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Abstract

NLP has advanced greatly together with the
proliferation of Transformer-based pre-trained
language models. To adapt to a downstream
task, the pre-trained language models need to
be fine-tuned with a sufficient supply of anno-
tated examples. In recent years, Adapter-based
fine-tuning methods have expanded the appli-
cability of pre-trained language models by sub-
stantially lowering the required amount of an-
notated examples. However, existing Adapter-
based methods still fail to yield meaningful
results in the few-shot regime where only a few
annotated examples are provided. In this study,
we present a meta-learning-driven low-rank
adapter pooling method, called AMAL, for
leveraging pre-trained language models even
with just a few data points. We evaluate our
method on five text classification benchmark
datasets. The results show that AMAL signifi-
cantly outperforms previous few-shot learning
methods and achieves a new state-of-the-art.

1 Introduction

Since Transformer-based (Vaswani et al., 2017)
pre-trained language models (PLMs) on massive
corpora made a big impact on NLP, fine-tuning
PLMs (Devlin et al., 2019; Lan et al., 2019; Liu
et al., 2019) has led to large improvements in a va-
riety of downstream NLP tasks. Yet, it is still chal-
lenging to fine-tune PLMs (Zhang et al., 2020) in
the few-shot regime. Recently, Adapters (Houlsby
et al., 2019a; Ben Zaken et al., 2022; Fu et al.,
2022; Hu et al., 2021) have provided a method of
fine-tuning PLMs more efficiently, by tuning some
extra weights (the Adapters) while freezing the rest.
Nevertheless, existing Adapters still fail to yield
significant results in the few-shot regime. Refer
to the Appendix table 4 for the performance of
the prior Adapters on the few-shot classification
problems.
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Since GPT-3 (Brown et al., 2020) was intro-
duced, prompt tuning has swept the machine learn-
ing community. However, finding proper prompts
(Schick and Schiitze, 2020) is still a delicate task —
requiring labor-intensive manual handcrafting with
domain expertise as well as an in-depth understand-
ing of the language model’s inner mechanisms.

In this paper, we present a cost-effective method
for language model fine-tuning that is applicable,
without customization, to a variety of language
models and Adapter types. We focus on small to
mid-sized language models such as BERT (Devlin
etal., 2019), RoBERTa (Liu et al., 2019), ALBERT
(Lan et al., 2019), BART (Lewis et al., 2020), or
DeBERTa (He et al., 2020), because they are widely
deployed in production systems due to their econ-
omy and low carbon footprint.

In this paper, we propose a meta-knowledge-
driven few-shot adapter learning method, called
AMAL (Adapter-by-MetA-Learning), based on a
novel meta-learning framework, through which
meta-level layer-wise adaptation kernels are de-
rived in an end-to-end manner. Our design takes
inspiration from (Aghajanyan et al., 2020), which
proves that the over-parameterized pre-trained lan-
guage models actually have low intrinsic dimen-
sion. We hypothesize that language model fine-
tuning can be accomplished on a low intrinsic rank
while keeping the pre-trained weights frozen, lead-
ing to our proposed low-rank adapter pooling ap-
proach.

AMAL includes two key ideas: (1) construction
of language model adapters’ intrinsic kernels from
tasks and (2) inference of the optimal task-specific
language model adapter for a given task, by refer-
ring to a meta-level latent embedding space over
all tasks.

