
Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022, pages 11–21
November 20–23, 2022. ©2022 Association for Computational Linguistics

11

Spa: On the Sparsity of Virtual Adversarial Training for Dependency
Parsing

Chao Lou1, Wenjuan Han2˚, Kewei Tu1˚

1School of Information Science and Technology, ShanghaiTech University
Shanghai Engineering Research Center of Intelligent Vision and Imaging

2Beijing Jiaotong University, Beijing, China
{louchao,hanwj,tukw}@shanghaitech.edu.cn

Abstract

Virtual adversarial training (VAT) is a powerful
approach to improving robustness and perfor-
mance, leveraging both labeled and unlabeled
data to compensate for the scarcity of labeled
data. It is adopted on lots of vision and lan-
guage classification tasks. However, for tasks
with structured output (e.g., dependency pars-
ing), the application of VAT is nontrivial due
to the intrinsic proprieties of structures: (1)
the non-sparse problem and (2) exponential
complexity. Against this background, we pro-
pose the Sparse Parse Adjustment algorithm
(Spa) and successfully applied VAT to the de-
pendency parsing task. Spa refers to the learn-
ing algorithm which combines the graph-based
dependency parsing model with VAT in an ex-
act computational manner and enhances the
dependency parser with controllable and ad-
justable sparsity. Empirical studies show that
the TreeCRF parser optimized using Spa out-
performs other methods without sparsity regu-
larization.

1 Introduction

Dependency parsing is a fundamental structured
prediction task in natural language processing
that aims to capture syntactic structures in sen-
tences in the form of dependency relations between
words. The application of dependency structures is
mainly reflected in discourse parsing (Nishida and
Nakayama, 2020; Zhang et al., 2021), machine
translation (Shen et al., 2008), and many other
tasks. While supervised learning is the ideal tech-
nique used to learn a dependency parser automati-
cally, it requires the training sentences to be man-
ually annotated with their gold parse trees. This
brings the main bottleneck for learning a practical
dependency parser — the lack of adequate train-
ing corpora with dependency trees. Annotations
are both laborious and time costly. Multiple re-
search directions (i.e., unsupervised learning, semi-

˚Corresponding Author

supervised learning and transfer learning, etc.) try
to eliminate this bottleneck (Han et al., 2020a).

Virtual adversarial training (VAT) (Miyato et al.,
2018), as a semi-supervised learning approach, uti-
lizes both annotated training sentences and unla-
beled data to compensate for the scarcity of labeled
data. It extends adversarial training (AT) (Good-
fellow et al., 2015) to unlabeled data. VAT en-
courages the output distributions to be similar on
both an unlabeled sample and corresponding ad-
versarial examples by adding a Kullback-Leibler
(KL) divergence term in the training loss. In this
way, VAT improves the performance and robustness
of many tasks (Akhtar and Mian, 2018; Berthelot
et al., 2019; Chen et al., 2020).

However, multiple technical challenges are faced
by applying VAT on dependency parsing. Except
for the general challenges related to gradient com-
putation of discrete inputs, grammatical correct-
ness, and meaning preservation (Zhang et al., 2019;
Jia and Liang, 2017; Wang et al., 2019; Cheng
et al., 2019, 2020) faced by all adversarial exam-
ple generators, two potential but critical challenges
exist because of the propriety of structured predic-
tion: (1) the non-sparse problem and (2) exponen-
tial complexity. The non-sparse problem is natu-
rally connected to unambiguity (Tu and Honavar,
2012), both highlighting that the number of plau-
sible parses of a natural language sentence is rel-
atively small compared with the huge number of
possible parses. We are interested in predicting
probabilities as small as possible for these unlikely
trees rather than having an estimation of their actual
probabilities. The fact that the Viterbi expectation-
maximization algorithm (EM) outperforms Stan-
dard EM in previous work (Poon and Domingos,
2011; Tu and Honavar, 2012; Spitkovsky et al.,
2010, 2011) also provides evidence of the advan-
tage of implicitly utilizing the sparsity property.
Although Chen et al. (2020) make VAT compatible
with a linear-chain structured prediction model by

12

considering the probabilities of K most possible la-
bel sequences, which is a sparse approximation of
the original distribution, they did not quantitatively
investigate the impact of sparsity in the application
of VAT. For the complexity challenge, different
from conventional classification tasks with a fixed
number of classes, computing the KL divergence
of parse tree distributions by enumerating all pos-
sible parses is intractable because the number of
possible parses for each sentence is exponential
w.r.t. the sentence length. Therefore, conventional
approaches can only estimate the KL divergence in
the VAT loss rather than compute it exactly.

Against this background, we propose Sparse
Parse Adjustment algorithm (Spa) and success-
fully applied VAT to dependency parsing. Spa
refers to the learning algorithm which combines
the graph-based dependency parsing model with
VAT in an exact computational manner, overcom-
ing the problem of enumerating, and enhances the
dependency parser with controllable and adjustable
sparsity. We applied VAT to a state-of-the-art pars-
ing model: the Tree Conditional Random Field
(TreeCRF) parser (Zhang et al., 2020). Spa incor-
porates into TreeCRF an inductive bias in favor
of models that lead to a controllable sparsity. Ad-
justing the hyper-parameter can control sparsity to
ease the non-sparse problem. Empirical studies
show that the TreeCRF parser optimized using Spa
outperforms other semi-supervised methods with-
out sparsity regularization. Within Spa, our exact
computational manner achieves competitive perfor-
mance and enables faster training compared to the
top-K approximate approach (Chen et al., 2020).
The code can be found at: https://github.
com/LouChao98/struct-vat.

