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Abstract

Videos often capture objects, their visible prop-
erties, their motion, and the interactions be-
tween different objects. Objects also have phys-
ical properties such as mass, which the imaging
pipeline is unable to directly capture. However,
these properties can be estimated by utilizing
cues from relative object motion and the dy-
namics introduced by collisions. In this pa-
per, we introduce CRIPP-VQA1, a new video
question answering dataset for reasoning about
the implicit physical properties of objects in a
scene. CRIPP-VQA contains videos of objects
in motion, annotated with questions that in-
volve counterfactual reasoning about the effect
of actions, questions about planning in order to
reach a goal, and descriptive questions about
visible properties of objects. The CRIPP-VQA
test set enables evaluation under several out-
of-distribution settings – videos with objects
with masses, coefficients of friction, and initial
velocities that are not observed in the training
distribution. Our experiments reveal a surpris-
ing and significant performance gap in terms of
answering questions about implicit properties
(the focus of this paper) and explicit properties
of objects (the focus of prior work).

1 Introduction

Visual grounding seeks to link images or videos
with natural language. Towards this goal, many
tasks such as referring expressions (Yu et al., 2016),
captioning (Vinyals et al., 2015; Xu et al., 2016),
text-based retrieval (Vo et al., 2019; Rohrbach et al.,
2015), and visual question answering (Antol et al.,
2015; Jang et al., 2017) have been studied for both
images and videos. Videos often contain objects
which can be identified in terms of their visible
properties such as their shapes, sizes, colors, tex-
tures, and categories. These visible properties can
be estimated by using computer vision algorithms
for object recognition, detection, color recognition,

1https://maitreyapatel.com/CRIPP-VQA/

Figure 1: The CRIPP-VQA dataset contains questions
about the future effect of actions (such as removing,
adding, or replacing objects) as well as planning-based
questions. Frames from an example video are shown
above with the red highlighted area depicting the objects
on which actions (remove, replace, add) are performed.

shape estimation, etc. However, objects also have
physical properties such as mass and coefficient of
friction, which are not captured by cameras. For
instance, given a video of a stone rolling down a
hill, cameras can capture the color of the stone
and its trajectory – but how heavy is the stone? It
is therefore difficult to reason about such implicit
physical properties, by simply watching videos.

Collisions between objects, however, do offer
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visual cues about mass and friction. When objects
collide, their resulting velocities and directions of
motion depend upon their physical properties, and
are governed by fundamental laws of physics such
as conservation of momentum and energy. By ob-
serving the change in velocities and directions, it is
possible to reason about the relative physical prop-
erties of colliding objects. In many cases, when hu-
mans watch objects in motion and under collision,
we do not accurately know the masses, friction, or
other properties of objects. Yet, when we interact
with these objects, for example in sports such as
billiards, carrom, or curling, we can reason about
the effect of actions such as hitting one ball with an-
other, removing an object, replacing an object with
a different one, or adding an object to the scene.

In this paper, we consider the task of reasoning
about such implicit properties of objects, via the
use of language, without having annotations for
the true values of mass and friction of objects. We
propose a video question answering dataset called
CRIPP-VQA, short for Counterfactual Reasoning
about Implicit Physical Properties. Each video
contains several objects with at least one object
in motion. The object in motion causes colli-
sions and changes the spatial configuration of the
scene. The consequences of these collision are
directly impacted by the physical properties of
objects. CRIPP-VQA contains videos annotated
with question-answer pairs, where the questions are
about the consequences of actions and collisions,
as illustrated in Figure 1. These questions require
an understanding of the current configuration as
well as counterfactual situations, i.e. the effect of
actions such as removing, adding, and replacing
objects. The dataset also contains questions that
require the ability to plan in order to achieve certain
configurations, for example producing or avoiding
particular collisions. It is important to note that
both tasks can not be performed without an under-
standing of the relative mass. For example, the

“replace” action can lead to a change in mass inside
the reference video, which can drastically change
the consequences (i.e., set of collisions).