2 Related Work

Few-shot Text Classification: DS (Bao et al.,
2019) refers to the underlying word distributions
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across all available classes and specifies impor-
tant lexical features for new classes. Frog-GNN
(Xu and Xiang, 2021) focuses on all query-support
pairs and proposes a multi-perspective aggregation-
based graph neural network to explicitly reflect
intra-class similarity and inter-class dissimilarity.
LEA (Hong and Jang, 2022) proposes a meta
learning-based document embedding approach and
derives the meta-attention aspects dictionary to be
reused when given a new task.
Parameter-Efficient Fine-Tuning: Houlsby et al.
(2019a) proposed two trainable adapter layers per
Transformer block where each adapter has two
feedforward linear layers: one down-project and
one up-project layer. BitFit (Ben Zaken et al., 2022)
shows that tuning just the bias terms of a PLM is
almost as effective as full fine-tuning. AdapterBias
(Fu et al., 2022) improves on BitFit by changing
the bias terms to be token-specific, with less train-
able parameters. LoRA (Hu et al., 2021) is also
an adapter-based fine-tuning approach where train-
able rank decomposition matrices are injected into
each layer of the Transformer architecture while
the weights of the pre-trained model are frozen.

AMAL can be seen as similar with LoRA in
terms of using the low-rank decomposition tech-
nique. However as a meta learning-based approach,
AMAL can be applied to a broad range of language
models and all existing adapter-based methods, in-
cluding LoRA.

3 Background

3.1 Few-Shot Text Classification

We deal with the few-shot text classification prob-
lem to demonstrate AMAL’s few-shot language
model adaptation performance. As usual, C-way
K -shot indicates that K-annotated examples are
only given for each of the C' number of classes for
a task (denoted as 7;), leading to the total number
of examples as K, = K x |C|.

3.2 Pre-Trained Language Models

We experiment with BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), ALBERT (Lan et al.,
2019), BART (Lewis et al., 2020) and DeBERTa
(He et al., 2020) as the underlying PLMs. They
add a dummy token to an original tokens sequence
so that the PLMs end up with providing the corre-
sponding embedding (denoted [CLS]). In this study,
the [CLS] plays an role in probing the distinctive
properties for every incoming task.
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Figure 1: Low rank adapter pooling

3.3 Meta Learning

In the meta-learning setting, tasks are divided into a
meta-training set (S*"), meta-validation set (S"),
and meta-test set (S?®%!) as disjoint sets of classes.
Our meta-learning strategy follows the overall pro-
cedure of optimization-based meta-learning (Finn
et al., 2017) so that our proposed low-rank adapters
are learned by alternating between two different
complementary processes: (1) low-rank adapter
pooling (inner update) and (2) meta-optimization
(outer update). For a task 7; ~ p(7), the task
data D-, = {(2*,y")} consist of DI and D2 dur-
ing the meta-training phase. In the meta-testing,
the dataset of a new task 7; is given as D, =
(DI, D) with a few annotated data points in the
study.

4 Proposed Method: AMAL

In this section, we present the implementation of
AMAL. The design implies the hypothesis that the
language model adaptation can be performed on
a low intrinsic rank. Here, we describe AMAL
by employing the original Adapter (Houlsby et al.,
2019b) method. Importantly, AMAL is orthogo-
nal to existing Adapter methods and can be com-
bined with any of them. AMAL offers a task-
specific adapter for an incoming task. AMAL
alternates between two update processes during
meta-training: (1) low-rank adapter pooling and (2)
meta-optimization.

4.1 Low Rank Adapter Model

As shown in Figure 1, as an element of the adapter,
each projection matrix P; € R4*™ of the [-th layer
is decomposed into three matrices:

Pr=U x EF x V (D

where [ is the layer’s index, and U; € RAxT,
EM € R™7, VY € R™" given the PLM’s original
dimension d, the adapter’s bottleneck dimension m
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and the rank 7 (r < min(d, m)). £ is a diagonal
matrix. For notational simplicity, we drop the dis-
tinction for the two different adapters (i.e., lower
and upper) and likewise the distinction between up
and down-projections. Importantly, £ is the I-th
layer’s low-rank adapter pooler for the task 7;, U]
the [-th layer’s left adapter kernels, and V; the right
adapter kernels.

4.2 Low Rank Adapter Pooling (inner update)

The aim of the pooling is to derive the task-
specific composition from the established adapter-
kernels, ¢/ and V, which are obtained in the meta-
optimization process.