2 Related Work

2.1 Semi-Supervised Learning

Semi-supervised learning is an important branch of
machine learning to improve model performance
when there is insufficient labeled data, which uti-
lizes unlabeled data to get more information that
might be beneficial for supervised tasks. A com-
mon semi-supervised learning approach is to train
a generative model (Hinton et al., 2006; Maaløe
et al., 2016; Wang and Tu, 2020a) which achieve
state-of-the-art performance. However, these meth-
ods require additional hyperparameters, and the
conditions under which the generative model will
provide good supervised learning performance are

poorly understood (Miyato et al., 2017b).
Self-training (Yarowsky, 1995) is another ap-

proach to semi-supervised learning, which has been
successfully applied to natural language processing
tasks. In self-training, the model acts as teacher
and student iteratively. Recent approaches use soft
targets from one or multiple teachers’ output (Hin-
ton et al., 2015), such as in tri-training (Zhi-Hua
Zhou and Ming Li, 2005; Ruder and Plank, 2018).

Consistency training is also a branch of semi-
supervised learning, forcing the model to make
consistent predictions on different views of the
same data. Cross-view training (CVT) (Clark
et al., 2018) works on bidirectional LSTMs and
constructs views by masking out neurons of one
direction. R-drop (Liang et al., 2021) constructs
views by dropout-twice, thus is compatible with
transformers. Unsupervised Data Augmentation
(Xie et al., 2019) changes the input tokens instead
of hidden representations with the help of external
models, e.g., a back-translator. Unlike others, VAT
constructs views using a gradient-based attacker.
Next, we will introduce VAT in detail.

2.2 Virtual Adversarial Training

Adversarial training (Goodfellow et al., 2015) is
a method to improve model robustness, in which
models are trained using not only labeled data but
also perturbed samples generated by an adversar-
ial attacker. As a consequence, model predictions
would be consistent regardless of the perturbations.
AT was demonstrated to be more effective than
random attackers since its perturbations maximize
model loss in a constrained length. Many previ-
ous works (Goodfellow et al., 2015; Miyato et al.,
2017a; Yasunaga et al., 2018; Han et al., 2020c;
Zhang et al., 2022) proved the effectiveness of AT
on computer vision tasks and language tasks. To
introduce AT into semi-supervised settings, Miy-
ato et al. (2018) proposed virtual adversarial train-
ing. The idea of VAT can be seen as the combi-
nation of self-training (Yarowsky, 1995) and AT
if we treat predictions on clean input as labels in
AT. VAT can be applied to both labeled and un-
labeled data because ground-truth labels are not
required. VAT achieved state-of-the-art perfor-
mance for image classification tasks (Miyato et al.,
2018) and proved to be more efficient than previ-
ous semi-supervised approaches, such as entropy
minimization (Grandvalet and Bengio, 2005) and
self-training (Yarowsky, 1995). Chen et al. (2020)

https://github.com/LouChao98/struct-vat
https://github.com/LouChao98/struct-vat

13

proposed SeqVAT, which successfully makes VAT
compatible with the linear-chain conditional ran-
dom field (LinearChainCRF), and showed that VAT
benefits from structure information. It combines
VAT with LinearChainCRF and achieves signif-
icant improvements in sequence labeling. They
estimate the KL divergence by only considering
the K most possible label sequences and report
that the performance of VAT on LinearChainCRF
is better than that of VAT on token-level categorical
distributions, which is used by works before Seq-
VAT. In this paper, we show VAT can be applied
to dependency parsing with TreeCRF, which is a
more complex structure.

3 Model

CharReprWordRepr CharReprWordRepr

BiLSTM

Arc
Scorer

Label
Scorer

Update perturbations interatively

Figure 1: Model Architecture

Our model architecture is illustrated in Fig. 1. It
adopts the basic architecture of the TreeCRF parser.
We concatenate word embeddings with character
features extracted by a LSTM layer as input fea-
tures. Then, we feed input features into the scoring
functions. Finally, TreeCRFs are constructed using
scores.

Encoder The encoder includes both a word-
based representation and a character-based repre-
sentation inspired by character information captur-
ing morphological features (Ma and Hovy, 2016;
Zhang et al., 2020).

Word Representation We use 100-dimension
GloVe (Pennington et al., 2014) as word represen-
tations for dependency parsing, following previous
parsing work (Dozat and Manning, 2017; Zhang
et al., 2020). Intuitively, a model could learn to
make the perturbations in VAT insignificant by

learning embeddings with a very large norm. To
prevent this pathological situation, we follow the
setting from Miyato et al. (2017b) and use normal-
ized word embeddings ŵ instead of raw vectors w.
Formally, we use the representations as follows:

ŵpiq “
wpiq ´ Meanpwq

a

Varpwq

where Meanpwq “
1

n

n
ÿ

i“1

wpiq

and Varpwq “
1

n

ÿ

i“1

pwpiq ´ Meanpwqq2

where n is the number of all tokens in the embed-
ding space and wpiq is the embedding of the ith
word in the vocabulary.

Character Representation Following Zhang
et al. (2020), 50-dimension character embeddings
and a bidirectional LSTM with 50 neurons per
direction are used. Similar to word embeddings,
we also apply normalization to the output vectors
of the character LSTM.

Contextual Representation After transforming
input tokens to vector representations, we use a
three-layer bidirectional LSTM to capture contex-
tual information with 400 neurons per direction.
We also add Variational Dropout (Gal and Ghahra-
mani, 2016) between LSTM layers for stable train-
ing.

Scoring Functions Following Zhang et al.
(2020), we adopt a two-stage parsing strategy. The
structure (whether arcs exist) and the labels of arcs
are processed separately. The scores of structures
are computed using deep biaffine functions. Let
mp¨q be the output of LSTM and MLP be a multi-
layer perceptron, the score of the arc from i to j is
defined as follows:

h
h{d
p¨q

“ MLPh{dpmp¨qq

ϕij “ Biaffinephhi , h
d
j q

Label scores ϕijl of the arc from i to j with label
l are defined similarly. Please refer to Zhang et al.
(2020) for more details.

Decoder The arc scores are fed into TreeCRF,
which defines the distribution over all possible trees
of a sentence. For a tree y (a set of arcs) of sentence

14

x, its probability is defined as follows:

ppy|xq “
ϕpyq

Z

ϕpyq “
ź

pi,jqPy

ϕij

Z “
ÿ

y1PYpxq

ϕpy1q,

where ϕpyq denotes the scores of the tree y, Z de-
notes the partition function and Ypxq denotes the
set of possible trees of x. The supervised train-
ing loss Lsup consists of two parts. Negative log-
likelihood Lnll is used as the supervised loss of
structures and cross-entropy Lce is used as the su-
pervised loss of labels.

