 procedure codes in ICD-9 and
80,000 in industry coding (Ziletti et al., 2022),

makes ICD coding challenging. Another challenge
is the long-tail distribution, in which few codes
are frequently used but most codes may only be
used a few times due to the rareness of diseases
(Shi et al., 2017; Xie et al., 2019). Mottaghi et al.
(2020) use active learning with extra human label-
ing to solve this issue. Other recent works focus on
using additional medical domain-specific knowl-
edge to better understand the few training instances
(Cao et al., 2020; Song et al., 2020; Lu et al., 2020;
Falis et al., 2022; Wang et al., 2022b). Wu et al.
(2017) perform entity linking to identify medical
phrase in document note. Xie et al. (2019) map
label codes as entities in medical hierarchy graph.
Compared to a baseline which uses a shallow con-
volutional neural network to learn n-gram features
from notes, they add complex hierarchy structure
between codes by allowing the loss to propagate
through graph convolutional neural network. In
contrast with the previous systems which adopt
complex pipelines and different tools, our method
applies a much simpler training procedure by incor-
porating knowledge into language model without
requiring any knowledge pre or post-processing
(i.e. MedSpacy, Gensim, NLTK) during the fine-
tuning. Additionally, previous methods use knowl-
edge graph as an input source, however, we train
our language model to include knowledge graph as
a target with contrastive loss.

3 Methods

ICD coding: ICD coding is a multi-label multi-
class classification task. Specifically, considering
thousands of words from an input medical note t,
the task is to assign a binary label yi ∈ {0, 1} for
each ICD code in the label space Y , where 1 means
that note is positive for an ICD disease or procedure
and i ∈ range [1, Nc]. In this study, we define and
evaluate the number of candidate codes Nc as 50,
although Nc could be higher or lower depending
on specific applications. Each candidate code has
a short code description phrase ci in free text. For
instance, code 250.1 has description diabetes with
ketoacidosis. Code descriptions c is the set of all
Nc number of ci.

3.1 Encoding Text with Longformer

To solve this task, we first need to encode free text
into hidden representation with a pretrained clinical
longformer. Specifically, we convert free text a to a
sequence of tokens xa, the vocab embedding then
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Figure 2: An illustration of (a) standard training method and (b) our proposed prompt-based fine-tuning.

maps xa to a sequence of hidden vectors. Next, the
1st layer of LM encoder attends one hidden vector
to another hidden vector in the sequence with self-
attention mechanism. This encoding process is
repeated l times to produce a sequence of final
contextual hidden vectors hhha ∈ RLt×Hd for each
free text a where Hd is the hidden layer dimension
and Lt is the number of token in t.

3.2 Fine-tuning with Prompt

Prompt based fine-tuning is different from stan-
dard fine-tuning. During standard fine-tuning,
we usually make input xa = [CLS] a, where
a ∈ {t, c1, c2, ..., cNc}. To assist LM in finding
a mention of a label code in note text, we fusion
final contextual hidden representation of note text
t and code description c with attention. Specifi-
cally, we first build code description representation
h′h′h′c ∈ RNc×Hd by concatenating encoded hidden
vector hhhci{[CLS]} ∈ RHd of token [CLS] for each
code description ci. We then build note aware code
representation hhhf ∈ RNc×Hd for each code using
cross attention between sequence of vectors h′h′h′c as
query and sequence of vectors hhht as key, with at-
tention weight αij between ith item in query and
jth item in key as follow:

αij = softmax((WWW qhhhci{[CLS]})(WWW khhhtj ))

where WWW q and WWW k are query weight and key
weight to be trained. To learn the probability of
a code to assign, we train a binary label head,
softmax(WWW bhhhf ), by maximizing log-probability
of correct label for each code. An illustration of
such a standard fine-tuning pipeline is provided in

Figure 2 (a). This standard fine-tuning approach
introduces many new parameter weights (589,824
with cross attention and 1,536 with binary label
head for longformer), making it hard to learn in
few shot settings where the number of training data
is limited for each code (Gao et al., 2021). Similar
training approaches were carried out in previous
researches (Mullenbach et al., 2018; Li and Yu,
2020; Kim and Ganapathi, 2021; Luo et al., 2021;
Sun et al., 2021; Zhou et al., 2021) (specific la-
bel attention calculation may differ) , instead of a
pretrained language model, they used unpretrained
LSTM or CNN to encode free text, which added
more untrained parameters during ICD training.