To obtain the optimal adapter for a task 7;, there
are two important steps in the pooling process: (1)
encoding the task 7; into a low-dimensional latent
embedding space Z and (2) producing the task-
specific adapter pooler from the latent embedding
Z". The encoding pipeline is taken from Rusu
et al. (2018). The reason why we employ the latent
embedding space is to enable AMAL to summarize
the properties extracted from tasks into the low-
dimensional latent space Z, instead of operating
directly in the high dimensional parameter space.
First, each task is fed into the encoding process,
which is formulated as follows:

1 K N K
S DD ID I NORCAN A

kn=1n=1k;,=1
)

where 2] denotes the latent space embedding for
the particular class n under a given task 7;, /V indi-
cates the total number of classes under the task, K
denotes the total number of examples under each
class, fy, indicates the relation network (Sung et al.,
2018), and fp, is an encoder network to transform
the delegate embedding [CLS] (denoted as ch’ for
the case of the jth text instance of a specific task
T;) prior to the relation network. As a result, the
class embedding z]? is led to keep track of the
pairwise relationship with other classes, and the
task-specific embedding 2" is the concatenation of
21ty 2T

vy 20

Subsequently, the task-specific latent embedding
is delivered to the decoding process, which renders
the latent embedding to generate the associated low-
rank pooler. The decoding process is formulated as
follows:

&M = fo,(27) 3)

where £7 denotes the low rank adapter pooler for
the task 7;, fp, indicates the decoder neural net-

Algorithm 1 Our Proposed Meta-Training
Require: Meta training set St € 7, r (rank), d, m
Require: Learning rates «, (3, A, ¥

Output: U, V,0c,0,,04,60-

1: Randomly initialize U, V, Oc, 6,04, 0+

2: Let¢ = {U,V,0e,0,,04,0:}

3: while not converged do

4: for number of tasks in batch do

5: Sample task instance 7; ~ St

6: Let (D", Dv) = 7;

7: Initialize 0;1_ =0, and 2T = g

8: for number of adaptation steps do

9: Encode [CLS] to 2™ using fg,_ and fo,.
’ N .

10: Produce &, from 27 using fo,

11: Generate document embeddings using H

12: Compute Task-Adaptation loss Eﬁ:

13: Perform gradient step w.r.t. 27 " and 9;1,

14: 2T i — AV £:.TL

15: 0, 0, —av, L

16: end for '

17: Generate document embeddings using H T

18: Compute Meta-Optimization loss Eﬁfl

19: end for

20: Perform gradient step w.r.t ¢
21: ¢e¢fﬁvd,27iﬁﬁfl+)\-ﬂ+7-7€
22: end while

work, and 27 is the task’s latent embedding. To
sum up, a new task is eventually converted into the
task-specific low-rank adapter pooler via modula-
tion on the low-dimensional latent space.

4.3 Meta-Optimization (outer update)

As noted in Algorithm 1, AMAL updates three
neural network blocks (i.e., 0., 0,, 8,) as well as
the left adapter kernels ¢/ and the right adapter
kernels V, by minimizing the following objective
function in the meta-optimization process:

: val
m > A Q4 4
ee,er,elfuv (L7 + R @

k3

where () indicates a weighted KL-divergence term,
ie., Dgr(q(z7|Di)||p(z™)) where p(z7) =
N(0,Z), to regularize the latent space with the aim
to learn a disentangled embedding. R denotes a
penalty term to attain near-orthogonality in the con-
struction of ¢/ and V, and is formulated as follows:

R=ud" —I|p+ [PV ~Ilr (5

where F' denotes the frobenius norm, and both &/
and V are randomly initialized. All the hyperpa-
rameters are equivalently kept all over the layers.
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Table 1: Results of 5-way 1-shot and 5-way 5-shot classification

Amazon

Huffpost

RCV-1

Reuters

20 Newsgroup

1-shot

5-shot

1-shot

5-shot

1-shot

5-shot

1-shot

5-shot

1-shot

5-shot

MAML (Finn et al., 2017)

