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Abstract

Knowledge Graph Completion (KGC) pre-
dicts missing facts in an incomplete Knowl-
edge Graph (KG). Multilingual KGs associate
entities and relations with surface forms writ-
ten in different languages. An entity or relation
may be associated with distinct IDs in differ-
ent KGs, necessitating entity alignment (EA)
and relation alignment (RA). Many effective
algorithms have been proposed for completion
and alignment as separate tasks. Here we show
that these tasks are synergistic and best solved
together. Our multitask approach starts with
a state-of-the-art KG embedding scheme, but
adds a novel relation representation based on
sets of embeddings of (subject, object) entity
pairs. This representation leads to a new rela-
tion alignment loss term based on a maximal
bipartite matching between two sets of embed-
ding vectors. This loss is combined with tradi-
tional KGC loss and optionally, losses based
on text embeddings of entity (and relation)
names. In experiments over KGs in seven lan-
guages, we find that our system achieves large
improvements in KGC compared to a strong
completion model that combines known facts
in all languages. It also outperforms strong EA
and RA baselines, underscoring the value of
joint alignment and completion.

1 Introduction

A knowledge graph (KG) has nodes representing
entities and directed edges representing relations
between subject and object entities. In a KG, each
entity (and relation) has a unique node (relation)
ID. A monolingual KG is associated with a single
human language — an entity node (or relation ID)
is associated with one or more surface forms in that
language. E.g., the ID for the country USA may
have aliases like “United States of America”.

KGs are usually very incomplete, as curators
struggle to keep up with the real world. KG com-
pletion (KGC) is thus a strongly motivated problem
involving the prediction of true facts unknown to
the KG. Traditional KGC methods (Bordes et al.,
2013; Trouillon et al., 2016; Sun et al., 2019b) fol-
low a link prediction paradigm: represent a KG as

an abstract graph without entity or relation aliases,
and predict missing facts as ID tuples.

Most KGC methods are applicable to only one
KG at a time. However, different language speakers
would maintain separate monolingual KGs in their
own languages. Independent completions of each
KG may not be optimal, since information from
one KG will likely help completion of the other.
Massive KGs like WikiData cover well-resourced
and resource-poor languages. Cross-lingual trans-
fer thus acquires increased utility in the context of
Linked Open Data initiatives.

Different KGs will assign a different ID, and of-
ten also a different surface form, to the same entity,
such as “Estados Unidos de América” for the USA
entity in a Spanish KG. This leads to ID prolifera-
tion. Recent work on entity alignment (EA) across
KGs attempts to assign a unique ID to all nodes
representing the same entity (Chen et al., 2017;
Sun et al., 2017, 2018, 2020c; Cao et al., 2019;
Chen et al., 2021; Tang et al., 2020). Most recent
EA methods use surface forms and possibly other
text and attributes associated with each ID. A re-
lated task is relation alignment (RA) — assigning
synonymous relations in different KGs the same re-
lation ID. Compared to EA, RA is under-explored,
particularly in case of multilingual KGs. RA in-
volves global evidence, because the decision to
merge two relations in two languages is essentially
an act of schema integration, having far-reaching
consequences on many facts in both KGs.

Our key contribution is to recognize and exploit
the synergy between multilingual KGC, EA and
RA tasks, particularly in the realistically motivated
scenario of transferring from multiple source lan-
guage KGs to a target language KG. Entity and
relation alignments expose a KGC algorithm to
more facts, which can lead to better completion.
Conversely, a high-confidence completion can give
additional evidence to align entities and relation
(see extended example in Appendix A).

We present ALIGNKGC, a multi-task system
that learns to optimize for KGC, EA and RA jointly.
We develop ALIGNKGC in two settings. Our
first ‘GRAPHONLY’ setting follows KGC literature,

11922

https://www.wikidata.org/wiki/Wikidata:Main_Page
https://en.wikipedia.org/wiki/Linked_data


where no surface forms or other textual information
is available. This helps in direct comparison against
other KGC approaches. Here, ALIGNKGC uses
a novel subject-object signature of each relation,
which it represents as a bag of pairs of entity embed-
dings. Relation pairs are compared for equivalence
and implication using maximal matchings between
these embedding sets. RA supervision imposes a
loss over these maximal matching measurements,
which can be reduced via gradient descent on en-
tity embeddings. This RA-based loss term is com-
bined with a state-of-the-art KGC loss. Our second
‘GRAPHTEXT’ setting additionally employs entity
and relation surface forms (when available), as in
the standard EA research. Here, ALIGNKGC in-
corporates similarity between surface forms as an
additional loss term based on EA (RA) supervision.

We evaluate ALIGNKGC on slices of DBPe-
dia collected in the DBP5L (Chen et al., 2020),
DBP15K (Sun et al., 2017) and OpenEA (Sun et al.,
2020b) datasets, covering seven languages. In both
GRAPHONLY and GRAPHTEXT settings, ALIGN-
KGC improves substantially on KGC and EA tasks
compared to recent baselines (Yao et al., 2019; Wu
et al., 2019a; Zhu et al., 2021b), and gives competi-
tive RA performance. These results underscore the
value of joint training for these tasks. Our imple-
mentation is public.1 A preliminary version of this
work was published by Singh et al. (2021).

2 Notation and preliminaries

A knowledge graph (KG) provides a graph-view
to a knowledge-base (KB). A KG consists of en-
tities E and relations (aka relation types) R. A
KG instance is a triple (s, r, o) where s, o ∈ E and
r ∈ R. These are all canonical IDs. Each ID (say
s) is associated with one or more textual aliases
(text(s)). KGC, EA and RA systems usually as-
sociate these IDs with embeddings to be trained,
which we denote as s, r,o, etc. These could be
real or complex vectors.

KG completion For any single KG, training data
is provided as (s, r, o) triples. A test instance
has the form (s, r, ?) or (?, r, o) where the sys-
tem has to predict o or s. Multiple correct val-
ues are possible. The evaluation protocol takes
a system-ranked list of candidate objects or sub-
jects, and then measures MRR or HITS@K (a.k.a.
precision@K) based on position of the gold en-

1https://github.com/soumen-chakrabarti/
alignkgc-tgz.git

tity. The filtered evaluation (Bordes et al., 2013)
removes valid train or test tuples ranking above the
gold (s, r, o) for scoring purposes. With rare ex-
ceptions (Yao et al., 2019), KGC has traditionally
been solved in the GRAPHONLY setting, without
using textual features.

We extend monolingual KGC by considering a
set L = {l1, l2, . . .} of languages, with KGl repre-
senting the KG supported by the language l. An
entity in this KG is denoted as el, and a relation
as rl. While trying to improve KGC for target lan-
guage l′, KGs in multiple source languages l may
be beneficial.

EA & RA alignment An entity alignment (EA)
or equivalence between entities el and el′ in KGs of
two languages l and l′ is denoted as el ≡ el′ , also
written as the triple (el,≡, el′). Similarly, a relation
alignment (RA) or equivalence between relations
rl and rl′ is specified as rl ≡ rl′ . Other types of
alignment between relation pairs (such as rl ⇒ rl′)
may be possible, though not studied in this paper.
During training, a set of gold EAs {(enl ,≡, enl′) :
n = 1, . . . , N} and a set of gold RAs {(rml ,≡
, rml′ ) : m = 1, . . . ,M} are revealed to the system
between eachKGl andKGl′ . The system’s goal is
to infer additional entity and relation equivalences.
It usually produces a ranked list of equivalences,
evaluated using HITS@K or MRR.

Joint KGC, EA & RA problem definition In
the GRAPHONLY setting, given a set of KGs
{KGl|l∈L}, gold EAs and gold RAs, the goal is
to predict new facts (sl, rl, ol) for each KGl, and
new entity and relation alignments (el,≡, el′) and
(rl,≡, rl′). For GRAPHTEXT setting, each entity
el and relation rl may have associated text text(el)
and text(rl).