We benchmark existing state-of-the-art video
question-answering models on the new CRIPP-
VQA dataset. Our key finding is that compared
to performance on questions about visible prop-
erties (“descriptive” questions), the performance
on counterfactual and planning questions is sig-
nificantly low. This reveals a large gap in under-

standing the physical properties of objects from
video and language supervision. Detailed analysis
reveals that models can answer questions about the
first collision with higher accuracy compared to
questions about subsequent future collisions.

Aloe (Ding et al., 2021) is a strong baseline for
video QA tasks and has improved the state of the art
on many previous video QA benchmarks such as
CLEVRER (Yi et al., 2020) and CATER (Girdhar
and Ramanan, 2019). However on CRIPP-VQA,
we discovered that the object identification module
from Aloe failed to recognize objects in our videos,
which we believe is due to the presence of complex
textures, reflections, and shadows in our dataset.
To mitigate these failures, we modified Aloe by
adapting the Mask-RCNN (He et al., 2017) as the
object segmentation module. We also found that
using pre-trained BERT-based word embeddings
significantly improves the performance over our
modified Aloe (Aloe*), serving as the strongest
model on CRIPP-VQA.

CRIPP-VQA also allows us to evaluate trained
models on out-of-distribution (OOD) test sets,
where the videos vary in terms of objects having
previously unobserved physical properties. There
are four OOD test sets in CRIPP-VQA such that
one physical property varies at test time – objects
with a new mass, zero friction coefficient, increased
initial velocity, and two moving objects at initial-
ization. This OOD evaluation reveals a further
degradation in performance and a close-to-random
accuracy for most state-of-the-art models. Out of
all OOD scenarios the results show that the most
challenging scenario is the one where there are two
objects initially moving.

Contributions and Findings:

• We introduce a new benchmark, CRIPP-VQA,
for video question answering which requires rea-
soning about the implicit physical properties of
objects in videos.

• CRIPP-VQA contains questions about the ef-
fect of actions such as removing, replacing, and
adding objects, as well as a novel planning task,
where model needs to perform the three hypothet-
ical actions to either stop or make the collisions
between given two objects.

• Performance evaluation on both i.i.d. and out-of-
distribution test sets shows the significant chal-
lenge that CRIPP-VQA brings to video under-
standing systems.

9857



Dataset Video
QA

Physical
Reasoning

Visually Hidden
Properties

Counterfactual Actions Planning Physical
OOD

Implicit
ReasoningAdd Replace Remove

MovieQA (Tapaswi et al., 2016) ✓ - - - - - - - -
TGIF-QA (Li et al., 2016) ✓ - - - - - - - -
TVQA/TVQA+ (Lei et al., 2020) ✓ - - - - - - - -
AGQA (Grunde-McLaughlin et al., 2021) ✓ - - - - - - - -
CoPhy (Baradel et al., 2020) - ✓ ✓ - - - - - ✓
CLEVR_HYP (Sampat et al., 2021) - - - ✓ ✓ ✓ - - -
IntPhys (Riochet et al., 2018) ✓ ✓ - - - - ✓ - -
ESPRIT (Rajani et al., 2020) ✓ ✓ - - - - ✓ - -
CATER (Girdhar and Ramanan, 2019) ✓ - - - - - - - -
CRAFT (Ates et al., 2022) ✓ ✓ - - - ✓ - - -
CLEVRER (Yi et al., 2020) ✓ ✓ - - - ✓ - - -
ComPhy (Chen et al., 2022) ✓ ✓ ✓ - - - - - -
CRIPP-VQA (this work) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: A comparison of CRIPP-VQA with prior work on video question answering, in terms of different aspects
of visual reasoning that are tested.

2 Related Work

Image Question Answering. The VQA
dataset (Antol et al., 2015) has been extensively for
image-based question answering. GQA (Hudson
and Manning, 2019) and CLEVR (Johnson et al.,
2017a) focus on the compositional and spatial
understanding of visual question answering
models. CLEVR-HYP (Sampat et al., 2021)
extends the CLEVR setup with questions about
hypothetical actions performed on the image. OK-
VQA (Marino et al., 2019) deals with answering
questions where external world knowledge (such
as Wikipedia facts) are required for answering
questions, whereas VLQA (Sampat et al., 2020)
studies image question answering with additional
information provided via an input paragraph.