Lnll “ logZ ´ log ϕpȳq

Lce “
ÿ

pi,jqPȳ

CEpSoftmaxpϕij¨q, lijq

Lsup “ Lnll ` Lce,

where ȳ is the gold tree and lij is the one-hot en-
coding of the gold label of arc from i to j.

4 Learning

4.1 Unsupervised Loss

In AT, the perturbations dw, dc bounded by δw, δc
is generated by maximizing the training loss:

dw “ argmax
ϵ,}ϵ}ďδw

Dpy;P pw ` ϵ, cqq

dc “ argmax
ϵ,}ϵ}ďδc

Dpy;P pw, c ` ϵqq

where D is an arbitrary distance measure or loss
function, w, c are the normalized word and charac-
ter representations respectively, and P is the model
outputting TreeCRF distribution. AT can only be
used in supervised settings because it requires y to
generate the perturbations.

Miyato et al. (2018) proposed virtual adversarial
training to extend AT to unlabeled data. Denote
x, xadv as a sample and its corresponding adver-
sarial sample, and porig, padv as the distribution
predicted by the model for x, xadv. Then a natural
choice of D in VAT is the KL divergence:

Dpporig; padvq “ KLpP pw, cq||P pw ` dw, c ` dcqq

Compared to AT, VAT can be seen as the "self-
training" version of AT since VAT replaces the

ground-truth y with the predicted porig. The pertur-
bations dw, dc are now defined by:

dw “ argmin
ϵ,}ϵ}ďδw

KLpP pw, cq||P pw ` ϵ, cqq

dc “ argmin
ϵ,}ϵ}ďδc

KLpP pw, cq||P pw, c ` ϵqq

Those two are still intractable for gradient descent.
Miyato et al. (2018) propose to approximate pertur-
bations by the second-order Taylor approximation
and the power iteration method. The perturbations
dw, dc can be estimated as follows:

dw “
gw

}gw}
δw dc “

gc
}gc}

δc

where gw, gc are gradients of the distance w.r.t. per-
turbations:

gw “ ∇ϵKLpP pw, cq||P pw ` ϵ, cqq

gc “ ∇ϵKLpP pw, cq||P pw, c ` ϵqq

We stop the gradient propagation through dw, dc
when optimizing model parameters because they
are adversarial attacks.

The full loss function of our model is a weighted
summation of the supervised training loss and con-
trastive training loss:

L “ Lsup ` αDpporig; padvq. (1)

Because porig is at least as good as padv, we do
not want to optimize porig for the loss in terms of
padv. In practical, we detach porig from the compu-
tational graph when optimizing the unsupervised
loss, such that the entropy term Epporigq in D “

KLpporig||padvq “ CEpporig||padvq´Epporigq can
be omitted because it will not contribute any gradi-
ents to trainable parameters.

4.2 Exact Computation
As Chen et al. (2020) mentioned, the computation
of the KL divergence of two CRFs is nontrivial
because of the exponential-size space. This section
derives the polynomial-time exact computation for
the TreeCRF using dynamic programming. A simi-
lar derivation for the entropy of constituency trees
is documented in Hwa (2000).

We use the notation Npi, j; yq to denote the
quantity N (Tab. 1) of the tree y which covers
the span xi . . . xj and Npi, jq to denote the quan-
tity N of all possible trees covering it. Similarly,
we use the notation Npi, j, k; yq to denote the quan-
tity N of the tree y which, additionally, can be split

15

N Np¨q Np¨; yq Explanation
ϕd ‚ ‚ the tree score
pd ˝ ‚ the tree probability
hd ‚ ˝ the cross entropy

Table 1: Notations. ‚{˝ means the quantity is de-
fined/undefined for this form. d P tp, qu is the identifier
of two distributions. We abuse some notations.

into two sub-trees at the point k. The left sub-tree
covering xi . . . xk is named as yl and the right one
covering xk`1 . . . xj as yr. We do not decorate
yl, yr with the span indices (e.g., i, j, k) because
they can be understood from the context. Npi, j, kq

is the aggregated version of Npi, j, k; yq.
The KL divergence consists of the entropy and

the cross-entropy. As the full KL divergence can
be derived with little effort from the cross-entropy,
we only show the derivation of the cross-entropy,
hp1, nq ” CEpp, qq, for the sake of simplicity.
hpi, jq can be written as the form of enumerating
all possible trees y P Y .

hpi, jq “ ´
ÿ

y

pppi, j; yq log pqpi, j; yq (2)

The first step (Eq. 6) is to decompose y into
sub-trees yl, yr and also an arc connecting the
two sub-trees’ roots Apyl, yrq P trootpylq Ñ

rootpyrq, rootpyrq Ñ rootpylqu1 where γd (d P

tp, qu) is the normalizer2 (Eq. 5). After breaking
the log-terms about q into three terms, the summa-
tion of yl, yr reduces pq terms to h terms (Eq. 8).
Specifically, there are two types of reduction: (1)
reducing to cross entropy of trees covering smaller
spans (e.g., Eq. 3); (2) and reducing to marginal-
ization of possible trees (e.g., Eq. 4):

´
ÿ

yl

pppi, k; ylq log pqpi, k; ylq ” hpi, kq (3)

ÿ

yr

pppk ` 1, j; yrq “
ÿ

yr

ppyr|xrk`1:jsq “ 1 (4)

Eq.8 is the state transition equation of dynamic
programming, in which hpi, j, kq is in terms of
hpi, kq, hpk ` 1, jq, which are smaller problems,
and γpApyl, yrqq is in terms of ϕdpi, kq, ϕdpk `

1, jq and the potential score of a Ñ b in d (ϕd,ab).