50.36 %

59.58 %

43.04 %

55.17 %

51.15 %

66.98 %

46.31 %

70.31 %

31.39 %

45.05 %

Proto (Snell et al., 2017)

45.54 %

71.30 %

34.70 %

50.69 %

44.77 %

5891 %

62.41 %

73.05 %

31.38 %

37.02 %

LEO (Rusu et al., 2018)

49.09 %

59.48 %

45.07 %

60.69 %

51.30 %

63.90 %

59.13 %

73.10 %

37.72 %

48.08 %

Induction (Geng et al., 2019)

45.17 %

62.69 %

46.51 %

49.02 %

43.82 %

59.94 %

61.48 %

70.09 %

32.12 %

45.72 %

DS (Bao et al., 2019)

62.6 %

81.2 %

43.0 %

63.5 %

54.1 %

753 %

81.8 %

96 %

52.1 %

68.3 %

Frog-GNN (Xu and Xiang, 2021)

71.5 %

83.6 %

54.1 %

69.6%

LEA (Hong and Jang, 2022)

63.6 %

82.69 %

46.98 %

64.4 %

51.96 %

73.81 %

71.64 %

83.07 %

43.56 %

65.29 %

P-tuning v2 (Liu et al., 2022)

32.75 %

66.87 %

27.59 %

50.67 %

21.88 %

36.67 %

30.81 %

84.80 %

28.00 %

59.67 %

27.89 %

71.13 %

31.69 %

58.93 %

2233 %

39.53 %

29.61 %

70.67 %

25.36 %

47.13 %

80.18 %

89.07 %

56.27 %

7431 %

63.73 %

83.11 %

90.84 %

97.87 %

56.80 %

70.49 %

47.20 %

78.49 %

41.60 %

61.66 %

4729 %

76.09 %

84.62 %

94.49 %

42.04 %

65.60 %

AMAL

76.36 %

90.13 %

5511 %

74.04 %

71.73 %

87.02 %

92.0 %

97.78 %

60.27 %

73.24 %

BART

77.16 %

89.60 %

57.22 %

75.02 %

70.84 %

86.22 %

90.76 %

97.42 %

59.29 %

73.51 %

DeBERTa-base 76.71 %

88.00 %

5431 %

73.42 %

71.56 %

82.76 %

85.42 %

95.02 %

52.18 %

69.42 %

DeBERTa-large 79.20 %

90.58 %

60.27 %

78.04 %

71.43 %

84.44 %

91.29 %

97.86 %

53.87 %

75.29 %

Note: The highest performance in each dataset is highlighted in Bold.

S Experimental Results

5.1 Document Embedding for Classification

Here, we briefly explain how we generated doc-
ument embeddings for our experiments. For a
text input with length L, we utilize the embed-
ding vectors for the individual tokens from the
last layer of the given PLM, which are denoted as
H[* = [h}, ..., h}'] for the jth text example of
the task 7;. For text classification, we average H]”
column-wise and then feed it into a fully connected
neural network with the parameters G;i, which are

optimized for the inner-update.

5.2 Dataset and Baselines

We evaluate AMAL on five text classification
datasets: 20 Newsgroups (Lang, 1995), Huffpost
headlines (Misra and Grover, 2021), Reuters-21578
(Lewis., 1997), RCV1 (Lewis et al., 2004) and
Amazon product reviews (He and McAuley, 2016).
We compare AMAL with eight baseline methods:
MAML (Finn et al., 2017), PROTO (Snell et al.,
2017), LEO (Rusu et al., 2018), INDUCTION
(Geng et al., 2019), DS (Bao et al., 2019), Frog-
GNN (Xu and Xiang, 2021), LEA (Hong and
Jang, 2022) and P-tuning v2 (Liu et al., 2022)
as a prompt-based fine-tuning method. We follow
the same experimental settings as in (Bragg et al.,
2021) for all datasets, except for RCV-1 for which
we use the split of (Bao et al., 2019).