Video Question Answering. Datasets such as
MovieQA (Tapaswi et al., 2016), TGIF (Li et al.,
2016), TVQA/TVQA+ (Lei et al., 2020), and
AGQA (Grunde-McLaughlin et al., 2021), have
been introduced for real-world video question an-
swering. However, work on video question answer-
ing has largely focused on scenes such as movies
and television shows.

Physical Reasoning. Visual planning has been
explored in Chang et al. (2020) and Gokhale et al.
(2019). IntPhy (Riochet et al., 2018) and ES-
PRIT (Rajani et al., 2020) require reasoning un-
der the influence of gravity. CATER (Girdhar and
Ramanan, 2019) is a video classification dataset,
which proposes the challenge of temporal reason-
ing on actions such as slide, rotate, pick-place,
etc. Recently, the CLEVRER benchmark (Yi et al.,
2020) studied the ability to do counterfactual rea-
soning only with remove action. However, all ob-
jects in CLEVRER have identical physical prop-

erties. CoPhy (Baradel et al., 2020) studied the
problem of predicting consequences in the pres-
ence of mass as a confounding variable. It does
not involve the change in the physical properties
during counterfactual reasoning and only studies
displacement-based counterfactual object trajec-
tory estimation. ComPhy (Chen et al., 2022) is
a work closest to ours, with the task of learning
visually hidden properties in a few-shot setting and
performing counterfactual reasoning with a ques-
tion that explicitly describes the changes in physi-
cal properties (“What if object A was heavier?”).
In contrast, in our work, physical properties need
to be learned from video, and are not mentioned in
the question, with three types of questions (descrip-
tive, counterfactual, and planning). We position our
work in comparison to previous work in Table 1.

Textual Commonsense Reasoning. PIQA (Bisk
et al., 2020) is a dataset for physical common-
sense reasoning for natural language understanding
(NLU) systems . CommonsenseQA (Talmor et al.,
2019) is a QA dataset that focuses on inferring asso-
ciated relations of each entity. Verb Physics (Forbes
and Choi, 2017) proposes the task of learning rel-
ative physical knowledge (size, weight, strength,
etc.) for NLU systems.

Visual Commonsense Reasoning. Visual-
COMET (Park et al., 2020) is a dataset for
inferring commonsense concepts such as future
events and their effects from the images and textual
descriptions. Video2Commonsense (Fang et al.,
2020) is a video captioning task that seeks to
include intentions and effects of human actions
in the generated caption. VCR (Zellers et al.,
2019) dataset introduces a VQA task that requires
commonsense and understanding the scene context
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in order to answer questions and also to justify
the answer. While, (Sampat et al., 2022) gives the
overview of recent advances in multimodal action
based reasoning.

Robustness of Multimodal Models. Robustness
to distribution shift and language bias has been ex-
tensively studied in the VQA domain (Ray et al.,
2019; Gokhale et al., 2020; Selvaraju et al., 2020;
Kervadec et al., 2020; Li et al., 2020; Agarwal
et al., 2020). Shortcuts and spurious correlations
have been observed in visual commonsense rea-
soning (Ye and Kovashka, 2021). For V+L en-
tailment tasks, Gokhale et al. (2022) found that
models are not robust to linguistic transformations,
while Thrush et al. (2022) found that models were
unable to distinguish between subject and object
of actions. However most of the work in robust
V+L has focused on biases or distribution shift
in the language domain. CRIPP-VQA introduces
out-of-distribution evaluation in terms of physical
properties of objects in a scene.

3 The CRIPP-VQA Dataset

CRIPP-VQA, short for Counterfactual Reasoning
about Implicit Physical Properties via Video Ques-
tion Answering, focuses on understanding the con-
sequences of different hypothetical actions (i.e.,
remove, replace, and mass) in the presence of mass
and friction as visually hidden properties.