γdpApyl, yrq, yl, yrq “ γdpa Ñ b, yl, yrq “

ϕd,abϕdpi, kqϕdpk ` 1, jq{ϕdpi, j, kq (5)

1We use the Eisner algorithm (Eisner, 2000) as the routine
(Sec.4.3), in which A “ ti Ñ j, j Ñ iu.

2We denote γdpApyl, yrq, yl, yrq as γdpApyl, yrqq for
simplicity. One can read i, j, k from yl, yr .

4.3 CrossEntropy Semiring
The semiring parsing framework (Goodman, 1999;
Li and Eisner, 2009) enables us to decouple the
semantics (e.g., cross-entropy and MAP inference)
from the routine (e.g., the inside algorithm).

The semiring parsing framework is a generaliza-
tion of the sum-product algorithm where operators
`,ˆ are generalized to abstract operators ‘,b.
Plugging in different semirings allows us to query
different properties, e.g., partition and mode. To
illustrate the cross-entropy semiring, we define the
elements of the semiring as triplets indexed by po-
sitions i, j:

spi, jq “ pϕppi, jq, ϕqpi, jq, hpi, jqq (9)

Because the first two elements can be solved by the
inside algorithms, we focus on the third term. An
abstract product b combines two sub-structures.
After reordering terms in Eq. 8, we observes that:

hpi, j, kq “ Aphpi, kq ` hpk ` 1, jqq ` B (10)

where A,B are in terms of γd but irrelative to
hpi, kq, hpk ` 1, jq. γd is available only after sum-
mation due to ϕdpi, j, kq3 in Eq. 5 , therefore we
delay to resolve A,B and perform the summation
of hpi, kq and hpk ` 1, jq only (Eq. 11).

An abstract summation ‘ aggregates all possi-
ble structures at the same position. In our case,
there are two jobs: (1) resolve A,B (2) aggregate
hpi, j, kq to get hpi, jq. The computation is defined
as Eq. 12. Let s “ rs1, s2, . . . s be a list of triplets,
the cross-entropy semiring is defined as follows:

b s “ p
ź

sr0s,
ź

sr1s,
ÿ

sr2sq (11)

‘ s “ p
ÿ

sr0s,
ÿ

sr1s, fq (12)

f “
ÿ

` sr0s
ř

sr0s
ˆ psr2s ´ log

sr1s
ř

sr1s
q
˘

1 “ p0, 0, 1q, 0 “ p´8,´8, 0q

4.4 Sparsity Regularization
Motivated by the sparsity property, we would like
to incorporate into the model a flexibly adjustable
button in favor of sparsity adjustment. In our ap-
proach, this button is a adjustable hyperparameter.

One natural measurement of sparsity is the num-
ber of parse trees considered in leaning. We de-
note the number of parse trees K as this adjustable

3ϕdpi, j, kq can be obtained by summing the first two items
in triplets.

16

hpi, j, kq

“ ´
ÿ

pyl,yr,Aq

“

pppi, k; ylqpppk ` 1, j; yrqγppApyl, yrqq logrpqpi, k; ylqpqpk ` 1, j; yrqγqpApyl, yrqqs
‰

(6)

“
ÿ

A
γppApyl, yrqq

loooooooomoooooooon

Only depends on i,j
(Eq. 5 and Fn. 1.)

ÿ

yr

pppk ` 1, j; yrq

loooooooooomoooooooooon

Eq. 4

`

´
ÿ

yl

pppi, k; ylq log pqpi, k; ylq
˘

loooooooooooooooooooomoooooooooooooooooooon

Eq. 3

`
ÿ

A
γppApyl, yrqq

ÿ

yl

pppi, k; ylq
`

´
ÿ

yr

pppk ` 1, j; yrq log pqpk ` 1, j; yrq
˘

`
ÿ

yl

pppi, k; ylq
ÿ

yr

pppk ` 1, j; yrq
`

´
ÿ

A
γppApyl, yrqq log γppApyl, yrqq

˘

(7)

“
ÿ

A

“

γppApyl, yrqqhpi, kq ` γppApyl, yrqqhpk ` 1, jq ´ γppApyl, yrqq log γqpApyl, yrqq
‰

(8)

hyperparameter. Specifically, the sparsity of the
model is controlled by the value of the non-negative
parameter K. Following Chen et al. (2020), we pro-
vide an approximate probability distribution with
“K`1 dimensions” to estimates the KL divergence.
In addition to the K most possible label predictions,
the rest predicted labels are represented as the ad-
ditional `1 dimension. We could modify K in the
objective function to favor different degrees of spar-
sity. We refer this sparsity regularization as Top-K
approach.

While Top-K estimates the KL divergence by de-
signing an approximate distribution, the full prob-
ability distributions actually can be exactly com-
puted as shown in Sec. 4.2. We manipulate the
sparsity degree based on the exact computation by
temperature control following Hinton et al. (2015).
Specifically, we divide the logits of probability dis-
tributions by a temperature in the objective. A
higher temperature results in softer probability dis-
tributions and often results in better KD perfor-
mance. However, there is an opposite view of tem-
perature. Grandvalet and Bengio (2004) applied
a low temperature to sharpen predictions, which
leads to a lower entropy, and showed that regular-
izing the predictions to have low entropy could be
beneficial. When setting the two temperatures Torig

and Tadv (which refer to the temperatures of porig
and padv respectively), we could adjust the sparsity
degree in a more flexible way. Specifically, the spar-
sity of our model is controlled by the value of the
non-negative parameter Torig and Tadv. A smaller
value of Torig corresponds to a stronger sparsity in
favor of an unambiguous model. When Torig is set

to 1, the learning algorithm can be considered as the
exact computation. When Torig ă 1, our approach
becomes a sparse version. When Torig ą 1, our ap-
proach falls into a smoother version. Models do not
have a fixed degree of sparsity when targeting dif-
ferent datasets. For a given dataset, different mod-
els should be set different hyperparameters. There-
fore, it is unclear how to choose an optimal temper-
ature. To make it more flexible, we use different
temperatures Torig and Tadv for the two terms in
KL. We refer to this sparsity regularization as Temp-
(Torig,Tadv) approach. ExactComp-(Torig,Tadv) de-
notes applying Temp-(Torig,Tadv) on TreeCRF with
exact computation and HeadSelect-(Torig,Tadv) de-
notes applying Temp-(Torig,Tadv) on the head se-
lection model Dozat and Manning (2017).