3 Related work

KG completion KGC, through learning embed-
dings for entities and relations, is a densely-
populated research landscape. At a high level,
they fit entity and relation representations, along
with a scoring function, such that training KG facts
are scored higher than randomly sampled negative
facts. Thus, the model size scales with the num-
ber of KG entities and relations. Among the best
performers are ComplEx (Trouillon et al., 2016),
ConvE (Dettmers et al., 2018), and RotatE (Sun
et al., 2019b). Almost all systems are designed for
a single KG and in GRAPHONLY setting, agnostic
to the language used in entity and relation aliases.
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We use ComplEx (Trouillon et al., 2016; Lacroix
et al., 2018) as our baseline KGC gadget, because
it gives near state-of-the-art predictions. ComplEx
defines a triple score as
f(s, r, o)=< (〈s, r,o?〉) =< (

∑
d sdrdo

?
d) , (1)

where c? is complex conjugate, 〈· · · 〉 is a 3-
way elementwise inner product and <(·) is
the real part of a complex number. Using
f , ComplEx defines Pr(o|s, r)= ef(s,r,o)∑

o′ e
f(s,r,o′) and

Pr(s|o, r)= ef(s,r,o)∑
s′ e

f(s′,r,o) . To train, we use negative
log-likelihood KGC loss
LKGC =

∑

(s,r,o)∈KG

− log Pr(o|s, r)− log Pr(s|o, r). (2)

EA & RA alignment Early EA methods worked
in the GRAPHONLY setting. They include TransE
adaptations, such as MTransE (Chen et al., 2017),
and TransEdge (Sun et al., 2019a), iterative EA
bootstrapping (Sun et al., 2018), a combination of
ComplEx and DistMult (Shi and Xiao, 2019), and
use of GNNs (Sun et al., 2020c).

Recent EA methods (Wu et al., 2019a,b; Zhu
et al., 2021b,a) are based on GNNs over KGs,
where entity (node) embeddings are computed over
an entity’s relational neighborhood, and equiva-
lence is checked by comparing node embeddings.
BERT-INT (Tang et al., 2020) compares two nodes
through direct 1-hop neighbor-to-neighbor com-
parisons. Like us, RDGCN (Wu et al., 2019a)
and RNM (Zhu et al., 2021b) recognize the du-
ality between EA and RA. They benefit from
the GRAPHTEXT setting, by using deep text en-
codings (e.g., mBERT (Devlin et al., 2019)) on
the name/description of an entity (in different
languages) to obtain node vectors for initializ-
ing GNNs. RNM obtains the best EA accuracy,
though if GNNs are initialized with random vec-
tors, RNM’s performance plummets. Hence, we
compare against these in GRAPHTEXT setting only.
Meanwhile, RA approaches have been limited to
computing overlap of entity-pairs in non-neural set-
tings (Lin and Pantel, 2001; Bhagat et al., 2007;
Nakashole et al., 2012).

The popular DBP15K (Sun et al., 2017) EA
dataset has been criticized (Liu et al., 2020; Berren-
dorf et al., 2021), for containing many EA pairs
with almost exact name matches, unduly rewarding
text-based methods. DBP5L (Chen et al., 2020)
and OpenEA (Sun et al., 2020b, v. 1) have similar
limitations. Like Mao et al. (2020a), we offer a
flexible option to use or not use textual descrip-

tions of entities and relations. We clearly separate
the effect of text features through our two settings,
and also show EA performance after filtering exact
matches, to focus on non-trivial EA queries.

Against this backdrop, the main novelties of
ALIGNKGC are its: 1) multi-task integration be-
tween KGC, EA and RA; 2) non-aggregative repre-
sentation of relations in terms of entity embeddings;
and 3) support for multiple source to single target
language transfer.

4 The design of ALIGNKGC

Perhaps the most straight-forward way to apply a
KGC system across multiple KGs is to compute
KGU =

⋃
l∈L KGl such that for all revealed en-

tity equivalences {(el,≡, el′)}, collapse their node
pairs, and rename all equivalent rl, rl′ relation IDs
to a common new ID (a transitive closure may be
needed to identify equivalence classes of entities or
relations). As pointed out in multiple works (Sun
et al., 2017; Zhu et al., 2017; Shi and Xiao, 2019),
“pre-aligned pair should share embedding to bridge
different KGs. Under this assumption, the semantic
loss between equivalent entity or relation pair is
zero.” A standard KGC system, such as ComplEx,
can work on the resulting KGU , and we call this
method KGCUNION. Comparing entity and rela-
tion embeddings across languages provides a first
solution for EA and RA as well.

How similar are two relations rl, rl′ in KGU?
Comparing their embedding vectors rl, rl′ , com-
puted by ComplEx, gives a first estimate. However,
we found that this did not yield the best results. In-
stead, guiding the training through an auxiliary loss,
computed using the following explicit relation sig-
natures helped the model learn better embeddings.
Here s, o are interpreted as canonical IDs (hence,
‘hard’). This will be generalized shortly.

Definition 1 (Hard SO-signature). We define the
(‘hard’) subject-object signature of a relation r as

SO(r) = {(s, o) : (s, r, o) ∈ KGU}. (3)

4.1 Hard SO-overlap & Jaccard similarity

Definition 2 (SO-overlap). The (hard) overlap be-
tween two relations rl, rl′ is | SO(rl) ∩ SO(rl′)|.

Jaccard similarity can then be used as a standard
symmetric belief that two relations IDs in different
languages are equivalent:

bJ(rl ⇔ rl′) =
| SO(rl) ∩ SO(rl′)|
| SO(rl) ∪ SO(rl′)|

. (4)
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If bJ(rl ⇔ rl′) exceeds a threshold θ (tuned us-
ing dev set), we add (rl, rl′) to set ΨJ of ‘silver’
alignments. We define an additional RA loss term
encouraging such embeddings to be aligned:

LRA-J =
∑

(rl,rl′ )∈ΨJ

bJ(rl ⇔ rl′)
∥∥rl − rl′

∥∥
1
. (5)

We call this scheme Jaccard.

4.2 Asymmetric subsumption
A problem with Jaccard similarity is that it can
give a symmetric high score to relation pairs hav-
ing asymmetric implications between them. E.g., in
the DBP5L data set, Jaccard similarity gives a large
symmetric similarity score between locationCity
and head-quarter, or keyPerson and founders
relations in different KGs. However, these rela-
tion pairs clearly involve asymmetric implication,
and should not be linked. Therefore, we need an
asymmetric belief measure (bA) for one relation
subsuming another. We define it as

bA(rl⇒rl′) =
| SO(rl) ∩ SO(rl′)|

| SO(rl)|
∈ [0, 1] (6)

The asymmetry in (6) refrains from pushing those
relation pairs together. This avoids some erroneous
inferences, generally boosting precision — possi-
bly at the expense of some recall, as this may also
remove some “reasonable inferences”. Extending

(rl ⇔ rl′) iff (rl⇒rl′) ∧ (rl′⇒rl) (7)

to the fuzzy domain, we get

bA(rl⇔rl′) = min {bA(rl⇒rl′), bA(rl′⇒rl)} (8)
which we readily see as equivalent to

| SO(rl) ∩ SO(rl′)|min
{

1
|SO(rl)| ,

1
| SO(rl′ )|

}

=
| SO(rl)∩SO(rl′ )|

max{| SO(rl)|,| SO(rl′ )|} ∈ [0, 1]. (9)

Similar to Eqn. (5), we incentivize the model to
align rl and rl′ if their bA(rl⇔rl′) is high. In par-
ticular, we search for pairs of ‘silver’ alignments
(rl, rl′) ∈ ΨA, where rl = argmaxr′l

bA(rl′ ⇒ r′l)
and rl′ = argmaxr′

l′
bA(rl ⇒ r′l′). In other words,

we want to apply the loss only to partner relations
with mutually largest implication beliefs in that
language. We define an asymmetric RA loss as:

LRA-A =
∑

(rl,rl′ )∈ΨA

bA(rl ⇔ rl′)
∥∥rl − rl′

∥∥
1
. (10)

We call this method Asymmetric. Note that our
expression (10) is not asymmetric, but the notion of
relation entailment is. There are many other stan-
dard notions of symmetric and asymmetric overlap:
Jaccard, overlap, simple matching, Hamming, Dice,
and Tversky coefficients, and exploring these is left

столица (stolitsa, capital of)
capital of

Moscow
Russian Federation

Москва
Российская Федерация

Токио
Япония

Tokyo
Japan

Hard alignment

Soft alignment

Figure 1: Motivation behind SO-set representation,
showing En and Ru relation capital-of, with hard and
soft overlaps among their SO-sets.

for future work.

4.3 Soft overlap and approximation
In the above definitions involving SO, we assumed
the (s, o) pairs were represented using canonical
entity IDs. Pairs such as (Tokyo, Japan) are in
the “hard intersection” shown in Figure 1. Unless
explicit entity equivalences are provided, ‘hard’
SO overlap will underestimate relation similarities.
Based on their KG neighborhoods, entity ‘Moscow’
in the English KG may have a similar embedding
to its Russian counterpart, and the same may hold
for “Russian Federation”. These are shown as “soft
alignments” in Figure 1. We now extend these ideas
to redefine SO-signatures using entity embeddings,
which can be trained via gradient descent.