3.1 Simulation Setup
Objects and States. Table 2 summarizes the
different properties in CRIPP-VQA. Each object
in the CRIPP dataset has four visible properties:
shape (cube or sphere), color (olive, purple, and
teal), texture (aluminum and cardboard), and state
(stationary, in motion, and under collision). Each
object also has two invisible properties: mass and
coefficient of friction. Three actions can be per-
formed on each object – “remove”, “replace”, and
“add”.

In this work, we focus on mass and friction as in-
trinsic physical properties of objects. Each unique
{SHAPE, COLOR, TEXTURE} combination is pre-
assigned a mass value that is either 2 or 14; for in-
stance, all teal aluminum cubes have mass 2. Note
that these values are not provided as input to the
VQA model and need to be inferred in order to
perform counterfactual and planning tasks. In the
training set and i.i.d. test set, the coefficient of fric-
tion for all objects with the surface is identical and

non-zero. For one of the OOD test sets, we make
the surfaces and objects frictionless. Table 2 shows
the object properties for training videos, i.i.d. test
set and OOD test set.

Video creation. We render videos using
TDW (Gan et al., 2021). Firstly, in each instance,
we initialize the video with either 5 or 6 randomly
chosen objects, out of which a single object will
be initialized with a fixed velocity such that it
will collide with other objects. Here, we keep a
constant initial velocity so that the only way to
infer mass is through the impact of subsequent
collisions. Each video is 5 seconds long, with a
frame rate of 25fps. We provide annotation and
metadata for each video which contains object
locations, velocities, orientation, and collision info
at each frame. These annotations are further used
to generate the different types of question-answer
pairs.

3.2 Question and Answer Generation

CRIPP dataset focuses on three categories of tasks:
1) Descriptive, 2) Counterfactual, and 3) Planning.

Descriptive: These questions involve understand-
ing the visual properties of the scene, including:
[Type-1] Counting the number of objects with a

certain combination of visible properties,
[Type-2] Yes/No questions about object types
[Type-3] Finding the relationship between two ob-

jects under collision
[Type-4] Counting the number of collisions
[Type-5] Finding the maximum/minimum occur-

ring object properties.
We do not include questions that require reasoning
over mass, to avoid the introduction of spurious
correlation which may influence counterfactual and
planning-based questions.

Counterfactual. These questions focus on
action-based reasoning (i.e., remove, replace, and
add). We generate a hypothetical situation based on
one of these actions, and the task is to predict which
collisions may or may not happen if we perform
the action on an object. “Remove” action focuses
on a counterfactual scenario where a certain ob-
ject is removed from the original video. “Replace”
action focuses on a counterfactual scenario where
one object is replaced with a different object. Re-
place action does not only change the object but it
may also lead to a change in the hidden property.

“Add” action-based questions focus on evaluating
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Property IID Mass Friction Number of objects Velocity

Shape (sphere, cube) - - - -
Color (purple, teal, olive) - - - -
Texture (cardboard, aluminum) - - - -
Mass (2, 14) (2, 8, 14) - - -
Friction (0.25) - (0.0) - -
# of moving objects 1 - - 2 -
Initial velocity (14) - - - (18)

Table 2: They key difference between the IID and various OOD evaluation settings in CRIPP-VQA. Here, “-”
indicates the no change in particular property from the IID setting.

Figure 2: A pie-chart showing the distribution of var-
ious question types in the CRIPP-VQA dataset. Inner
pie chart shows the three broad categories of questions
(counterfactual, descriptive, planning), while the outer
pie-chat shows a fine-grained categorization.

the system’s understanding of spatial relationship
along with the hidden properties, where we create
a new hypothetical condition by placing a new ob-
ject to the LEFT/RIGHT/FRONT/BEHIND at a fixed
distance from the reference object.

Planning. CRIPP also contains planning-based
questions, where the task is to perform an action on
objects within the given video to either make/stop
collisions. Here, the system needs to predict which
action has to be performed and on which object, to
achieve the goal.