5 Experiments

5.1 Dataset

We evaluate our methods on the Wall Street Jour-
nal (WSJ) corpus with default training/develop-
ment/test split (Cohen et al., 2008) for dependency
parsing by unlabeled and labeled attachment score
(UAS/LAS) (Han et al., 2020b).

We use Stanford dependencies 3.3 (Manning
et al., 2014) to preprocess the WSJ corpus as in
previous work. We consider several settings in-
cluding full labeled WSJ data with extra unlabeled
BLLIP corpus4, and x% in WSJ as labeled data
and the rest p1 ´ xq% as unlabeled data. We use
BLLIP as the unlabeled data pool, which has the

4Brown Laboratory for Linguistic Information Processing
(BLLIP) 1987-89 WSJ Corpus Release 1

17

Setting Labeled Unlabeled
WSJ(10%/90%) 3,983 35,849
WSJ(30%/70%) 11,950 27,882
WSJ(50%/50%) 19,916 19,916

WSJ+BLLIP 39,832 650,000

Table 2: Statistic analysis of labeled and unlabeled train-
ing data. WSJ(x%{p1 ´ xq%) means x% of sentences
are annotated while the remaining p1 ´ xq% are not.

same data source as WSJ but contains much more
sentences than the WSJ corpus. We drop sentences
in BLLIP with length ą20 to speed up training and
balance the number of labeled and unlabeled data.
All dataset settings we used to evaluate our method
are listed in Tab. 2.

5.2 Setting

We directly adopt most hyper-parameters from
Zhang et al. (2020). We train our supervised base-
line for 200 epochs. For other models, we run
semi-supervised training for 100 epochs after 100
epochs of purely supervised training.

5.3 Main Results

We report the averaged score over four random
restarts for each model5 and compare our models
on dependency parsing. We tune hyperparameters
and choose models according to the LAS score on
th validation set. The results of small training data
are shown in Tab. 3 on WSJ test data, including two
settings: supervised learning and semi-supervised
learning.

We focus on the semi-supervised settings and list
supervised learning6 for reference. We have three
strong baselines reported in previous work: (1) Self-
Training is the conventional self-training approach
that uses the predicted data as extra labeled training
data; (2) NCRFAE is the semi-supervised version
of a neural CRF autoencoder (Cai et al., 2017)7. (3)
Arc-Factored Sup/Semi are the supervised/semi-
supervised version of the model from Wang and

5If a setting requires to sample data, e.g., WSJ(10%/90%),
we randomly sample data twice and run models using two
randomly chosen seeds for each data. Otherwise, we run
models using four randomly chosen seeds.

6The TreeCRF parser in this paper is different from the
original version by an additional embedding normalization.

7We develop this neural version of CRF autoencoder de-
pendency parser by Cai et al. (2017). For the self-training
setting, we use the parser to predict parse trees of the unla-
beled data iteratively and use the pseudo labeled data to update
the model.

Tu (2020b). It can be seen that two variants of Spa
generally outperform these three baselines with
a margin. For example, Top-2 outperforms Self-
Training by 1.04% and Arc-Factored Sup by 0.31%.
ExactComp-(0.3,2) outperforms Self-Training by
1.0% and Arc-Factored Sup by 0.27%.

There are also some interesting observations
from different settings. We also apply VAT on the
head selection distribution of each token (Dozat
and Manning, 2017) (denoted as HeadSelect-(1,1)),
in the sense that TreeCRF is not used, to show the
efficiency of adversarial training without the tree
structure constraint. Here two 1 in HeadSelect-
(1,1) mean that sparsity adjustment is not used.
In semi-supervised settings, HeadSelect-(1,1) is
competitive and even outperforms some baselines
with the structure constraint by a large margin.
We suspect that it may be because of our good
hyperparameters. Then after we set Torig “ 0.3
and Tadv “ 2, an improvement is observed from
92.23% to 92.60%. It reveals the benefit of sparsity
bias in the head selection model.

The second evidence of the benefit of sparsity
bias lays on the Top-K Sparsity rows. All variants
of Top-K including Top-2, Top-3, Top-5, and Top-7
outperform the strong baselines.

Finally, a similar improvement can also been
seen from ExactComp-(1,1) to ExactComp-(0.3,2).
This empirical result provides another piece of evi-
dence for the superiority of Spa. Results show that
ExactComp-(0.3,2) with both exact computation
and sparsity adjustment consistently performs well,
regardless of the different settings. This demon-
strates that the non-sparsity problem limits the
power of VAT.

In Tab. 4, models are fed with sufficient la-
beled data as well as unlabeled data. Results
show that VAT provides consistent improvement,
especially the model without sparsity regulariza-
tion, ExactComp-(1,1). Later analysis (Tab 6) also
shows that a large amount of labeled data weak-
ens the significance of the sparsity regularization.
We argue that in this case, we have high quality
porig such that no much inaccurate information is
required to be ruled out.

5.4 Results of Different K

The value of K in Spa is an important hyper-
parameter. If the value of K is too large, the model
may consider too much possibilities of parses and
hence the model is very likely to be misled. If

18

Approach UAS LAS
Supervised Learning

Arc-Factored VAE Sup*
(Wang and Tu, 2020b)

92.00 -

TreeCRF
(Zhang et al., 2020)

92.11 89.51

Semi-supervised Learning
Self-Training* 91.82 -

NCRFAE* 91.94 -
Arc-Factored VAE Semi*

(Wang and Tu, 2020b)
92.55 -

W/O Sparsity
HeadSelect-(1,1) 92.23 89.80
ExactComp-(1,1) 92.36 89.99

Top-K
Sparsity

Top-2 92.86 90.38
Top-3 92.76 90.36
Top-5 92.74 90.35
Top-7 92.79 90.45

Temp-(Torig,Tadv)
Sparsity

HeadSelect-(0.3,2) 92.60 90.19
ExactComp-(0.3,2) 92.82 90.45

Table 3: Results on Test data for a typical semi-
supervised setting – 10% labeled WSJ+90% unlabeled
WSJ. W/O Sparsity: Without Sparsity Adjustment. Re-
sult with a star * are reported by Wang and Tu (2020b).