Recall that the KGC system obtains embedding
vectors e for each entity e in the KG. We modify
our earlier definition of subject-object signature
(and reuse the notation):

Definition 3 (Soft SO signature). For each rela-
tion r,

SO(r) = {(s,o) : (s, r, o) ∈ KGU}. (11)

Each element is the concatenation of the subject
and object embedding vectors. The ith embedding
pair in SO(r) is denoted SO(r)[i]. Two such pairs
can be compared by, say, extending cosine similar-
ity with an AND-semantic:
sim

(
(s,o), (s′,o′)

)
=σ(cos(s, s′))σ(cos(o,o′)),

(12)
where σ is the sigmoid nonlinearity. This captures
the requirement that both subjects and objects have
to be similar.

The key challenge is to compare two sets of such
SO vectors, SO(rl), SO(rl′) for extending Defn. 2.
A simple approach is to use a network to encode
each SO-set (Zaheer et al., 2017; Lee et al., 2019)
into a set embedding and then compare these (see
Appendix J for details). However, recent work (Pab-
baraju and Jain, 2019; Tang et al., 2020) suggests
that we should drill down to pairwise interactions

11925

https://en.wikipedia.org/wiki/Jaccard_index
https://en.wikipedia.org/wiki/Overlap_coefficient
https://en.wikipedia.org/wiki/Simple_matching_coefficient
https://en.wikipedia.org/wiki/Hamming_distance
https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient
https://en.wikipedia.org/wiki/Tversky_index


between set elements.
To that end, consider two relations from different

languages, rl, rl′ , that are candidates for alignment.
Suppose the (s,o) pairs of rl are indexed by i and
pairs of rl′ are indexed by j. We build a matrix
Srl,rl′ of pairwise cosine similarities:

Srl,rl′ [i, j] = sim
(

SO(rl)[i], SO(rl′)[j]
)
. (13)

Definition 4 (Soft SO-Overlap). The continu-
ous extension of | SO(rl) ∩ SO(rl′)|, denoted by
SoftOv(rl, rl′), is defined as the value of the max-
imal matching on the weighted bipartite graph in-
duced by Srl,rl′ .

In Appendix I we show that SoftOv general-
izes hard-SO overlap. Note that SoftOv(rl, rl′)
depends on entity embeddings, which are to be
trained. Ideally, we should be able to backpropa-
gate various KGC and alignment losses past the so-
lution of the matching problem to the entity and re-
lation embeddings. Gumbel-Sinkhorn matrix scal-
ing (Cuturi, 2013; Mena et al., 2018) can be used
for this purpose, but it is computationally expensive
at KG scales (Appendix K).

Here we use a computationally cheaper approx-
imation: only if i is j’s strongest partner (i =
argmaxi′ S[i′, j]) and j is i’s strongest partner
(j = argmaxj′ S[i, j′]), we retain edge (i, j) in our
matching. (In Section 5.9, we show that this prun-
ing reduces the value of our matching by less than
1% from the optimal matching.) Let the retained
edge set be P (rl, r

′
l). For each retained edge (i, j),

we accumulate into SoftOv(rl, rl′) a score incre-
ment of σ

(
Srl,rl′ [i, j]w + c

)
, where σ is the sig-

moid nonlinearity, and w > 0, c ∈ R are model pa-
rameters trained along with all embeddings. Thus,
we approximate |SO(rl) ∩ SO(rl′)| using

SoftOv(rl, rl′) =
∑

i,j:P (i,j)

σ
(
Srl,rl′ [i, j]w + c

)
, (14)

We continue to use (6)-(9) as defined in Asymmet-
ric, except we replace the hard overlap | SO(rl) ∩
SO(rl′)| by SoftOv(rl, rl′). We denote the beliefs
computed thus by bSA. The rest of the machinery
of the previous section follows, i.e., we compute
‘silver’ alignments (rl, rl′) ∈ ΨSA, leading to a
soft asymmetric RA loss as:

LRA-SA =
∑

(rl,rl′ )∈ΨSA

bSA(rl ⇔ rl′)
∥∥rl − rl′

∥∥
1
. (15)

We call this method SoftAsymmetric or SoftA-
sym for short.

For the GRAPHONLY setting, our multitask ob-

Union KG
Matrix 

ComplEx 
entity 

embeddings

Entity  
names

ComplEx 
relation 

embeddings

Silver 
relation  
pairs 

Figure 2: The three main loss components of ALIGN-
KGC: LKGC, LEA, and LRA. KG IDs/indices are de-
noted r, r′, e, e′, s, s′, o, o′ whereas corresponding vec-
tors are denoted r, r′, e, e′, s, s′,o,o′. GRAPHTEXT
methods use LEA; GRAPHONLY methods do not.

jective (see Figure 2) has the form
LKGC + αLreg + βLRA∗, (16)

where one of LRA-J, LRA-A or LRA-SA is plugged
in as LRA*. Lreg is an L2 regularization on em-
beddings. α, β, . . . ≥ 0 are tuned hyperparame-
ters. The next subsection extends this model to the
GRAPHTEXT setting by introducing text features.

4.4 Adding text signals

In the GRAPHTEXT setting, cross-lingual align-
ment can benefit from similarity between entity
names and relation names (Berrendorf et al., 2021).
Exact match can be trivially exploited by adding
(el,≡, el′) as a (noisy) ‘silver’ EA instance (and
collapse those entity nodes) in KGU if text(el) ≡
text(el′). Beyond exact match, BERT-INT and
GNN-based systems (Wu et al., 2019a,b; Tang
et al., 2020; Zhu et al., 2021b,a) bootstrap graph-
based propagation from some form of text embed-
ding, abstracted as Embed(text(el)), which we
write compactly as TxtEmb(el). Additional de-
tails are in Section 5.2 and Appendix C.

If the text embeddings of two entities in differ-
ent languages are similar, we would like their KG-
based embeddings (as obtained using previous sec-
tions) to be similar as well. This can be achieved
by augmenting Eqn. (16) with another loss term

LEA=
∑

el,el′

cos
(

TxtEmb(el),TxtEmb(el′)
)
×∥∥el − el′

∥∥
1
, (17)

thus giving the overall multitask objective LKGC +
αLreg + βLRA∗ + γLEA. Depending on whether
LRA-J, LRA-A or LRA-SA is used in Eqn. (16),
we call the resulting methods Jaccard+Text,
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Asym+Text and SoftAsym+Text. Relation texts,
if available, can be used via a similar loss term.

5 Experiments

We study these research questions: 1) Does joint
KGC, EA and RA (ALIGNKGC) improve upon
independent models for each of these tasks? 2) Is
there cross-lingual transfer of knowledge, for facts
mentioned in one language, but queried in another?
3) What are the incremental contributions of soft
overlap and text embeddings in the overall perfor-
mance of ALIGNKGC? 4) How does performance
vary with the number of seed alignments (both en-
tity and relation) provided at training time?

5.1 Data sets

Popular KGC datasets such as FB15k, FB15k-237,
WN18, WN18RR, and YAGO-3-10 are not mul-
tilingual. In this work, we consider the follow-
ing data sets: 1) DBP5L (Chen et al., 2020), a
dataset tailored for combined KGC and EA tasks
with English, Japanese, Greek, Spanish, French
KGs; 2) DBP15K (Sun et al., 2017), developed
for the EA task and has English, French, Japanese,
Chinese KGs; and 3) OpenEA (Sun et al., 2020b),
also designed for the EA task with English, Ger-
man, French KGs. In all splits, we use 30% of
entity alignments and 0% relation alignments for
training. Note, our results in DBP15K and Ope-
nEA do not exactly match published work, since
(for KGC evaluation), we remove the test facts from
training KGs. For GRAPHTEXT methods, we use
entity names as textual information for an entity.
Relations in these datasets do not have associated
surface forms in different languages, so no textual
RA loss is added. Further details of datasets and
text processing are in Appendices B and C.

5.2 Generating text features

Each competing GRAPHTEXT method was given
all text featurization options (Appendix C). To
save space, we reported in the main paper only the
best-performing setting for each individual model.
Available settings were:
GloVE, BERT: English-only, therefore unsuited.
Translate+GloVE: High-quality translation to
English followed by GloVE.
Translate+BERT: Ditto, followed by BERT.
mBERT: Directly embeds multilingual texts. For
some low-resource languages, mBERT’s word-
piece dictionary is deficient. In such cases Trans-

late+BERT may be better than mBERT.
Translate+mBERT: To keep competing methods
standardized, we avoid any BERT-to-mBERT dis-
crepancy (in word-piece vocabularies, say), using
mBERT even after translation to English.