An alternative approach to multi-label classifica-
tion is prompt based fine-tuning, where masks in
prompt are filled-in by LM in cloze style (Gao et al.,
2021). We reformulate multi-label classification
tasks with free text prompt template as input:

xp =c1 : [MASK] , c2 : [MASK] , ... , cNc : [MASK] . t .

and use LM to decide if note is positive (or neg-
ative) for a code by filling [MASK] with vocab
token yes (or no). This step is repeated Nc times
for each [MASK] and associated code ci. Specif-
ically, we encode free text prompt as mentioned
before, and obtain final hidden vectors hhhp for input
xp. Notice that this encoding step would fusion
code descriptions and note text with self-attention
in every layer of LM encoder. We define a mapping
function M from yi in label space to vocab tokens
as:

M(yi) =

{
“yes” if yi = 1;

“no” if yi = 0;
(1)
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where i ∈ range [1, Nc]. In this way, we transfer
downstream multi-label classification task into a
mask language model task like pretraining. For ith
code, the label probability would be calculated as:

P (yi|xp) = P ([MASK]ci = M(yi)|xp)

=
exp(WWWM(yi) · hhhp{[MASK]ci})∑
ẏ∈Y exp(WWWM(ẏ) · hhhp{[MASK]ci})

(2)

where hp{[MASK]ci} ∈ RHd is the hidden vec-
tor of the [MASK] associated with each code ci in
input xp, and WM is the original parameter pre-
trained in LM head. Prompt based fine-tuning
reuses all parameters during pretraining, and does
not introduce new parameters, making the whole
model easy to fine-tune in a few-shot setting.

3.3 Hierarchical Self-Alignment Pretrainumls

(HSAP) using Knowledge Graph UMLS
Since no new parameters are added to LM in
prompt based fine-tuning, the performance on med-
ical downstream task heavily relies on the quality
of clinical pretrained LM. However, encoded hid-
den representations of similar medical terms are not
guaranteed to be close to each other. Thus we apply
self-alignment pretraining (Liu et al., 2021) to align
similar terms closer to each other with additional
knowledge. This additional pretrainumls is after
masked language pretrainmimic and before auto
ICD finetuning. We first build self-supervised data
from synonyms, abbreviations, hierarchy in the
medical knowledge graph of the UMLS and ICD
ontology (§3.3.1), and inject such structural knowl-
edge into a LM by pretraining it on self-supervised
data with hierarchical contrastive loss (§3.3.2).

3.3.1 Generating Self-Supervised Data
To generate pretraining examples, we first build
a mapping between medical terms and codes as
entities in the medical knowledge graph UMLS.
Specifically, synonyms of an entity are collected
from multiple English free text descriptions of en-
tity via UMLS "MRCONSO" table. Abbreviations
of an entity are collected from multiple English free
text descriptions of entity in UMLS SPECIALIST
Lexicon and Lexical Tools "lrabr" table. Medical
terms of an entity are defined as the union of syn-
onyms set and abbreviations set of an entity. To
sample negative examples for contrastive loss, we
then build a hierarchy tree of entities using ICD-9
code ontology. For example, ICD 250 (Diabetes
mellitus) is the parent of ICD 250.0 (Diabetes mel-
litus without mention of complication), and ICD

250.1 (Diabetes with ketoacidosis) is the sibling of
ICD 250.0 (Diabetes mellitus without mention of
complication).

3.3.2 Contrastive Learning
Given self-supervised data, we further train clin-
ical longformer using contrastive learning, with
the intention of pushing target medical terms and
positive medical terms closer, while pulling nega-
tive medical terms further away. We formulate this
problem into hierarchical triplet loss on a sampled
mini batch encoded by LM.

Encoding Medical Terms: Each medical term is
usually a short phrase of multiple tokens. Similar
to Phrase-BERT (Wang et al., 2021), a medical
term is encoded into a sequence of hidden vectors
as described in §3.1. We use clinical longformer
(Li et al., 2022) as encoder for this process. We
define a medical term’s hidden representation ppp as
the first item in hidden vector sequence, which has
shown to be effective in Toshniwal et al. (2020).