Approach UAS
Supervised Learning

Zhang et al. (2020) 95.82
Semi-supervised Learning

Top-3 95.92
ExactComp-(1,1) 95.99

ExactComp-(0.3,2) 95.84

Table 4: UAS Results on Test data for the semi-
supervised setting – WSJ+BLIIP650k.

the value of K is too small, the model loses the
benefit of expressiveness. As Tab. 5 illustrates,
value of K “ 3 leads to the best parsing accuracy,
while other values produce lower parsing accuracy
probably because of inappropriate sparsity degrees.

6 Analysis

6.1 Ablation Study

In this section we study the effectiveness of our
two sparsity adjustment on different settings: ex-
act computation to ease the computation errors
and sparsity adjustment to add a prior of spar-
sity property. As show in Tab. 6, the sparsity
adjustment is not only successfully applied on low-
resource setting, namely the 10%WSJ+90%WSJ
setting, but also works on other settings (i.e.,
30%WSJ+70%WSJ and 50%WSJ+50%WSJ).

Exact computation is capable of improving

10%+90% 30%+70% 50%+50%
Supervised Learning

Sup 92.00 93.94 94.38
TreeCRF 92.11 94.43 95.28

Semi-supervised Learning
Semi 92.55 94.15 94.41
Top-2 92.86 94.74 95.47
Top-3 92.76 95.00 95.54
Top-5 92.74 94.93 95.35
Top-7 92.79 94.76 95.51

Table 5: UAS Results of different K in various semi-
supervised setting. X%+Y%: X% labled WSJ+Y%
unlabled WSJ. Sup: Arc-Factored VAE Sup (Wang and
Tu, 2020b). Semi: Arc-Factored VAE Semi (Wang and
Tu, 2020b). TreeCRF: (Zhang et al., 2020).

10%+90% 30%+70% 50%+50%

W/O
HeadSelect-(1,1) 92.23 94.65 95.11
ExactComp-(1,1) 92.36 94.66 95.47

W
HeadSelect-(0.3,2) 92.60 94.83 95.31
ExactComp-(0.3,2) 92.82 94.85 95.47

Table 6: With Sparsity vs. Without Sparsity. in various
semi-supervised setting. W/O: W/O Sparsity. W: Temp-
(Torig ,Tadv). X%+Y%: X% labled WSJ+Y% unlabled
WSJ.

the parsing result on all the settings (includ-
ing 10%WSJ+90%WSJ, 30%WSJ+70%WSJ and
50%WSJ+50%WSJ). It shows that the model takes
advantage of eliminating the approximation prob-
lem. When simultaneously combining the sparsity
adjustment and the sparsity adjustment, we observe
a further improvement on the final result in the
ExactComp-(0.3,2) row.

We provide other results, including inspection of
non-sparse problems and speed comparison, in the
Appendix.

7 Conclusion and Further Work

In this paper, we propose Sparse Parse Adjustment
algorithm (Spa). We successfully applied VAT
to the dependency parsing task using this Spa al-
gorithm. We use Spa to enhance the TreeCRF
parser with exact computation and sparsity adjust-
ment. Further empirical study indicates that Spa
has strong effects in semi-supervised settings and
time and space efficiency. Furthermore, this ap-
proach has broad applications on other structured
prediction tasks. The exact computation for the
TreeCRF can be easily transferred to general struc-
tured prediction architectures, e.g., LinearChain-
CRF. We will leave it as a further work.

19

Acknowledgment

This work was supported by the National Natural
Science Foundation of China (61976139). Wenjuan
Han has been supported by the National Key R&D
Program of China (2020AAA0108005) and the Na-
tional Nature Science Foundation of China (No.
61976015, 61976016, 61876198 and 61370130).
The authors would like to thank the anonymous
reviewers for their valuable comments and sugges-
tions to improve this paper.

References
Naveed Akhtar and Ajmal Mian. 2018. Threat of adver-

sarial attacks on deep learning in computer vision: A
survey. Ieee Access, 6:14410–14430.

David Berthelot, Nicholas Carlini, Ian Goodfellow,
Nicolas Papernot, Avital Oliver, and Colin A Raf-
fel. 2019. Mixmatch: A holistic approach to semi-
supervised learning. Advances in Neural Information
Processing Systems, 32.

Jiong Cai, Yong Jiang, and Kewei Tu. 2017. Crf autoen-
coder for unsupervised dependency parsing. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1638–
1643.

Luoxin Chen, Weitong Ruan, Xinyue Liu, and Jianhua
Lu. 2020. SeqVAT: Virtual adversarial training for
semi-supervised sequence labeling. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 8801–8811, Online.
Association for Computational Linguistics.

Yong Cheng, Lu Jiang, and Wolfgang Macherey. 2019.
Robust neural machine translation with doubly ad-
versarial inputs. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4324–4333, Florence, Italy. Associa-
tion for Computational Linguistics.

Yong Cheng, Lu Jiang, Wolfgang Macherey, and Jacob
Eisenstein. 2020. AdvAug: Robust adversarial aug-
mentation for neural machine translation. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 5961–5970, On-
line. Association for Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Christopher D. Man-
ning, and Quoc Le. 2018. Semi-supervised sequence
modeling with cross-view training. In Proceedings
of the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1914–1925, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Shay B Cohen, Kevin Gimpel, and Noah A Smith. 2008.
Logistic normal priors for unsupervised probabilistic
grammar induction. In Advances in Neural Informa-
tion Processing Systems, pages 321–328.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing.