Method Best text featurization scheme
RDGCN (Wu et al., 2019a) Translate+GloVE
RNM (Zhu et al., 2021b) Translate+GloVE
RAGA (Zhu et al., 2021a) Translate+GloVE

ALIGNKGC=SoftAsym+Text Translate+mBERT

Table 1: Best text features for GraphText methods.

The best text featurization choices for each
method are shown in Table 1. Compared to
RDGCN/RNM/RAGA, AlignKGC benefits from
fine-tuning mBERT using EA before multi-task
training. Others suffer from mBERT’s larger model
capacity and prefer GloVe.

5.3 Methods compared
KGC: For KGC GRAPHONLY setting, we have
three baselines: 1) ComplEx, when applied to any
one KG in isolation, which we call KGCMONO,
2) KGCUNION – ComplEx applied to KGU , and
3) KEnS (Chen et al., 2020), a recent multilin-
gual KGC algorithm. KEnS embeds all KGs in
a shared space. It ensembles predictions from
embedding models of multiple language-specific
KGs. All other GRAPHONLY methods are ab-
lations of ALIGNKGC, ranging across Jaccard,
Asymmetric, and SoftAsym. For assessing the
benefit of text signals (GRAPHTEXT), we evaluate
Asym+Text and SoftAsym+Text, and also report
on KG-BERT (Yao et al., 2019). For each compet-
ing GRAPHTEXT method, we use its most favor-
able text encoding method among translate+GloVE,
mBERT, and translate+mBERT.
EA and RA: KGCUNION and ALIGNKGC vari-
ations can also provide EA predictions by compar-
ing embeddings e using cosine similarity to rank
equivalence candidates. We compare these against
RNM and RDGCN, the best GRAPHTEXT base-
lines. Neither ALIGNKGC nor any baseline is al-
lowed to access test fold KGC, EA or RA instances
for any of these three tasks. For RA comparisons,
following the approach of RNM, we recognize that
both embeddings rl, rl′ and sets SO(rl),SO(rl′)
can provide valuable signal toward the scoring of
(rl,≡, rl′). Accordingly, let S(r) = {s : (s, ·) ∈
SO(r)} and O(r) = {o : (·, o) ∈ SO(r)} be the
subject and object entities involved with r, and let−−→
S(r),

−−→
O(r) be the average of their entity embed-

dings. Following RNM, we represent relation r
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Greek (EL) English (EN) Spanish (ES) French (FR) Japanese (JA)
H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

KGCmono 23.6 49.0 31.9 18.8 43.0 26.9 22.1 50.1 31.4 24.0 50.4 32.8 26.4 49.4 34.4
KG-BERT 17.3 40.1 27.3 12.9 31.9 21.0 21.9 54.1 34.0 23.5 55.9 35.4 26.9 59.8 38.7
KEnSb(RotatE) 27.5 56.5 - 14.4 39.6 - 25.2 62.6 - 22.3 60.6 - 32.9 64.8 -
KGCunion 25.1 56.2 35.0 18.3 43.7 26.4 22.6 52.7 32.3 26.0 54.7 35.8 29.3 55.9 38.6
Jaccard 25.1 57.8 35.7 18.5 45.0 27.2 23.0 52.3 32.7 27.6 58.0 37.6 32.9 59.8 41.9
Asymmetric 26.6 58.9 37.8 19.7 45.2 28.0 25.6 56.0 35.6 29.5 58.4 39.1 33.5 59.9 42.2
SoftAsym 32.7 61.0 42.5 20.8 45.9 29.1 26.9 55.9 36.4 30.7 59.3 40.3 34.7 61.7 43.9
Asym+Text 53.8 88.1 66.4 35.5 65.4 46.0 48.8 82.8 61.1 49.5 83.4 61.7 52.4 78.9 61.8
SoftAsym+Text 57.6 88.4 69.0 37.2 66.1 47.4 53.0 84.4 64.5 52.9 84.9 64.5 53.2 80.9 62.9

Unseen test set
KGCunion 21.6 50.5 30.8 16.9 41.9 24.9 20.2 49.9 29.7 22.4 51.1 32.2 25.1 50.4 33.9
Jaccard 20.1 52.5 30.4 16.9 43.0 25.4 19.8 48.8 29.3 23.0 54.3 33.1 26.7 54.2 35.7
Asymmetric 20.3 52.8 31.3 17.5 43.0 25.7 21.9 52.5 31.8 24.6 54.3 34.4 27.1 53.8 35.8
SoftAsym 25.5 55.3 35.6 18.0 43.5 26.4 22.2 52.0 31.8 24.7 54.9 34.8 27.7 55.5 36.9
Asym+Text 48.7 86.2 62.2 33.2 63.9 43.9 45.8 81.3 58.5 45.4 81.6 58.4 47.0 75.6 57.0
SoftAsym+Text 52.6 86.5 65.0 34.9 64.6 45.3 50.0 82.9 62.0 49.2 83.2 61.5 47.7 77.8 58.0

Seen test set
KGCunion 45.3 89.3 59.0 48.3 82.0 59.2 48.8 83.1 60.6 57.3 86.3 67.7 53.1 87.6 65.6
Jaccard 54.0 88.7 66.3 54.4 87.8 65.8 57.1 90.2 68.9 67.3 90.3 76.0 68.3 91.6 77.2
Asymmetric 62.7 94.0 75.5 68.5 94.8 78.4 65.4 94.6 76.8 72.4 94.2 79.8 70.2 94.7 78.8
SoftAsym 74.7 94.0 82.2 81.7 98.8 87.9 77.2 97.8 85.7 82.6 97.5 88.3 75.2 96.9 83.8
Asym+Text 83.3 99.3 90.3 85.9 99.4 91.7 81.6 99.3 89.3 85.2 98.6 91.1 82.9 97.8 89.4
SoftAsym+Text 86.7 99.3 92.1 87.8 100.0 93.1 86.0 99.8 92.0 84.5 99.5 90.9 84.8 98.5 90.6

Table 2: DBP5L, EA=30%, RA=0%, KGC performance. GRAPHTEXT methods. Best, second-best numbers.

as the concatenation [r,
−−→
S(r),

−−→
O(r)] and compare

rl, rl′ using the cosine of the concatenated repre-
sentations in the entity-aware relation matching
protocol of RNM. Appendix D discusses hyperpa-
rameter tuning and other implementation details.

5.4 Evaluation policies

KGC evaluation: We use standard evaluation
framework (as described in Section 2) and rank
candidates o for test instances (s, r, ?), with gold
o∗ known. We report filtered MRR, HITS@1 and
HITS@10 (abbreviated H@1, H@10). The seen
test subset refers to those facts that are already
seen at train time, but in a KG of a different lan-
guage. I.e., a test fact (sl, rl, ol) is in seen test if
∃(sl′ , rl′ , ol′) ∈ KGl′(train) s.t. sl ≡ sl′ , ol ≡ ol′

and rl ≡ rl′ , even though the model may/may not
know these alignments. All other test facts are in
the unseen test subset. The seen split tests the abil-
ity to memorize known facts in one language and
align them to another language; the unseen split
tests a system’s inference capability – those facts
are likely not read in any language at train time.

EA and RA evaluation: Test instance (el,≡
, ?l′) is regarded as a task of ranking el′s, using
the cosine distance between the entity embeddings
of the language pair. RA is evaluated similarly, by
ranking rl′s for the query (rl,≡, ?l′). We calculate
H@1 and H@10 on the ranking. Recognizing ex-
act name match pitfalls in EA (see Section 3), we

RA%

0 10 20 30 40 50

EA%
25

50
75

100

KG
C 

H@
1%

0
10
20
30
40
50
60

Figure 3: KGC Hits@1 variation as the percentage of
EA and RA revealed at training time are jointly varied.

report on all test instances and also on the subset
of instances without text match.