Hierachical Neighbor Sampling: We randomly
select i number of target anchor entities from the
ICD hierarchy level l. Each medical term repre-
sents a disease class. Collecting entities from each
level could preserve the diversity of samples in the
mini batch. Then j − 1 parents and siblings are
randomly chosen for each of i entities. The pur-
pose of choosing intra-class parents and siblings is
to encourage model to discriminate anchor entities
from close neighbor entities. Finally, k medical
terms for each entity are randomly collected, result-
ing in n = ijk medical terms in a mini batch B of
hierarchy level l. We collect mini batch from other
hierarchy levels in the same way.

Minibatch Triplet Loss with Dynamic Margin:
Similar to Ge et al. (2018), hierarchical triplet loss
of a mini batch B can be formulated as:

LB =
1

2NB

∑

Tx∈TB

max(0,mx − |pppax − ppp−x |+ |pppax − ppp+x |)

(3)

where TB is all the triplets in the minibatch B.
NB is the number of triplets in minibatch B, and
each triplet Tx consists of an anchor sample pppax, a
positive sample ppp+x from positive class, a negative
sample ppp−x from intra-class or inter-class negative
class. mx is a dynamic margin. It is computed ac-
cording to entity’s clinical term similarity between
the anchor class entity and the negative class entity
(Zakharov et al., 2017). Specifically, for a triplet
Tx, the dynamic margin mx is computed as:
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mx =





π/2 if parent ;

π/2 + arccos(|pppax · ppp−x |) if siblings ;
ϵ else (ϵ = π).

(4)

where condition clause parent and siblings means
that negative sample ppp−x comes from intra-class
parent and siblings of anchor sample. In practice,
we set ϵ = π. Thus, inter-class negative sample
would be at least π distance away from anchor
sample, while intra-class negative sample would
be at least d ∈ [π/2, π] range distance away from
anchor sample. Such dynamic margin is different
from constant margin in previous contrastive loss
work in medical domain (Liu et al., 2021; Zhang
et al., 2021), and has shown to be effective in visual
retrieval task in computer vision (Ge et al., 2018).

By minimizing loss defined in Equation 3, we
pretrain a medical knowledge injected clinical long-
former. We then use such longformer to encode
prompt and context (§3.2), and thus gain knowl-
edge injected prompt for downstream coding task.

When applied to MIMIC-III-full data, it is infea-
sible to encode all 8,692 candidate ICD codes in
the prompt due to high memory cost (to be speci-
fied in §6). Instead, we used a two-stages approach.
Specifically, we used model MSMN as 1st stage
coder to select top 300 candidate codes, and then
use our KEPTLongformer as 2nd stage coder to fur-
ther narrow down the candidates to final prediction.
Our 2nd stage coder functions similar to reranker
in passage ranking (Nogueira and Cho, 2019).

4 Experiments

4.1 Dataset
MIMIC-III dataset (Johnson et al., 2016) contains
data instances of de-identified discharge summaries
with expert labeled ICD-9 codes. The discharge
summaries are from real patients. We applied the
following text pre-processing step before tokenizer:
(1) removing all de-identification tokens; (2) replac-
ing characters other than punctuation marks and
alphanumerical into white space (e.g. /n); (3) strip-
ping extra white spaces. Previous work (Mullen-
bach et al., 2018) truncated discharge summaries
at 4,000 words. Since longformer used tokens in-
stead of words, we truncated discharge summaries
at 8,192 tokens unless otherwise specified. This
roughly aligns with our observation that word token
ratio is about 1:2. Since procedure codes are re-
lated to subjective section of the note (Yang and Yu,

2020), we include relevant sections of discharge
summaries for those length exceeds 8,192, and
remove irrelevant sections such as discharge fol-
lowup. The header names of the relevant sections
are provided in Table A.1. We named this dataset
MIMIC-III-full.

For the top-50 frequent codes prediction task,
we filtered each instance that has at least one of
the top 50 most frequent codes, and used the same
splits as the previous work (Vu et al., 2020; Yuan
et al., 2022). We named this dataset MIMIC-III-
50. Detailed statistics are included in Table A.2.