5.3 Opverall Performance

We evaluate AMAL in both 5-way 1-shot and 5-
way 5-shot settings and the results are shown in
Table 1. All the scores were calculated as the aver-
age of three trials. In the results, the BERT}, . was
used as the base PLM if there is no explicit indica-
tion. For MAML, Proto, LEO and Induction, the
document embeddings are formed as explained in

0.95

0.90

0.85

0.80

0.75

Accuracy(%)

0.70
=&  anazon

HuffPost
4= vl

reuters

0.65

0.60

#— 20 Newsgroup

2 4 b B 0N
Number of layers (from top)

Figure 2: 5-way 5-shot prediction accuracy depending
on the number of top-most layers with adapters.

5.1. For DS and Frog-GNN, we quoted the reported
results from (Bao et al., 2019) and (Xu and Xiang,
2021), since the experiment settings are identical.
We applied AMAL to a wide range of small to
mid-sized PLMs: BERTys. (Devlin et al., 2019),
ALBERT},, (Lan et al., 2019), ROBERTa; . (Liu
etal., 2019), BART s (Lewis et al., 2020) and De-
BERTa (He et al., 2020) to verify the applicability
of AMAL. For BART}, ., we treated the decoder’s
final hidden state embedding of the last token as
the [CLS] embedding, as in (Lewis et al., 2020).

As shown in Table 1, AMAL outperforms the
previous methods specialized for few-shot classi-
fication over all of the datasets by a large margin:
27.69% in 5-way 1-shot classification and 22.03%
in 5-way 5-shot classification. The evaluation re-
sults demonstrate that AMAL offers agile adap-
tation of diverse small to mid-sized PLMs in the
few-shot regime.
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(d

Figure 3: t-SNE plot of the embedding space before and after adaptation with 20 newsgroup. (a)-(c) exhibit it before
the low rank adapter pooling process. (d)-(f) show the task-specific embedding space after the pooling process. (a),
(d) the embedding for seven top-level macro domains. (b), (¢) Same as (a) and (d) but highlighted for the classes
under the science domain. (c), (f) Same as (a) and (d) but highlighted for the four classes under recreation domain.

5.4 The Impact of the Number of
AMAL-equipped Layers

We explore the effect of the number of layers
equipped with AMAL. Here, the BERT, . is em-
ployed as the base PLM. We monitored perfor-
mance while incrementally extending the number
of AMAL-equipped layers, starting from the last
layer and proceeding towards the input layer. As
shown in Figure 2, giving priority to the top-most
layers is an even more cost-effective way to ap-
ply AMAL. It is also evident that starting from
the sixth or seventh layer from the top, the benefit
of inserting AMAL into the next lower layer be-
comes insignificant. These results show that the
performance of few-shot learning can be greatly
improved even with a small number of adapters.
According to this empirical analysis, we can max-
imize the efficiency in a fine-grained manner by
adjusting the number of AMAL-equipped layers.

5.5 Visualization of Task-Specific Document
Embeddings

We plot the initial document embeddings and the
corresponding fine-tuned embeddings obtained by
AMAL for 20 Newsgroups dataset (Figure 3). For
the visualization, we randomly sampled four hun-

dred tasks, each of which is composed of 5-way
1-shot from all available classes. All of the em-
beddings were projected into 2-D space via t-SNE.
Figures 3a, 3b, and 3c show the initial embeddings
before the adaptation, and Figures 3d, 3e, and 3f ex-
hibit their adapted embeddings. Figures 3a and 3d
show the adapted embeddings for ‘atheism’, ‘com-
puter’, ‘for-sale’, ‘recreation’, ‘science’, ‘religion’,
and ‘talk’. Figures 3b and 3e show the topics for
the ‘science’ domain. Figures 3¢ and 3f show the
topics for the ‘recreation’ domain.