5.5 Results: KGC performance

Table 2 reports KGC performance for DBP5L.
DBP15K and OpenEA show similar patterns, and
are relegated to Appendix E.
GRAPHONLY methods: All methods outper-
form KGCMONO, since it does not perform multi-
lingual training. KGCUNION obtains much better
scores because of combining different language
KGs. Both baselines are outperformed by all
ALIGNKGC variants. Jaccard performs well for
seen facts. Asymmetric removes false positives in
RA, suffered by (symmetric) Jaccard. But it has
a slight negative effect on unseen facts, likely be-
cause of removal of some reasonable inferences.
Making SO-overlap soft and trainable enables bet-
ter learning of embeddings and implication scores.
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SoftAsymText +Text RAGA RNM RDGCNLangPair
All !M All !M All !M All !M All !M

EL-EN 83.8 82.6 90.3 89.6 75.8 75.5 74.9 74.1 71.3 70.1
EL-ES 83.3 81.9 91.1 90.5 79.8 79.6 79.4 78.0 74.7 73.5
EL-FR 82.1 80.8 90.9 90.3 69.1 69.0 72.4 70.7 72.7 71.3
EL-JA 74.8 74.6 89.3 89.3 64.4 64.4 68.3 68.1 64.4 64.2
JA-EN 76.5 76.4 88.5 88.5 59.1 59.2 64.5 64.4 58.2 58.2
JA-ES 74.3 74.2 88.9 88.8 58.3 58.3 65.0 64.9 60.0 59.8
JA-FR 73.9 73.7 88.9 88.9 64.5 64.4 70.6 70.5 60.2 60.1
ES-FR 89.5 76.4 96.1 91.7 80.9 80.8 84.9 72.2 87.1 74.5
ES-EN 93.3 86.5 96.8 94.1 85.7 85.7 88.0 79.2 87.8 78.8
EN-FR 90.5 81.0 95.3 91.2 77.0 76.7 81.2 69.9 83.2 71.1

AVG 82.2 78.8 91.6 90.3 71.5 71.4 74.9 71.2 72.0 68.2
(!M = no exact match)

Table 3: DBP5L, EA H@1 performance.

Each successive model enhancement — Jaccard,
Asymmetric, and SoftAsym — achieves progres-
sively better performance. The differences in seen
vs. unseen are along expected lines – models suc-
cessfully extrapolate a seen fact in one language
to another language. We report KEnS scores from
its best reported setting, KEnSb(RotatE). Although
it has strictly more information than ALIGNKGC,
with EA=RA=100%, it performs even worse than
KGCUNION. We attribute this to 1) a stronger
KGC baseline of ComplEx (with high negative
sampling), compared to KEnS’s use of RotatE with
only one negative sample, and 2) ALIGNKGC’s
hard alignment policy of providing aligned entities
in one unified KG with a single embedding, instead
of KEnS’s approach of finding nearest entities in
each KG separately and then creating an ensemble.

GRAPHTEXT methods: Unsurprisingly, when
entity surface forms are available, the methods see
a huge jump in performance. This is because tex-
tual information helps with EA (especially in un-
seen set), which, in turn, helps KGC. It also outper-
forms KG-BERT, a GRAPHTEXT KGC approach.

Effect of the number of seed EAs and RAs:
We vary the percentage of revealed seed relation
alignments (RA%) and entity alignments (EA%)
on x and y axes, and observe test KGC H@1 perfor-
mance on the z axis (Figure 3; color changes with
bar height). Predictably, increasing either EA%
or RA% improves KGC. At any RA% value, in-
crease in EA% has a powerful impact. At low
EA%, increasing RA% has limited KGC impact.
In this setting, entities in different languages have
limited connections, and so the KGs are sparsely
connected. Increasing EA% leads to collapse of
entity nodes, increasing the number of seen triples
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Figure 4: EA Hits@1 variation as the percentage of EA
and RA revealed at training time are jointly varied.

making the graph denser, and likely making it eas-
ier for ALIGNKGC to reason with. Moreover, the
model is able to infer many relation IDs as syn-
onymous when more EAs are known, due to the
explicit incentive provided via asymmetric loss —
these improve downstream KGC performance.

5.6 Results: EA performance
Table 3 shows EA performance for DBP5L.
DBP15K and OpenEA results are shown in Ap-
pendix F. We also compare against performance
observed from the original codes for the recent sys-
tems RAGA (Zhu et al., 2021a) (EA) and RNM
(Zhu et al., 2021b) (EA and RA).

Translate+mBERT, with mBERT fine-tuned
from training EAs, is a formidable baseline, in
fact, better than RNM and RDGCN. However, Sof-
tAsym+Text clearly adds further value to Trans-
late+mBERT, establishing a new state of the art
among known EA methods. Figure 4 shows test
EA hits@1 against EA% and RA% (color changes
with bar height). We observe that (predictably)
increasing either EA% and RA% improves KGC
performance.

At any RA% value, increase in EA% has a pow-
erful impact on both EA performances. At low
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Rare (<500) Freq (≥500)Methods↓ H@1 H@3 H@1 H@3
KgcUnion 35.6 47.9 79.8 93.2

Jaccard 39.4 53.8 80.2 92.8
Asymmetric 37.9 51.8 81.9 94.0
SoftAsym 41.8 55.4 84.4 94.1

RNM 61.3 72.0 85.8 93.9
Asym+Text 71.2 80.7 86.8 96.6

SoftAsym+Text 72.8 82.2 86.8 95.9

Table 4: DBP5L, RA performance. Relations occurring
in <500 and ≥500 triples are evaluated separately.

EA%, increasing RA% does add information on
fact similarity across KGs, thus improving EA
score, but the numbers remain low, due to the over-
all difficulty of the task.

At high EA% values, increasing RA% does not
further improve EA performance. This is because
EA supervision generally targets more frequent re-
lations (Figure 6). Even at low RA%, this enables
adequate alignment of frequent relations, leading
further to adequate alignment of the entities at-
tached to such relations.

5.7 Results: RA performance
Table 4 compares (unweighted average over lan-
guage pairs) RA performance of various methods
on DBP5L. Per-language-pair drill-down for all
three data sets can be found in Appendix G. We
split relations into rare (SO-set has under 500 SO
pairs) and frequent (≥500 SO pairs). Naturally,
RA predictions involving frequent relations are ex-
pected to be generally more accurate. GRAPH-
ONLY methods perform worse than GRAPHTEXT

methods as expected, with SoftAsym rising above
others. Within GRAPHTEXT methods, Asym+Text
and SoftAsym+Text improve considerably over
RNM, particularly for rare relations and H@1.

5.8 Discussion
Overall, we see benefits from both our multi-
tasking objective and their associated data sets. The
previous experiments already provide some level of
ablation studies. First, Table 2 shows KGC perfor-
mance for DBP5L, with a fixed 30% of gold EAs
exposed for training. KGCmono does not use this
EA information. KGCunion does, but it is still pure
KGC, with no additional EA or RA loss terms. Jac-
card, Asymmetric and SoftAsym use EA and RA
loss terms in the objective. Their ‘+Text’ counter-
parts also use BERT-based EA loss term. Second,
we consider additional training data beyond KGC
training, in the form of EA and RA training. We
studied this effect by controlling the percentage of
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Figure 5: Our fast approximation for soft relation over-
lap is accurate. The x-axis represents the optimal
matching and the y-axis our approximation.

EA and RA training folds exposed to ALIGNKGC
variants — e.g., Figure 3 for the effect on KGC and
Figure 4 for the effect on (test fold) EA. We high-
light that the special case of 0% training exposure
also corresponds to removing EA or RA tasks from
the multi-task objective.

5.9 Soft overlap approximation quality
We described in Section 4.3 our fast approxima-
tion for maximal matching, required to evaluate the
overlap between SO(r1) and SO(r2). In Figure 5
we show a scatter plot of a sample of relation pairs;
the x-axis is the true optimal overlap found via the
Hungarian matching algorithm, and the y-axis is
our approximation. We can see that the approxima-
tion is very close to the optimal.

6 Conclusion

We presented ALIGNKGC, a system that jointly
learns to complete multiple monolingual KGs in
different languages and align their entities and re-
lations. To our knowledge, these three tasks have
never been unified before. ALIGNKGC operates
on the KG constructed by taking a union of all
monolingual KGs, and extends KGC models to use
novel EA and RA loss terms. In extensive experi-
ments, ALIGNKGC significantly improves KGC
accuracy, as well as alignment accuracy on three
datasets, underscoring the value of joint alignment
and completion.
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7 Limitations

There remain a few items for continued research
and enhancement. (1) We have focused on interlin-
gual alignment between KGs in different languages.
Aligning KGs with different domains and ‘styles’,
such as Wikipedia and IMDB, even if in the same
language, may present different challenges. (2) The
introduction of ‘silver’ relation pairs (eqns. 5, 10,
15) slows down RA loss optimization. Suitable
sampling of RA loss terms may lead to better loss
optimization and faster convergence. (3) ALIGN-
KGC effectively uses tailored representations of
relations for different tasks. For KGC it uses sin-
gle vectors r, whereas for RA it uses soft-SO-sets
SO(r). This prompts us toward a more unified
representation of KG elements.
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Joint Completion and Alignment of Multilingual Knowledge Graphs
(Appendix)
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Figure 6: Fraction of relation labels and fact tuples with
the number of languages they appear in (DBP5L).