3.3 Dataset Statistics

CRIPP contains 4000, 500, and 500 videos for
training, validation, and testing, respectively. Addi-
tionally, it has about 2000 videos focused on eval-
uation for physical out-of-distribution scenarios.
CRIPP training dataset has about 41761 descriptive

questions, 41761 counterfactual questions (9603,
5142, and 27016 questions for remove, replace,
and add actions, respectively), and 10440 planning-
based questions. Figure 2 shows the percentages of
each subcategory within the dataset.

4 Experiments

4.1 Problem Statement
Given an input video (v), and a question (q) the
task is to predict the answer (a). Each video v
contains the m number of objects randomly se-
lected from the set O = {o1, o2, ..., on}. Here,
object oi has several associated properties (i.e.,
oi = (mi, ci, si, ti, li, vi)), where color (ci), shape
(si), texture (ti), location (li), and velocity (vi) are
visually observable properties alongside with mass
(mi) as hidden property. More formally, we need to
learn the probability density function F such that
we maximize the F (a|v, q).
Evaluation Metrics. To evaluate the models, we
use two accuracy metrics – per-option (PO) and
per-question (PQ) accuracy. Each counterfactual
question has multiple options describing the colli-
sions. Per-option accuracy refers to the option-wise
performance and per-question accuracy considers
whether all options are correctly predicted or not.
Each planning task involves performing an action
over objects within a video. Because of that to
achieve the given goal, there can be multiple so-
lutions. We use TDW to re-simulate the models’
predictions on the original video to check whether
the given planning goal is achieved or not, leading
to iterative performance evaluation.

4.2 Benchmark model details
We consider three different state-of-the-art models
for the video question answering task: Memory,
Attention, and Composition (MAC) (Hudson and
Manning, 2018), Hierarchical Conditional Rela-
tion Network (HCRN) (Le et al., 2020), and 3)
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Model Descriptive Remove Replace Add Counterfactual PlanningPQ PO PQ PO PQ PO Avg. PO

Frequency 8.21 0.00 50.18 0.00 50.00 0.00 50.00 50.06 3.49
Random 8.51 7.21 49.58 3.34 49.40 9.39 50.04 49.67 7.39
Blind-BERT 53.82 20.18 54.67 17.57 50.45 15.86 51.55 52.22 8.11

MAC (Hudson and Manning, 2018) 48.72 16.41 50.68 17.31 50.21 16.29 49.83 50.24 6.26
HCRN (Le et al., 2020) 64.98 27.20 59.04 19.87 55.97 20.49 56.06 57.02 21.38
Aloe* 68.94 31.10 62.90 9.91 52.10 18.13 56.55 57.18 31.76
Aloe*+BERT 71.04 33.64 65.46 22.07 56.76 39.71 67.43 63.21 32.61

Table 3: Results on the i.i.d. test set showing performance of models evaluated in terms of per-question (PQ)
accuracy and per-option (PO) accuracy. For descriptive and planning questions, only one of the answer options are
true, therefore per-question and per-option accuracies are identical. Aloe* refers to our modified Aloe, where we
replace the MONet module with a Mask-RCNN object detector.

Input Object 1 Object 2 Object 3 Object 4 Object 5 Masks

MONet Object Decomposition (Aloe -- unmodified) Mask RCNN (Aloe*)

Figure 3: Illustration of the failure of MONet (the object decomposition module in Aloe (Ding et al., 2021)) on
CRIPP-VQA videos. The intended functionality of MONet is to decompose individual objects into separate masks.
However as shown above, the predicted masks contain areas corresponding to more than one objects. We modified
Aloe by replacing MONet with Mask-RCNN, and this approach (Aloe*) leads to more reliable object detection
which can be used by the downstream question-answering module.