6 Conclusion

We hypothesized that language model adaptation
can be performed on a low intrinsic rank, especially
when only a few examples are offered. We de-
signed a novel meta-learning-based low-rank adap-
tation method for leveraging small to mid-sized pre-
trained language models, allowing a new task to
be cost-effectively learned in the few-shot regime.
We demonstrated that the combination of low-rank
matrix decomposition and meta learning is so ef-
fective, that we can reap the benefits of small to
mid-sized pre-trained language models in practical
scenarios with scarce annotated data.
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7 Limitations

AMAL may be difficult to apply to unidirectional
language models such as GPT2 (Radford et al.,
2019) and GPT3 (Gao et al., 2021). This is because
unidirectional models only encode the context that
resides to the left of the [CLS] token in the input.
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A Appendix

A.1 Datasets

We introduce the datasets and the split (i.e.,
train/val/test) which had been maintained in our
experiments.

20 Newsgroups is a collection of discourses in
newsgroup posts for 20 topics (Lang, 1995).

Huffpost Headlines is a collection of news head-
lines published in the Huffington Post from 2012
to 2018 (Misra and Grover, 2021). It is composed
of 41 topics.

Reuters-21578 is composed of documents that
appeared on the Reuters newswire in 1987 (Lewis.,
1997). In addition, we adopted the ApteMod ver-
sion and discarded the documents with more than
one label to avoid ambiguity, and thus 31 classes
remain.

RCV-1 is a set of newswire stories published by
Reuters journalists from 1996 to 1997 (Lewis et al.,
2004) and comprises 71 topic classes.

Amazon data is a real-world dataset collected
from Amazon.com as a set of customer reviews
from 24 types of product categories(He and
McAuley, 2016).

To train and evaluate the models, we divided
each of the aforementioned datasets into a meta-
training set (S'"), meta-validation set (S¥%), and
meta-test set (S™°) as disjoint sets of classes
within the experimental setting. In this work, we
followed the same split of classes as in (Bragg et al.,
2021) for all datasets.

A.2 Implementation Details

The Table 2 specifies the detailed architecture of
AMAL. In the encoder module, the [CLS] vector,
which is the same size of the output of the BERT-
base-uncased, ALBERT-base, and RoBERTa-base
is linearly transformed into a 64-dimensional vec-
tor. The relation network module is a two-layers
neural network with the ReLU activation. The the
decoder module is a single-layer neural network
with the ReLLU. Finally, the classifier is a single-
layer neural network with the ReLU.
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Table 2: Architecture details of AMAL

Module Name Architecture Shape of (input, output) The number of Params
Encoder linear (768, 64) 153.6K
First layer (2X64, 2X64)
Relation Network 2-layer MLP with ReLU ReLU 32.8K
Second layer (2X64, 2X64)
ReLU
Input layer : (64, 150)
Decoder 1-layer MLP with ReLU ReLU 32.7K
Output layer : (150, 154)
Input layer : (768, 300)
Task Classifier 1-layer MLP with ReLU ReLU 231.9K

Output layer : (300,5)

A.3 Training Details and Hyperparameter

Tuning

We summarize the details of the model training and
evaluation in Table 3. “# of tasks” means the num-
ber of tasks in each batch during model training.
For example, for the 20 newsgroups dataset, the 20
classes of news topics are split into 8 classes for
meta-training, 5 classes for meta-validation, and
7 for meta-testing. When composing a batch for
meta-training, since # of tasks is 4, the following is
repeated 4 times: the 5 classes (since our few-shot
setup is 5-way) for a task are randomly selected
from the given 8 classes.

In table 3, “# of queries” indicates the number
of data points for a class, where the data points are
used for the calculation of the meta-optimization
loss and the accuracy in the outer-loop of the meta-
training and meta-testing step, respectively. During
the meta-training, we sample four tasks with 15
queries from S', hence performing the low rank
adapter pooling four times per meta-optimization.