To benchmark auto ICD coding task on few-shot
learning, we also created a rare-50 codes prediction
using original MIMIC-III dataset. Among 8,692
different types of ICD-9 codes, we first selected
codes with less than 10 times occurrences to fit
into the few-shot setting. This constitutes more
than 90% of original codes. We then ranked the
filtered codes by test/train ratio and select top 50,
so that testing samples are available for evaluation.
We also removed some potential common diseases
by hand in the process. This would include true
rare diseases (e.g. Kaposi’s sarcoma) listed in ex-
pert labeled rare diseases dictionary (Pavan et al.,
2017; Wakap et al., 2019). We named this dataset
MIMIC-III-rare50. The average number of exam-
ples per label code (shot) is about 5.

4.2 Implementation Details

For medical domain knowledge graph, we used
UMLS 2021AA, containing 4.4 million entities.
When mapping an entity to its description, we pre-
ferred ICD description. If it is not found, then we
used UMLS description. When recreating previ-
ous baselines, we used the same hyperparameter
setting as mentioned in their published work. We
removed R-Drop in (Yuan et al., 2022) and used
plain cross-entropy loss only for a fair compar-
ison among all baselines. Code descriptions in
prompt use longformer global attention unless oth-
erwise specified. Our full hyperparameter and con-
fig setting using wandb is provided in github. Self-
alignment Pretraining took about 48 hours with 1
NVIDIA V100 GPU. Fine-tuning took about 10
hours with 2 NVIDIA A100 40GB memory GPUs
on MIMIC-III-50, and 0.5 hours on MIMIC-III-
rare50. During testing, we used dev set to select
best threshold for F1 score. Similar to BERT, no
hyper-parameters were further searched on the dev
set with our longformer. We evaluated 5 different
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Model
AUC F1 Precision

Best epoch out of 20
Macro Micro Macro Micro P@5

MultiResCNN 89.30 92.04 59.29 66.24 61.56 18
MSATT-KG* 91.40 93.60 63.80 68.40 64.40 -
JointLAAT 92.36 94.24 66.95 70.84 66.36 10
MSMN 92.50 94.39 67.64 71.78 67.23 15
KEPTLongformer 92.63 94.76 68.91 72.85 67.26 4

w/o HSAP 92.33 94.31 67.95 71.92 67.18 5
w/o HSAP & Prompt 90.54 93.18 58.61 67.22 64.38 17

ClinicalBERT 81.94 85.65 43.61 51.62 52.59 15

Table 1: Results on the MIMIC-III-50 test set, compared between KEPTLongformer and baselines (top), KEPT-
Longformer and ablations (down). * represents result collected from paper because no code is avail.

random seeds for each model and report the me-
dian test results across these seeds unless otherwise
specified.

4.3 Baselines

MultiResCNN (Li and Yu, 2020) encode free text
with Multi-Filter Residual CNN, and applied label
code attention mechanism to enable each ICD code
to attend different parts of the document.
MSATT-KG (Xie et al., 2019) apply multi-scale at-
tention and graph neural network to capture poten-
tial relations between codes, without any changes
in the training objectives.
JointLAAT (Vu et al., 2020) propose a hierarchi-
cal joint learning with training objectives to predict
both ICD code and its parent ICD code in the hier-
archy graph.
MSMN (Yuan et al., 2022) use synonyms with
adapted multi-head attention, which achieved
SOTA performance on MIMIC-III-50 task.

4.4 Results

Results show that our longformer with knowledge
pretrained prompt (KEPTLongformer) outperforms
the previous state-of-art model MSMN (top of
Table 1 and Table 2). For the common disease
code assignment (MIMIC-III-50) task, our KEPT-
Longformer achieves macro AUC of 92.63 (+0.13),
micro AUC of 94.76 (+0.36), macro F1 of 68.91
(+1.27), and micro F1 of 72.85 (+1.07). Number
in parentheses shows the improvements compared
to MSMN. For the rare disease code assignment
(MIMIC-III-rare50) task, our KEPTLongformer
achieves macro AUC of 82.70 (+7.39), micro AUC
of 83.28 (+7.11), macro F1 of 30.44 (+13.39), mi-
cro F1 of 32.63 (+15.44). We notice that the im-