Jason Eisner. 2000. Bilexical grammars and their cubic-
time parsing algorithms. In Advances in probabilis-
tic and other parsing technologies, pages 29–61.
Springer.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. Advances in neural information
processing systems, 29.

Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adver-
sarial examples.

Joshua Goodman. 1999. Semiring parsing. Computa-
tional Linguistics, 25(4):573–606.

Yves Grandvalet and Yoshua Bengio. 2004. Semi-
supervised learning by entropy minimization. In
Proceedings of the 17th International Conference on
Neural Information Processing Systems, NIPS’04,
page 529–536, Cambridge, MA, USA. MIT Press.

Yves Grandvalet and Yoshua Bengio. 2005. Semi-
supervised learning by entropy minimization. In
Advances in Neural Information Processing Systems,
volume 17, pages 529–536. MIT Press.

Wenjuan Han, Yong Jiang, Hwee Tou Ng, and Kewei Tu.
2020a. A survey of unsupervised dependency pars-
ing. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 2522–
2533, Barcelona, Spain (Online). International Com-
mittee on Computational Linguistics.

Wenjuan Han, Yong Jiang, Hwee Tou Ng, and Kewei Tu.
2020b. A survey of unsupervised dependency pars-
ing. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 2522–
2533.

Wenjuan Han, Liwen Zhang, Yong Jiang, and Kewei Tu.
2020c. Adversarial attack and defense of structured
prediction models. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 2327–2338, Online. As-
sociation for Computational Linguistics.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network.

Geoffrey E. Hinton, Simon Osindero, and Yee Whye
Teh. 2006. A fast learning algorithm for deep belief
nets. Neural Comput., 18(7):1527–1554.

Rebecca Hwa. 2000. Sample selection for statistical
grammar induction. In 2000 Joint SIGDAT Confer-
ence on Empirical Methods in Natural Language
Processing and Very Large Corpora, pages 45–52,
Hong Kong, China. Association for Computational
Linguistics.

https://doi.org/10.18653/v1/2020.acl-main.777
https://doi.org/10.18653/v1/2020.acl-main.777
https://doi.org/10.18653/v1/P19-1425
https://doi.org/10.18653/v1/P19-1425
https://doi.org/10.18653/v1/2020.acl-main.529
https://doi.org/10.18653/v1/2020.acl-main.529
https://doi.org/10.18653/v1/D18-1217
https://doi.org/10.18653/v1/D18-1217
http://arxiv.org/abs/1611.01734
http://arxiv.org/abs/1611.01734
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
https://aclanthology.org/J99-4004
https://proceedings.neurips.cc/paper/2004/file/96f2b50b5d3613adf9c27049b2a888c7-Paper.pdf
https://proceedings.neurips.cc/paper/2004/file/96f2b50b5d3613adf9c27049b2a888c7-Paper.pdf
https://doi.org/10.18653/v1/2020.coling-main.227
https://doi.org/10.18653/v1/2020.coling-main.227
https://doi.org/10.18653/v1/2020.emnlp-main.182
https://doi.org/10.18653/v1/2020.emnlp-main.182
http://arxiv.org/abs/1503.02531
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.3115/1117794.1117800
https://doi.org/10.3115/1117794.1117800

20

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2021–2031.

Zhifei Li and Jason Eisner. 2009. First- and second-
order expectation semirings with applications to
minimum-risk training on translation forests. In Pro-
ceedings of the 2009 Conference on Empirical Meth-
ods in Natural Language Processing, pages 40–51,
Singapore. Association for Computational Linguis-
tics.

Xiaobo* Liang, Lijun* Wu, Juntao Li, Yue Wang,
Qi Meng, Tao Qin, Wei Chen, Min Zhang, and Tie-
Yan Liu. 2021. R-drop: Regularized dropout for
neural networks. In NeurIPS.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional LSTM-CNNs-CRF.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1064–1074, Berlin, Germany.
Association for Computational Linguistics.

Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Søn-
derby, and Ole Winther. 2016. Auxiliary deep gener-
ative models.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of 52nd annual
meeting of the association for computational linguis-
tics: system demonstrations, pages 55–60.

Takeru Miyato, Andrew M. Dai, and Ian Goodfel-
low. 2017a. Adversarial training methods for semi-
supervised text classification.

Takeru Miyato, Andrew M. Dai, and Ian J. Goodfel-
low. 2017b. Adversarial training methods for semi-
supervised text classification. In 5th International
Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net.

Takeru Miyato, Shin ichi Maeda, Masanori Koyama,
and Shin Ishii. 2018. Virtual adversarial training:
A regularization method for supervised and semi-
supervised learning.

Noriki Nishida and Hideki Nakayama. 2020. Unsuper-
vised discourse constituency parsing using viterbi em.
Transactions of the Association for Computational
Linguistics, 8:215–230.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543.

Hoifung Poon and Pedro Domingos. 2011. Sum-
product networks: A new deep architecture. In 2011
IEEE International Conference on Computer Vision
Workshops (ICCV Workshops), pages 689–690. IEEE.

Sebastian Ruder and Barbara Plank. 2018. Strong base-
lines for neural semi-supervised learning under do-
main shift. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1044–1054. Associ-
ation for Computational Linguistics.

Libin Shen, Jinxi Xu, and Ralph Weischedel. 2008. A
new string-to-dependency machine translation algo-
rithm with a target dependency language model. In
Proceedings of ACL-08: HLT, pages 577–585.

Valentin I Spitkovsky, Hiyan Alshawi, and Daniel Ju-
rafsky. 2011. Lateen em: Unsupervised training with
multiple objectives, applied to dependency grammar
induction. In EMNLP.

Valentin I Spitkovsky, Hiyan Alshawi, Daniel Jurafsky,
and Christopher D Manning. 2010. Viterbi train-
ing improves unsupervised dependency parsing. In
CoNLL.

Kewei Tu and Vasant Honavar. 2012. Unambiguity reg-
ularization for unsupervised learning of probabilistic
grammars. In Proceedings of the 2012 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning, pages 1324–1334.