Attention over learned embeddings (Aloe) (Ding
et al., 2021). MAC is designed for compositional
VQA. We modify it by performing channel-wise
feature concatenation of each frame, where the
channel will contain temporal information instead
of spatial information allowing MAC to adapt to the
video inputs. HCRN uses a hierarchical strategy
to learn the relation between the visual and textual
data. Aloe is one of the best-performing models
on the CLEVRER (Yi et al., 2020) benchmark. It
is a transformer-based model, designed for object
trajectory-based complex reasoning over synthetic
datasets. Aloe uses MONet (Burgess et al., 2019)
for obtaining object features by performing an un-
supervised decomposition of each frame into ob-
served objects. Aloe takes these frame-wise object
features to predict the answers to the input question,
using the [CLS] token and self-supervised training.

Drawbacks of Aloe. We found that the MONet
module used in Aloe is very unstable and fails
to produce reliable frame-wise features on videos
from CRIPP. MONet is not able to recognize sim-
ple object properties such as color and is not able to
decompose the image into masks corresponding to
individual objects. This drawback hurts the perfor-
mance of Aloe on the CRIPP-VQA dataset, even
though Aloe is one of the best-performing models
on previous video QA benchmarks. An example is
shown in Figure 3, and more details can be found
in Appendix C. We believe that this failure could
be a result of shadows and textures in our dataset
that are not found in previous datasets.

Modifying Aloe. Due to the failures of the
MONet object decomposition module, the Aloe
baseline fails measurably on CRIPP-VQA, exhibit-
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Figure 4: Comparison of performance of models (per-
option accuracy) for “remove” questions when tested
using the IID test set and each OOD test set.

ing close-to-random performance. Therefore, we
propose additional modifications to Aloe to make it
more widely applicable beyond prior datasets that
are built using the CLEVR (Johnson et al., 2017a)
rendering pipeline. First, we replace MONet with
Mask-RCNN (He et al., 2017) to perform instance
segmentation and then train an auto-encoder to
compress the mask-based object-specific features
to make it compatible with Aloe. Second, instead
of learning the word embedding from the scratch,
we further propose to use pre-trained BERT-based
word embeddings as input to the Aloe, which leads
to faster and more stable convergence. Further
architecture modifications and hyper-parameter set-
tings are specified in Appendix A.

In addition to these baselines, we also consider a
“random” baseline which randomly selects one an-
swer from a possible set of answers, and a “frequent”
baseline which always predicts the most frequent
label. To analyze textual biases, we use a text-only
QA model and denote it by “Blind-BERT”. Blind-
BERT is a pre-trained language model (BERT (De-
vlin et al., 2019)) which takes only questions as
input to predict the answer and ignores the visual
input.

4.3 Results

Table 3 summarizes the performance comparisons
of our baselines on the CRIPP-VQA i.i.d. test set.
On Descriptive questions, the “random” and “fre-
quent” baselines achieve around only 8% accuracy,
while Blind-BERT gets 53.82% which suggests
the existence of language bias associated with cor-
relations between question types and most likely
answers for each. Surprisingly, MAC achieves only
48.72% which is lower than Blind-BERT. This im-
plies that the video feature representations learned

Figure 5: Comparison of performance of models (per-
option accuracy) for “replace” questions when tested
using the IID test set and each OOD test set.

Figure 6: Comparison of performance of models (per-
option accuracy) for “add” questions when tested using
the IID test set and each OOD test set.

by MAC hurt performance compared to text-only
features. An unmodified version of the Aloe also
achieves only 56% accuracy. HCRN and both Aloe
variants (Aloe* and Aloe*+BERT) improve perfor-
mance indicating that visual features are crucial for
descriptive questions. Aloe*+BERT is the best per-
forming model which implies that our modification
with BERT features helps performance.