provements on rare disease codes are much higher
than improvements on common disease code, in-
dicating the strong advantage of our KEPTLong-
former for few-shot settings. In contrast to previ-
ous work that leads to improvements on rare dis-
ease codes but worse results on frequent ones (Rios
and Kavuluru, 2018), our approach shows improve-
ments on both tasks. We finally applied our KEPT-
Longformer to MIMIC-III-full. Table 3 shows that
reranker with KEPTLongformer outperforms pre-
vious SOTA MSMN in F1 marco from 10.3 to 11.8
by +1.5 (95%CI +0.93 to +1.99, P<0.001) and F1
micro from 58.2 to 59.9 by +1.6 (95%CI +0.95 to
+2.33, P<0.001).

4.5 Discussion

Our final KEPTLongformer model could be inter-
preted as a hybrid of 3 closely interrelated compo-
nents: longformer, prompt based fine-tuning, and
knowledge injected pretraining. Here we provide
an ablation study on each part.
Longformer vs. BERT. Increasing max token
limit is important under clinical note analysis task,
because most clinical notes are long documents
with an average of 3000 tokens in MIMIC-III dis-
charge summaries. Due to the high number of
tokens in a medical note, it is essential to encode as
many tokens as possible before downstream analy-
sis. However, BERT based LM, which could only
encode a few sentences, is known to be ineffec-
tive for long documents (Beltagy et al., 2020). To
test the effect of max token limit in auto ICD cod-
ing task, we compare the performance between
Clinical Longformer with max limit of 8,192 to-
kens and ClinicalBert with max limit of 512 to-
kens. As shown in Table 1, Clinical Longformer
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Model
Setting AUC F1

# Train Param
(trained from) Macro Micro Macro Micro

MSMN
Pretrained 75.3 76.2 17.1 17.2 16.4M
Finetuned 58.2 44.0 3.3 4.2 16.4M
Zero shot 52.3 48.9 3.5 4.0 0

KEPTLongformer

Pretrained 81.4 82.3 25.8 30.9 119.4M
Finetuned 82.7 83.3 30.4 32.6 119.4M

w/o HSAP 80.2 82.2 24.3 29.9 119.4M
w/ LM only 75.0 76.9 15.2 16.9 0.6M
w/ LM & Last 77.6 78.4 17.3 23.4 9.4M
w/ LM & First 79.0 81.5 23.5 29.6 9.4M

Zero shot 74.9 76.5 15.2 16.7 0

Table 2: Results on the MIMIC-III-rare50 test set compared between MSMN (previous SOTA on MIMIC-III-50)
and our final model KEPTLongformer, where Pretrained: model is trained from previous pretraining checkpoint,
Finetuned: model is trained from best checkpoint after finetuned from MIMIC-III-50, HSAP: Hierarchical Self-
Alignment Pretraining. We also explore training partial model including: parameters of LM head, Last self-attention
layer, First self-attention layer as ablation study. Zero shot: No training on rare, directly infer using finetuned model
from MIMIC-III-50.

(KEPTLongformer without HSAP & Prompt) sub-
stantially outperforms ClinicalBERT in AUC from
7.5 to 8.6 and F1 from 14.9 to 15.6. Other previous
methods (e.g. MultiResCNN) use non-pretrained
LSTM or CNN with max limit of 8192 tokens. We
also observe that these previous methods outper-
form ClinicalBERT, indicating the importance of
max token limit over LM in auto ICD coding task.
This finding correlates to previous LM researches
(Zhang et al., 2020; Pascual et al., 2021; Biswas
et al., 2021) which only uses longformer/BigBird
(Michalopoulos et al., 2022) or hierarchical BERT
(Ji et al., 2021; Dai et al., 2022) of 4096 max token
limits, and our method with max limit of 8192 to-
kens could alleviate the issues mentioned by them.
Prompt based fine-tuning as early fusion. In or-
der to test the effect of prompt based fine-tuning
as its own, we further compare Longformer trained
with prompt based fine-tuning with longformer
trained with original fine-tuning on MIMIC-III-
50. As shown in Table 1, prompt based fine-tuning
(KEPTLongformer w/o HSAP) improves AUC and
F1, and converges faster to achieve best F1 score
from epoch 17 to epoch 5. Our prompt based fine-
tuned longformer also slightly outperforms Mul-
tiResCNN, and other baselines such as MSATT-
KG and JointLAAT that uses structured knowl-
edge as addition resources. Under few-shot setting,
our prompt based fine-tuning significantly increase
AUC and F1 score compared to traditional fine-
tuning as shown in Table 2. This finding supports