Early-stopping was employed during model
training: model training was stopped if the val-
idation loss did not improve for 20 steps. For
both the validation and testing, we sample 15 tasks
with 15 queries from S*® and S****. We used
the Adam optimizer with learning rates of 0.1 and
0.001 in the inner and outer updates, and the in-
ner update is repeated 40 times. During the meta-
optimization process (outer loop), we apply weight
decay scheduling. In addition, the coefficient A of
the KL-Divergence term in eq. 4 was set to 0.001
and the coefficient v of the penalty term in eq. 4
was set to 0.1. We performed all the experiments
on a single NVIDIA A100 80GB GPU.

Table 3: Hyperparameters for Model Training

Hyperparameters

meta-training set #of tasks. 4
# of queries 15

meta-validation set # of tasks 15
# of queries 15

meta-test set # of tasks 15
# of queries 15

learning rates in inner loop 0.1

learning rates in outer loop 0.001
scheduler steps 5
A, weight of KL-Divergence (eq. 4) 0.001
v, weight of latent variable penalty (eq. 4) 0.1
number of adaptation steps 40

Table 4: Few-shot Classification Performance of
Adapters

Amazon Huffpost RCVI Reuters 20 newsgroup

Freeze 2533% 30.67% 1733 % 26.67 % 29.33 %

Full fine-tuning 2533% 2933% 18.67% 28.00 % 32.00 %

Adapter (Houlsby et al., 2019b)  30.67 % 28.00% 18.67 % 2533 % 26.67 %

BitFit (Ben Zaken et al., 2022)  26.67 % 28.00% 22.67 % 28.00 % 26.67 %

AdapterBias (Fuetal., 2022) 2933% 28.00% 12.00% 29.33% 25.33 %

LoRA (Hu et al., 2021) 28.00% 28.00% 1733 % 26.67 % 26.67 %

A.4 Few-Shot Performance of Adapter-based
Fine-tuned Methods

In addition, to verify the validity of our assumption
that is introduced in section 1, we find the perfor-
mance of parameter efficient fine-tuned methods,
i.e., (Houlsby et al., 2019b; Ben Zaken et al., 2022;
Fuetal., 2022; Hu et al., 2021), using 5-way 5-shot.
As shown in Table 4, we cannot find the meaning-
ful results in a few-shot settings with parameter
efficient fine-tuned methods.

A.5 The Number of Fine-tuning Parameters
of Adapters

The Table 5 shows the number of parameters of the
Adapter-based fine-tuning methods: the original
Adapter (Houlsby et al., 2019b), BitFit (Ben Za-
ken et al., 2022), Adapter-Bias (Fu et al., 2022),
LoRA (Hu et al., 2021) and AMAL(Ours) on the
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Table 5: The number of the fine-tuning parameters of
Adapters

# of fine-tuned params.

Adapter
(Houlsby et al., 2019b) 1-23M
BitFit
(Ben Zaken et al., 2022) 0-10M
Adapter-Bias
(Fuet al., 2022) 12K
LoRA
(Hu et al., 2021) 0294
AMAL 0.595M
Ours

Table 6: The performance for 5-way 5-shot depending

on the bottleneck size and the rank size.
bottleneck size(m rank(r) accuracy

2 8942%
32 16 87.64%
8 88.89%
64 8836%
2 88.27%
64 6 89.69%
8 88.44%
28 83.44%
64 S8.09%
128 32 9031%
T 16 88.89%
8 89.60%

BERT},s. (12 layers). Here, AMAL’s latent embed-
ding space is set to 64 dimensions. As revealed,
AMAL requires the smallest amount of fine-tuning
parameters.

A.6 The effect of the bottleneck size and the
rank size

We observed the effect of the two hyper-parameters,
each of which is the adapter size and its rank,
respectively. The base language model is the
BERT}, . In the experiment, we changed the bot-
tleneck size as 32, 64, 128 and their related, diverse
rank sizes on the Amazon product reviews data.
The table 6 shows the performance for the 5-way 5-
shot. It is observed that the adaptation of language
models can be settled on a low intrinsic dimension
as mentioned in (Hu et al., 2021) and (Aghajanyan
et al., 2020).
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