A Example of KGC, EA and RA synergy

We first motivate the need for multi-tasking KGC,
EA and RA with a toy example from English (En)
and Greek (El) slices of DBPedia.
EA helps RA Suppose a KGC+alignment sys-
tem is given the equivalences between English (En)
and Greek (El) entity names:
• Botafogo_de_Futebol_e_Regatas ≡
Μποταφόγκο ντε Φουτεμπόλ ε Ρεγκάτας (a
football club)

• Brazil ≡ Βραζιλία
Now suppose the system sees these two triples in
En and El KGs, respectively:
En: (Botafogo_de_Futebol_e_Regatas,

:::::::::::
home_arena, Brazil)

El: (Μποταφόγκο ντε Φουτεμπόλ ε Ρεγκτας,

::::
σπίτι

::::::
αρένα, Βραζιλία)

If this pattern occurs often enough, the system can
infer the relation alignment “home_arena” = “σπίτι
αρένα”. This is an example of inferring RA from
EA.
EA, RA helps KGC Suppose the system knows
that
• Rot-WeissEssen (English) ≡ Ροτ Βάις ΄Εσσεν

(Greek name of a football club)
• Essen (English) ≡ ΄Εσσεν (Greek name of a

town in Germany)
• (Rot-WeissEssen, home_arena, Essen) holds in

the English KG
Then the system can potentially infer
(Ροτ Βάις ΄Εσσεν, σπίτι αρένα, ΄Εσσεν) in
the Greek KG. This is an example of EA and RA
helping KGC.
KGC helps EA Now suppose the KGC system
has already learnt the (soft) inference pattern

([club], home_arena, [city]) and ([city], country,
[country])

=⇒ ([club], home_arena, [country])
where home_arena and country (Χώρα in Greek)
are assumed to be ‘universal’ across languages.

Now if we know that (΄Εσσεν, Χώρα, Γερμανία)
holds in the Greek KG, we can apply the above
rule to infer (Ροτ Βάις ΄Εσσεν, σπίτι αρένα, Γερ-
μανία). If the corresponding fact was already in
the English KG as (Rot-WeissEssen, homeArena,
Germany), then we could infer the EA Γερμανία ≡
Germany.

Overall, all three tasks are synergistic, and we
posit (and verify) that a joint model can produce
better results on all three tasks.

B Data set details

B.1 DBP5L
Most suited for our purpose is the recently-released
DBP5L benchmark (Chen et al., 2020), which
is derived from DBPedia in five languages: En-
glish (En), Greek (El), Spanish (Es), Japanese (Ja)
and French (Fr). En is the most well-populated,
with 5–7 times more relations than other KGs. Fig-
ure 6 shows that a majority of the relation labels
have associated string surface forms in only one
of five languages (usually English). However, re-
lations with monolingual aliases account for only
8% of fact triples. Meanwhile, almost 80% of fact
triples use a relation label that has aliases in all
five languages. For the KGC task, we use 60-30-10
splits of the KG triples into train-dev-test folds, and
combine the train sets of all source languages for
training. In addition to KGC triple folds, DBP5L
provides gold EA pairs. We randomly sample a
fraction (‘EA%’) of these seed entity alignments
for training; the rest are used for testing. Over 65%
of the relation labels have associated string surface
forms in only one of five languages (usually En-
glish). However, relations with monolingual aliases
account for only 8% of fact triples. Meanwhile, al-
most 80% of fact triples use a relation label that has
aliases in all five languages. Because DBPedia uses
a uniform relation vocabulary that is normalized
across all languages, we adapt it slightly to assess
the RA capabilities of various models. A randomly
sampled fraction (‘RA%’) of relations are exposed
as aligned across all languages for training; the rest
are named apart for each language. An experiment
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DBP5L
el-en el-es el-fr el-ja en-es en-fr en-ja es-fr es-ja fr-ja avg
6.81 8.23 7.18 0.58 55.06 53.04 0.42 57.8 0.4 0.31 19.0

OpenEA v1.1
DBP15K v1 v2

fr-en ja-en zh-en avg en-de en-fr en-de en-fr avg
50.04 2.51 3.47 18.7 61.81 58.25 61.11 59.68 60.2

Table 5: Percentage of EA pairs (el, el′) in the test folds with exact text match, i.e., text(el) ≡ text(el′).

is thus parameterized by (EA%,RA%). Our de-
fault KGC setting is (30%,0%) for training. We
also sweep (EA%,RA%) ranges to measure the ef-
fect of partial supervision. No asymmetric gold
relation implication r1 ⇒ r2 are available, only
equivalences of the form r1 ≡ r2.

B.2 DBP15K and OpenEA
A few recent EA datasets such as DBP15K (Sun
et al., 2017), OpenEA (Sun et al., 2020b) and
DB2.0 (Sun et al., 2021) provide gold EAs between
two languages at a time. They offer fewer language
pairs (DBP15K: fr-en, ja-en, zh-en; OpenEA: en-
de, en-fr) than DBP5L (all

(
5
2

)
= 10 pairs). They

do not provide direct support for synergistic train-
ing and evaluation of RA and KGC at the same
time. Therefore, we draw our own samples for
KGC training and evaluation.

DBP15K (Sun et al., 2017) has been criticized
(Liu et al., 2020; Berrendorf et al., 2021) for the
“exact-match” problem; OpenEA (Sun et al., 2020b,
version 1) and DBP5L (Chen et al., 2020) have
similar problems. Specifically, a sizeable fraction
(Table 5) of gold EA pairs (el, el′) have the exact
same entity name, i.e., text(el) ≡ text(el′), even
if in different languages like en-fr or en-de. The
problem is severe for languages sharing charsets
and almost non-existent for language pairs that use
different charsets. A drastic measure is to replace
entity names with opaque IDs (Liu et al., 2020; Sun
et al., 2020b, version 2), but this also destroys the
legitimate ability of mBERT to map genuine trans-
lations to similar embeddings. We will therefore re-
port EA performance separately for all test-fold EA
pairs, and for the subset of test-fold EA pairs where
there is no exact text match. BERT/mBERT is
not robust to character-level corruption (Sun et al.,
2020a), so filtering exact matches is adequate.

C Text processing

Most recent, competitive EA methods (Wu et al.,
2019a; Tang et al., 2020; Zhu et al., 2021b) need ini-
tial node (entity) representation vectors for a GCN

(or GCN-like) graph propagation step. RDGCN
(Wu et al., 2019a) and RNM (Zhu et al., 2021b)
obtain this node embedding by translating the en-
tity name to English, then looking up the GloVE
embedding (Pennington et al., 2014) of the En-
glish name. BERT-INT (Tang et al., 2020) directly
applies the multilingual mBERT pretrained net-
work on the entity name (in any language). These
are not equivalent — because mBERT’s word-
piece dictionary is seriously deficient for most low-
resource languages, translation is a significantly
better option. While Google Translate is commonly
used, it is a network service whose quality can
change through time. For reproducibility, we use
EasyNMT2 with Facebook’s model m2m_100_1.2B.
For uniformity across competing systems, we use
mBERT3 throughout, even if the input is English
(for which mBERT’s wordpiece dictionary is ad-
equate). For each competing method, we use its
most favorable text encoding method among trans-
late+GloVE, mBERT, and translate+mBERT. Since
KGC is most useful around nascent entities, we use
the entity surface form(s) as text(e) and not, e.g.,
its full Wikipedia description or infoboxes. We
append a fully connected layer to mBERT’s [CLS]
embedding to project it from 768 to 300 dimen-
sions and train that plus fine-tune mBERT on entity
surface forms and gold EAs, to get 300-dim entity
feature vectors.

By virtue of the available datasets, we do not
have surface forms for relations in different lan-
guages, hence GRAPHTEXT setting is evaluated
with only entity aliases, even though ALIGNKGC
is general.

D Hardware, software, hyperparameters

Experiments run on Intel Xeon servers running
Ubuntu 20.04 with nVidia A6000 (48GB) and
Titan Xp (12GB) GPUs. Our programs were

2https://github.com/UKPLab/EasyNMT, commit hash
5ea48f5f. . .

3https://huggingface.co/
bert-base-multilingual-cased
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written using pytorch 1.10.2 on python 3.9.7.
RNM and RDGCN codes were downloaded
from their published sources, https://github.
com/Peter7Yao/RNM and https://github.com/
StephanieWyt/RDGCN, and adapted for compari-
son.

We use the Adagrad optimzer with a batch
size of 500, and fine tune hyper-parameters
on a dev set. We choose θ=0.01 for Jac-
card. We select among the following sets
of hyper-parameter values: learning rate from
{0.2,0.4,0.6,0.8,1}, α from {0.002, 0.02, 0.2}, β
from {1, 5, 10, 50, 100, 500, 1000, 2000}, and γ
from {1, 10, 50, 100, 200, 500, 1000, 2000}. Our
best choices are learning rate=0.8, α=0.02, β=500,
and γ=1000. We sample 2000 negative instances
for each positive triple when training ComplEx.
We sample initial entity and relation embeddings
via N (0, 0.05). As a form of curriculum, we let
relation alignments stabilize over a few iterations
and then make the equivalence scores trainable.