previous research (Taylor et al., 2022) that shows
prompt based fine-tuning outperforms traditional
fine-tuning in many few-shot clinical tasks such
as length of stay and mortality prediction. Com-
pared to recent models on auto ICD coding, our
prompt based model could be seen as an early fu-
sion of label code description and input note text.
Instead of fusing label description representations
and note text representations after encoder with la-
bel attention (Zhou et al., 2021; Dong et al., 2021;
Yuan et al., 2022), we fuse the two starting from
first layer within the encoder with cross attention.
Such similar early fusion method has shown to be
effective in combining information from knowl-
edge graph and information from text in question
answering over knowledge base facts (Das et al.,
2017) and open domain question answering (Sun
et al., 2018).
Hierarchical self alignment pretraining (HSAP)
improves multi-label classification with label do-
main knowledge. In order to test the effect of
HSAP as its own, we further compare Longformer
with HSAP (KEPTLongformer) and without HSAP
(w/o HSAP). HSAP improves 0.45 on micro AUC
and 1.09 on micro F1 in dataset MIMIC-III-50, and
1.1 on micro AUC and 2.7 on micro F1 in dataset
MIMIC-III-rare50. Thus we showed that our con-
trastive learning in label space is more effective in
the tasks with limited labeled data, which supports
similar finding in text classification (Qian et al.,
2022). We also observe that HSAP could reduce
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Metric MSMN Reranker

F1 Mac 10.3(0.3) 11.8(0.4)
F1 Mic 58.2(0.4) 59.9(0.5)
P@8 74.9(0.3) 77.1(0.3)
R@8 39.2(0.4) 40.7(0.1)
P@15 59.5(0.1) 61.5(0.2)
R@15 55.7(0.1) 57.4(0.2)

Table 3: Results on the MIMIC-III-full compared be-
tween previous SOTA MSMN and our final model
KEPTLongformer reranker. mean(st.dev.) are reported
with 5 different random seeds.

false negative predictions which mistakenly predict
their siblings. Out of 78 false negative predictions
on code 285.1, 2 predict sibling code 285.9 with
HSAP. In contrast, out of 89 false negative predic-
tions on code 285.1, 15 predict sibling code 285.9
without HSAP. HSAP reduces false negative pre-
dictions on 285.1 caused by sibling 285.9 from
15 to 2. HSAP works as a good polish to further
improve the coding accuracy by injecting domain
knowledge into language model.
Parameter efficiency on few-shot learning. One
could argue that accuracy improvements come
from more number of parameters during training.
Our KEPTLongformer is finetuned with 7 times
more trainable parameters compared to baseline
MSMN. To counter such argument, we also fine-
tune our KEPTLongformer with limited parameters
while keeping most parameters fixed. Specifically,
we considered the following 4 settings: a) tuning
LM head and first encoder layer, b) tuning LM head
and last encoder layer, c) tuning LM head only, d)
tuning no parameter as zero-shot. Compared to
MSMN, settings a, b, c, d improve micro AUC by
+5.4, +2.2, +0.7, +0.3 and micro F1 by +12.4, +6.1,
-0.3, -0.5 respectively, as shown in Table 2. Setting
a and b with 9.4 million trainable parameters sig-
nificantly outperforms MSMN with 16.4 million
trainable parameters. Setting c and d with almost
no trainable parameters show competitive results
compared to MSMN. We also observe that training
first layer outperforms training last layer, this could
also be evidence to support the advantage of early
fusion for few-shot learning.

5 Conclusions

In this paper, we investigate pretrained clinical lan-
guage model on auto ICD coding task for both
common and rare diseases, the latter of which has

received limited attention in the past. Built on
recent advances in contrastive learning, entity rep-
resentation training and prompt based fine-tuning,
our KEPTLongformer easily achieves a compet-
itive performance over state of the art system in
common code assignment, and significantly outper-
forms baseline model in rare code assignment tasks.
Finally, our novel Hierarchical Self-Alignment Pre-
train could be easily applied to other multi-label
classification problems such as tumor detection us-
ing other ontology such as OncoTree.