Dilin Wang, Chengyue Gong, and Qiang Liu. 2019.
Improving neural language modeling via adversarial
training. In International Conference on Machine
Learning, pages 6555–6565.

Ge Wang and Kewei Tu. 2020a. Semi-supervised depen-
dency parsing with arc-factored variational autoen-
coding. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 2485–
2496, Barcelona, Spain (Online). International Com-
mittee on Computational Linguistics.

Ge Wang and Kewei Tu. 2020b. Semi-supervised depen-
dency parsing with arc-factored variational autoen-
coding. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 2485–
2496.

Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Lu-
ong, and Quoc V Le. 2019. Unsupervised data aug-
mentation for consistency training. arXiv preprint
arXiv:1904.12848.

David Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In 33rd
Annual Meeting of the Association for Computa-
tional Linguistics, pages 189–196, Cambridge, Mas-
sachusetts, USA. Association for Computational Lin-
guistics.

Michihiro Yasunaga, Jungo Kasai, and Dragomir Radev.
2018. Robust multilingual part-of-speech tagging
via adversarial training. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 976–986, New Orleans, Louisiana. Association
for Computational Linguistics.

https://aclanthology.org/D09-1005
https://aclanthology.org/D09-1005
https://aclanthology.org/D09-1005
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101
http://arxiv.org/abs/1602.05473
http://arxiv.org/abs/1602.05473
http://arxiv.org/abs/1605.07725
http://arxiv.org/abs/1605.07725
https://openreview.net/forum?id=r1X3g2_xl
https://openreview.net/forum?id=r1X3g2_xl
http://arxiv.org/abs/1704.03976
http://arxiv.org/abs/1704.03976
http://arxiv.org/abs/1704.03976
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://aclweb.org/anthology/P18-1096
http://aclweb.org/anthology/P18-1096
http://aclweb.org/anthology/P18-1096
https://doi.org/10.18653/v1/2020.coling-main.224
https://doi.org/10.18653/v1/2020.coling-main.224
https://doi.org/10.18653/v1/2020.coling-main.224
https://doi.org/10.3115/981658.981684
https://doi.org/10.3115/981658.981684
https://doi.org/10.18653/v1/N18-1089
https://doi.org/10.18653/v1/N18-1089

21

Huangzhao Zhang, Hao Zhou, Ning Miao, and Lei Li.
2019. Generating fluent adversarial examples for
natural languages. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 5564–5569, Florence, Italy. Asso-
ciation for Computational Linguistics.

Liwen Zhang, Zixia Jia, Wenjuan Han, Zilong Zheng,
and Kewei Tu. 2022. SHARP: Search-based adver-
sarial attack for structured prediction. In Findings
of the Association for Computational Linguistics:
NAACL 2022, pages 950–961, Seattle, United States.
Association for Computational Linguistics.

Liwen Zhang, Ge Wang, Wenjuan Han, and Kewei
Tu. 2021. Adapting unsupervised syntactic pars-
ing methodology for discourse dependency parsing.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
5782–5794, Online. Association for Computational
Linguistics.

Yu Zhang, Zhenghua Li, and Min Zhang. 2020. Effi-
cient second-order TreeCRF for neural dependency
parsing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3295–3305, Online. Association for Computa-
tional Linguistics.

Zhi-Hua Zhou and Ming Li. 2005. Tri-training: ex-
ploiting unlabeled data using three classifiers. IEEE
Transactions on Knowledge and Data Engineering,
17(11):1529–1541.

A Hyper-Parameters Setting

We adopt most hyperparameters of the TreeCRF
parser (Zhang et al., 2020). We only list parameters
different from them and VAT-specific parameters
in Table 7.

Name Value
Base model

Maximum epochs t200, 100 ` 100u

VAT-specific
Update steps for dw, dc 1

α 1
ξ in Miyato et al. (2018) 0.5
ϵ in Miyato et al. (2018) 0.1

Normalization on Token
Temperature of p, q t0.3, 0.7, 1, 2u

Table 7: Hyper-parameters of our methods.

B Other Results

B.1 Speed Comparison
Computing the Top-K distribution cost more and
time than our exact computation, since the former
has to record the Top-K candidates at each step in
the routine. We report the training time per epoch
of several methods (Tab. 8) on WSJ(10%/90%)
running on one Nvidia RTX3090.

Method Time/epoch
Supervised 27s
HeadSelect-(1,1) 1min9s
Top-3 2min36s
ExactComp-(1,1) 1min41s

Table 8: Training speed of Top-K and our exact compu-
tation with batch size 64.

B.2 Analysis of Sparsity
We conduct an experiments about the motivation of
sparsity adjustment. Fig.2 shows the number of the
gold parse tree in the Top-K beams. We can see that
most of the gold parses are existed in the Top-10
parse trees. Quantitatively, we find that the number
of the parses increase roughly before 4. After K
reaches a large number, e.g., 7, the leaning may
not be easy. This observation is consistent with our
empirical experiments and further suggests that nat-
ural language parsing are indeed should be adjusted
in favor of sparsity.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

Top-K

R
at

e

Correct-WSJ(100%)
Wrong-WSJ(100%)
Correct-WSJ(10%)
Wrong-WSJ(10%)

Figure 2: Correct-*: #(all arcs of Top-K trees X gold
arcs) / #tokens. Wrong-*: #(all arcs of Top-K trees -
gold arcs) / #tokens. *-WSJ(100%)/*-WSJ(10%): the
model train on the full/10% WSJ training set. We only
count sentences with lengthě 5.

https://doi.org/10.18653/v1/P19-1559
https://doi.org/10.18653/v1/P19-1559
https://doi.org/10.18653/v1/2022.findings-naacl.71
https://doi.org/10.18653/v1/2022.findings-naacl.71
https://doi.org/10.18653/v1/2021.acl-long.449
https://doi.org/10.18653/v1/2021.acl-long.449
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.1109/TKDE.2005.186
https://doi.org/10.1109/TKDE.2005.186