E DBP15K and OpenEA KGC
performance

Tables 6 and 7 show KGC performance on
DBP15K and OpenEA, respectively. These data
sets were meant for EA, not KGC, so we had to
sample train, dev and test folds for KGC. We show
the KGCUNION baseline and the best ALIGNKGC
variants. The trends are the same as in case of
DBP5L.

F DBP15K and OpenEA EA
performance

Tables 8 and 9 show EA performance on DBP15K
and OpenEA, respectively. As with DBP5L,
Text=Translate+mBERT, by itself, forms a strong
baseline (as also reported in BERT-INT (Tang et al.,
2020)). However, SoftAsym+Text improves con-
siderably beyond Text alone, and establishes new
state of the art EA performance over RNM and
RDGCN.

G RA performance drill-down

We drill down into RA performance over all lan-
guage pairs in all the three datasets. The results
are shown in Tables 10, 11 and 12. For RA eval-
uation (see Section 5.3), we select 0.75 as the
cosine threshold to introduce silver alignments.
Gold+silver alignments are used to augment the
cosine similarity scores for entity-aware relation

matching as in RNM (Zhu et al., 2021b, Eqn. (10))
with λr tuned to 200 via validation. As usual,
GRAPHTEXT methods are better than GRAPH-
ONLY methods. Over the majority of language
pairs, SoftAsym+Text is the leading method, fol-
lowed by Asym+Text and then RNM.

H Stability across model initializations

Table 13 shows the standard deviation over three
runs (with different random seeds for initializing
model weights) corresponding to ALIGNKGC. It
is under 1% much of the time over all the three
measurements: H@1, H@10 and MRR. This gives
an indication of the stability of ALIGNKGC.

I SoftOv generalizes discrete overlap

Proposition 1. Soft overlap in Definition 4 gener-
alizes discrete set overlap in Definition 2.

Proof sketch (details deferred to final version): If
there are E entities in the universe, represent each
entity ‘embedding’ as a 0/1 vector ofE dimensions,
specifically, as a 1-hot vector. Then the bipartite
graph defined by Eqn. (13) degenerates to edges
with weight 1 for identical SO-pairs on both sides,
and weight 0 otherwise. Then the value of the
maximal matching in this graph is exactly the size
of the intersection of the two SO-sets of the two
concerned relations.

J Differentiable set representations

Given a finite set X = {xi} where xi ∈ X , Zaheer
et al. (2017) showed that any set function f(X) that
is invariant to permutations of X can be expressed
as ρ

(∑
x∈X φ(x)

)
for suitable transformations ρ

and φ. In practice, capturing correlations between
features of xs requires unreasonably deep/wide net-
works for ρ and φ. Pabbaraju and Jain (2019) pro-
posed to present X , after applying adversarial per-
mutations, to an order-sensitive recurrent network
which can better capture correlations among xs,
while using lower network capacity. The RNN
must reduce variability of its set encoding in the
face of these permutations. Lee et al. (2019) re-
placed the RNN with a transformer network.

K Matching via matrix scaling

Consider two sets {xi : i ∈ [I]} and {yj : j ∈ [J ]}
with a metric dij = d(xi, yj). Let Tij ∈ R+

be a transportation matrix, subject marginal con-
straints to

∑
i Tij = cj for all j and

∑
j Tij = ri
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DBP15k-FR-EN DBP15k-JA-EN DBP15k-ZH-EN
French (FR) English (EN) Japanese (JA) English (EN) Chinese (ZH) English (EN)

H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR
KGCUnion 26.0 56.1 36.0 27.3 57.6 37.4 27.5 52.5 35.8 27.7 54.9 36.8 21.0 43.9 28.7 25.6 51.5 34.4
SoftAsym 27.4 57.0 37.2 28.7 58.9 38.6 28.7 53.1 36.9 28.7 54.6 37.2 22.5 45.4 30.2 26.8 51.9 35.3
SoftAsym+Text 38.5 68.6 48.9 39.8 68.8 49.9 36.4 62.3 45.3 35.5 61.2 44.0 29.4 53.7 37.6 30.4 55.4 39.0

Unseen test set
KGCUnion 25.7 55.8 35.7 27.0 57.2 37.1 27.1 52.1 35.4 27.4 54.6 36.5 20.1 42.8 27.7 25.0 50.7 33.7
SoftAsym 27.0 56.6 36.8 28.1 58.5 38.2 28.1 52.6 36.3 28.2 54.3 36.8 21.0 44.1 28.7 25.5 50.9 34.1
SoftAsym+Text 38.0 68.3 48.5 39.3 68.4 49.4 35.8 61.8 44.7 35.0 60.8 43.5 27.8 52.4 36.1 29.0 54.4 37.7

Seen test set
KGCUnion 57.6 90.9 69.1 51.7 90.7 65.1 61.7 88.3 70.5 56.8 83.2 66.2 50.5 82.0 62.2 49.3 86.3 61.4
SoftAsym 71.7 97.0 82.6 78.8 97.5 85.5 78.7 95.7 85.4 76.8 89.5 81.5 73.5 93.0 80.9 77.5 93.4 83.5
SoftAsym+Text 88.9 100.0 93.2 89.8 100.0 94.8 88.3 97.9 92.4 83.2 96.8 88.9 83.0 97.0 89.2 87.2 98.2 91.9

Table 6: DBP15K, revealed EA=30%, RA=0%, KGC performance.

OpenEA-EN-DE-V1 OpenEA-EN-DE-V2 OpenEA-EN-FR-V1 OpenEA-EN-FR-V2
English (EN) German (DE) English (EN) German (DE) English (EN) French (FR) English (EN) French (FR)

H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR
KGCUNION 15.2 35.3 21.9 22.2 43.0 28.8 19.5 46.5 28.3 29.5 55.7 38.4 32.9 54.5 40.3 31.4 53.2 39.0 43.3 71.2 53.0 42.6 68.5 51.6
SoftAsym 15.8 35.2 21.9 22.5 43.7 29.5 20.0 46.8 28.8 28.4 54.1 37.0 33.9 55.0 40.9 31.5 53.6 39.2 43.2 70.4 52.7 42.0 69.1 51.3
SoftAsym+Text 37.1 55.8 43.4 39.9 61.4 47.4 43.0 68.0 51.7 46.7 73.3 56.3 47.2 65.9 54.0 48.2 67.2 55.1 59.1 82.0 67.4 59.5 82.8 68.1

Unseen test set
KGCUNION 14.3 34.2 20.9 21.3 42.1 27.9 18.5 45.5 27.3 28.9 55.1 37.8 31.8 53.4 39.2 30.5 52.1 37.9 42.3 70.4 52.1 41.5 67.6 50.6
SoftAsym 14.6 34.0 20.6 21.4 42.7 28.4 18.8 45.8 27.6 27.5 53.5 36.2 32.4 53.8 39.5 30.0 52.3 37.7 42.1 69.6 51.7 40.6 68.2 50.1
SoftAsym+Text 36.0 54.9 42.4 38.9 60.8 46.5 41.9 67.3 50.7 46.0 72.9 55.7 45.9 64.9 52.8 46.9 66.3 53.9 58.0 81.5 66.5 58.2 82.2 67.1

Seen test set
KGCUNION 62.8 96.5 74.2 74.7 95.4 83.2 69.2 94.8 78.7 71.2 95.0 79.4 72.4 93.7 80.9 62.5 91.7 74.0 79.2 96.6 86.6 74.7 97.0 83.4
SoftAsym 84.9 98.8 91.2 88.5 98.9 92.6 80.8 95.4 85.7 83.5 97.1 89.0 85.8 96.9 90.6 82.5 95.8 87.8 83.3 98.5 89.3 81.9 97.0 88.2
SoftAsym+Text 96.5 100.0 97.8 94.3 100.0 97.1 95.4 99.4 97.4 94.2 100.0 97.0 96.1 100.0 97.7 91.7 99.2 94.8 95.5 100.0 97.7 97.0 99.6 98.3

Table 7: OpenEA, revealed EA=30%, RA=0%, KGC performance.

SoftAsymText +Text RAGA RNM RDGCNLangPair
All !M All !M All !M All !M All !M

fr-en 87.48 78.77 90.31 84.86 84.15 84.09 79.33 72.72 75.11 63.41
ja-en 64.29 63.40 69.43 68.84 63.89 63.88 62.29 62.05 50.44 49.88
zh-en 48.00 46.39 55.10 53.82 54.96 55.04 53.57 52.79 42.30 41.13
AVG 66.59 62.85 71.61 69.17 67.67 67.67 65.06 62.52 55.95 51.47

(!M = no exact match)

Table 8: DBP15K, EA H@1 performance.