6 Limitations

Our work is limited to auto ICD coding task with
50 label codes including MIMIC-III-50 or MIMIC-
III-rare50, and could not be directly applied to
ICD coding task MIMIC-III-full with 8,692 labels
in practice due to memory constraint. Using our
KEPTLongformer would create at least 26,076 to-
kens and 8,692 [MASK] in a single prompt, which
easily explodes the max token limit of a long-
former and GPU memory. A more memory ef-
ficient method for auto ICD coding could be ex-
plored for future work.

Our clinical knowledge pretrained KEPTLong-
former is only tested on auto ICD coding task, but
such pretrained language model could be easily
applied to other clinical NLP applications such
as clinical entity linking or clinical question an-
swering tasks. We also only use part of UMLS
knowledge graph, including hierarchy, synonym,
and abbreviation. Other knowledge including dis-
ease co-occurrence, disease-symptom, disease-lab
relations and others could also potentially useful
for auto ICD coding task.
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A Appendix

Section header

chief complaint:
procedure:
history of present illness:
past medical history:
brief hospital course:
discharge diagnosis:
discharge condition:

Table A.1: A list of section header names used to trun-
cate if document token length > 8192.

MIMIC-III-full train test
#Doc. 47,723 3,372
Avg #words per Doc. 1,504 1,818
Avg #tokens per Doc. 2,479 3,071
%Doc where #tokens < 512 1.1 0.1
%Doc where #tokens < 4096 89.3 82.3
%Doc where #tokens < 8192 99.6 99.4
Avg #codes per Doc. 15.6 17.9
MIMIC-III-50 train test
#Doc. 8,066 1,729
Avg #tokens per Doc. 3,008 3,665
%Doc where #tokens < 512 0.5 0.1
%Doc where #tokens < 4096 80.1 67.7
%Doc where #tokens < 8192 97.9 98.7
Avg #codes per Doc. 5.7 6.0
MIMIC-III-rare50 train test
#Doc. 249 142
Avg #tokens per Doc. 3,462 4,131
%Doc where #tokens < 512 0.1 0.1
%Doc where #tokens < 4096 71.1 55.6
%Doc where #tokens < 8192 96.8 96.5
Avg #codes per Doc. 1.0 1.0

Table A.2: Statistics of MIMIC-III dataset under full
codes settings (MIMIC-III-full), 50 common codes
settings (MIMIC-III-50), and 50 rare codes settings
(MIMIC-III-rare50).
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Model AUC F1

KEPTLongformer Macro Micro Macro Micro

InfoNCE 92.48 94.32 68.38 72.01
Hierarchical contrastive loss 92.63 94.76 68.91 72.85

Table A.3: Results on the MIMIC-III-50, compared between KEPTLongformer using hierarchical contrastive loss
in this work, compared to InfoNCE which is used in KRISSBERT.

Model AUC F1 Precision
Best epoch out of 20

KEPTLongformer Macro Micro Macro Micro P@5

3 layers 88.65 91.97 57.75 64.67 61.87 18
6 layers 91.99 94.41 66.94 71.33 64.67 7
12 layers 92.63 94.76 68.91 72.85 67.26 4

Table A.4: Results on the MIMIC-III-50, compared between KEPTLongformer using different number of layers.

Model AUC F1 Precision
Memory

KEPTLongformer Macro Micro Macro Micro P@5

global stride = 1 92.63 94.76 68.91 72.85 67.26 34G
global stride = 3 92.49 94.55 68.43 72.30 67.23 27G
global stride = 5 92.24 94.46 68.09 72.17 66.93 25G
global stride = 10 92.02 94.24 66.98 71.14 65.45 23G

Table A.5: Results on the MIMIC-III-50, compared between KEPTLongformer using different number of global
attentions. In prompt code descriptions, we set every global_stride number of tokens as (longformer) global
attention tokens. For example, global stride = 1 means each token in prompt code descriptions is global attention.
Memory is the required GPU Memory when per_device_train_batch_size = 1.
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