SoftAsymText +Text RAGA RNM RDGCNLangPair
All !M All !M All !M All !M All !M

EN-DE-15K-V1 87.1 72.6 89.7 78.7 73.5 73.5 74.2 67.4 76.5 62.6
EN-DE-15K-V2 87.2 72.1 91.6 82.2 85 85 82.2 68.7 79.8 66.5
EN-FR-15K-V1 87.3 78.7 90.5 84.9 70 70.1 70.3 69 70.1 61.7
EN-FR-15K-V2 91.4 84.9 93.3 88.2 89.5 89.4 83.7 76.7 84.8 76

AVG 88.2 77.1 91.3 83.5 79.5 79.5 77.6 70.5 77.8 66.7
(!M = no exact match)

Table 9: OpenEA, EA H@1 performance.
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Jaccard Asymmetric SoftAsym
Rare Freq. Rare Freq. Rare Freq.LangPair

H@1 H@3 H@1 H@3 H@1 H@3 H@1 H@3 H@1 H@3 H@1 H@3
EL-EN 41.0 58.1 76.2 97.6 38.5 53.9 83.3 97.6 44.4 56.8 81.0 97.6
EL-ES 39.7 55.6 88.9 94.4 38.8 53.7 94.4 100.0 39.7 59.8 94.4 97.2
EL-FR 31.8 44.7 66.7 88.9 34.7 48.8 69.4 94.4 35.3 43.5 80.6 94.4
EL-JA 49.0 68.0 78.1 90.6 48.5 66.0 75.0 90.6 54.9 68.0 81.3 90.6
JA-EN 38.8 49.5 74.0 90.0 39.8 53.1 74.0 90.0 40.8 54.6 78.0 94.0
JA-ES 40.6 51.8 79.0 89.5 37.1 50.6 81.6 92.1 40.6 51.2 86.8 94.7
JA-FR 41.8 53.9 95.0 100.0 38.0 50.0 95.0 100.0 42.8 53.9 97.5 97.5
ES-FR 39.8 59.0 89.6 93.8 36.3 51.6 89.6 95.8 44.7 61.8 89.6 95.8
ES-EN 40.8 51.5 83.9 92.9 39.2 50.8 83.9 91.1 41.2 57.3 83.9 92.9
EN-FR 30.4 46.0 71.2 90.4 28.1 39.7 73.1 88.5 33.9 47.3 71.2 86.5

AVG 39.4 53.8 80.2 92.8 37.9 51.8 81.9 94.0 41.8 55.4 84.4 94.1
RNM Asym+Text SoftAsym+Text

EL-EN 58.1 72.2 90.5 97.6 71.4 85.5 92.9 100.0 74.4 85.9 95.2 100.0
EL-ES 69.2 79.4 94.4 97.2 79.9 86.0 94.4 100.0 83.2 88.8 94.4 100.0
EL-FR 53.5 62.9 75.0 94.4 62.4 73.5 83.3 97.2 62.4 74.1 83.3 94.4
EL-JA 74.8 83.5 81.3 90.6 82.5 88.8 84.4 93.8 83.0 89.8 84.4 93.8
JA-EN 54.6 64.8 86.0 96.0 61.7 75.0 82.0 94.0 63.8 76.5 82.0 94.0
JA-ES 46.5 58.8 84.2 92.1 56.5 67.1 84.2 94.7 57.7 74.7 84.2 94.7
JA-FR 70.2 75.0 92.5 92.5 78.9 88.0 92.5 100.0 79.3 87.0 92.5 97.5
ES-FR 75.5 84.5 89.6 95.8 82.6 87.9 91.7 95.8 84.2 87.0 91.7 95.8
ES-EN 64.2 75.8 89.3 94.7 77.7 85.4 85.7 98.2 80.0 86.9 85.7 98.2
EN-FR 46.9 63.4 75.0 88.5 58.9 69.6 76.9 92.3 60.3 71.0 75.0 90.4

AVG 61.3 72.0 85.8 93.9 71.2 80.7 86.8 96.6 72.8 82.2 86.8 95.9

Table 10: DBP5L, RA performance drill-down over all language pairs.

fr-en ja-en zh-en
Rare Freq. Rare Freq. Rare Freq.

Models H@1 H@3 H@1 H@3 H@1 H@3 H@1 H@3 H@1 H@3 H@1 H@3
RNM 41.5 50.9 65.0 76.7 63.1 72.8 79.2 79.2 64.4 71.6 93.0 97.7
SoftAsym+Text 45.0 50.3 71.7 80.0 68.1 78.9 75.0 79.2 66.3 74.1 96.5 100.0

Table 11: DBP15K, RA performance drill-down over all language pairs.

EN-DE-15K-V1 EN-DE-15K-V2 EN-FR-15K-V1 EN-FR-15K-V2
Rare Freq. Rare Freq. Rare Freq. Rare Freq.

Models H@1 H@3 H@1 H@3 H@1 H@3 H@1 H@3 H@1 H@3 H@1 H@3 H@1 H@3 H@1 H@3
RNM 69.9 78.9 92.3 92.3 68.2 80.7 90.9 93.2 71.2 81.0 94.1 94.1 72.2 81.9 94.7 94.7
SoftAsym+Text 75.9 85.5 92.3 92.3 76.1 88.6 90.9 90.9 77.4 84.1 97.1 97.1 77.8 91.7 94.7 97.4

Table 12: OpenEA, RA performance drill-down over all language pairs.

GREEK ENGLISH SPANISH FRENCH JAPANESE
H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR
1.01 0.261 0.607 0.815 0.744 0.876 1.07 0.118 0.785 0.632 0.225 0.538 2.826 0.685 1.872

Table 13: DBP5L; standard deviation (absolute %) of full ALIGNKGC (SoftAsym+Text) over three random model
initializations. Most of the time it is under 1% over all three measurements: H@1, H@10 and MRR.
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for all i. Often, ri = cj = 1 or ri = 1/I and
cj = 1/J . Our goal is to minT

∑
i,j dijTij . While

this can be solved via linear programming, it is
not clear how to backpropagate losses based on
the optimal transportation back to networks that
output {xi}, {yj}. (In our case, these set elements
are functions of KG embedding vectors, through
SO-sets.) Cuturi (2013) showed that if the objec-
tive is mildly augmented with an entropy term
λH(T ) = −λ∑i,j Tij log Tij , then the optimal
transport can be approximated by iterative row and
column scaling of (dij), which are differentiable
operations. However, this is computationally ex-
pensive for large KGs.

L Exploiting relation descriptions

Along with entities, relations, too, come with tex-
tual aliases in some KGs like WikiData. If we
denote the textual description of relation r using
t(r), we can also use mlp(TxtEmb(t(r))) as ad-
ditional intrinsic features of r. (This MLP is dif-
ferent from the one for entities.) Similar to entity
alignment, if b(rl ⇔ rl′) is high, then we want
TxtEmb(rl) ≈ TxtEmb(rl′). Accordingly, we
can assess another loss term LRA3 =∑

rl≡rl′
b(rl ⇔ rl′)

∥∥TxtEmb(rl)

− TxtEmb(rl′)
∥∥

1
. (18)

In ongoing work, we are preparing a new data set
based on WikiData to evaluate the above extension.

M Other ways to use text signals

Beyond what is presented in the main paper, we
explored some other ways to incorporate mBERT
outputs, but these did not perform as well as the
approach we chose in the end. One idea was to
augment the soft SO signature with vectors output
from BERT. Specifically, we redefine SO(r) as
{〈

s,TxtEmb(s));o,TxtEmb(o)
〉

:
(s, r, o)∈KG

}
(19)

Relative weights balancing e and TxtEmb(e) may
also help. This compound vector is input to an
MLP which may be trained with mBERT weights
pinned down, or also fine tuned. This suggests the
alternative loss term
LEA=

∑

el≡el′

∥∥TxtEmb(el)−TxtEmb(el′)
∥∥

1
(20)

We may not want a flat cosine (13), but intro-
duce some and-like semantics for the match be-
tween the vectors with four fields (s1, s

′
1; o1, o

′
1)

and (s2, s
′
2; o2, o

′
2). As one example, we might use

σ
(

cos((s1, s
′
1), (s2, s

′
2))
)
×

σ
(

cos((o1, o
′
1), (o2, o

′
2))
)
, (21)

and even shift and scale the cosines before applying
sigmoid non-linearities.
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