Counterfactual questions involve a total of
three types of actions. Table (3) shows the action-
wise performances. The performance of MAC
is again close to Blind-BERT. HCRN performs
slightly better than Blind-BERT. This shows that
even though visual features in HCRN are better
than the MAC but it is not sufficient enough to
do such complex reasoning. While, unmodified
Aloe gets 52% average accuracy on counterfac-
tual questions, which is close-to-random perfor-
mance. Aloe*+BERT achieves much better results
only in terms of remove and add actions. How-
ever, Aloe*+BERT is close to random for questions
with the “replace” action as it directly involves
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Figure 7: Comparison of performance of models “plan-
ning” questions when tested using the IID test set and
each OOD test set.

the change in physical properties (i.e., mass and
shape) of an existing object within the given sce-
nario. This implies that Aloe*+BERT is able to do
spatial reasoning to some extent, but is not good
at reasoning about changes in physical properties.
While it can also be seen that Aloe*+BERT outper-
forms the Aloe across the actions, this implies that
BERT-based embedding helps the model to learn
the relation between the objects and action.

Planning task can have multiple possible an-
swers. We observe a similar trend in results and
Aloe*+BERT performs better than the other base-
lines. Further analysis on Aloe*+BERT predictions
shows that model predicts “remove”, “replace”,
and “add” actions for planning tasks with 70.52%,
10.6%, and 18.87%, respectively. This tells us that
the model finds it easy to reason when “remove”
hypothetical action is present.

Human evaluations: To learn the expected be-
havior of any models, we conduct a human studies
on CRIPP-VQA dataset. There were total 6 peo-
ple participated as volunteers. All were given 5
videos and corresponding QA pairs to get habitu-
ated with the environment. Then we asked them
to answer total 30 questions on different set of ran-
domly selected videos. Results shows that Human
evaluations achieved 90.00%, 78.89%, and 58.87%
on descriptive, counterfactual, and planning tasks,
respectively.

4.4 Physical out-of-distribution experiments

Most of the previous studies focus on feature-based
OOD cases (like the rotation of the entities within
the image). We propose a new dimension of OOD
evaluation involving physical properties, by con-
sidering four types of OOD scenarios: 1) Mass:
where the mass of a few objects is changed to 8, 2)

Friction: where the surface friction is changed to
zero, 3) Number of Objects: where two objects are
moving instead of one when the scene is initialized,
and 4) Velocity: initial object velocity is increased
to 18 from 14.

Figures 4, 5, 6, 7 shows the comparison of
VideoQA models on i.i.d. and different OOD sce-
narios for remove, replace, and add action, and
planning questions, respectively. It can be seen that
the models’ performance becomes close to random
which is around 50%. This suggests that models
are very sensitive to such small physical perturba-
tions, especially for the “remove” action (as shown
in Figure 4). From Figure 6, we can observe that
the performance drop is negligible across the OOD
sets for the add action, especially for Aloe*+BERT.
Moreover, Figure 7 shows that the performance
increases on several OOD scenarios for planning
task. At the same time, the bias-check baselines’
performance also improves. This suggests that the
expected behavior of the model changes based on
the given physical properties. In the case of the
remove action, Friction and Velocity OOD settings
are the hardest for models to perform. While, for
replace action, multiple OOD setting is the hardest
for Aloe*+BERT. Number of initial moving Ob-
jects based OOD setting is also difficult for models
to understand, especially for the add action based
questions.

5 Analysis

In this section, we raise several important questions
and derive the insights accordingly.

Performance for true vs. false collision detec-
tion. Consider the example with three objects
(A,B,C), where only object A collides with B. In
this case, we categorize the collision between A
& B as the actual collision ( i.e., prediction label
true), and we categorize the collision between B
& C and A & C as an absent collision (i.e., pre-
diction label false). Following this rule, we inde-
pendently check the performance of detecting all
occurring collisions and the collisions that never
happened. Table 4 shows the action-based perfor-
mance of Aloe*+BERT on these two categories. It
can be inferred that detecting the actual set of col-
lisions is easy except for the “add” action, where
model mainly predicts that none of the collisions
are present in counterfactual scenario. However, in
the case of the replace action, the model is failing
in both categories.
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Action Present collisions Absent collisions

Remove 78.27 52.81
Replace 65.74 60.23
Add 46.41 79.47

Table 4: Per-option accuracy of Aloe*+BERT for de-
tecting occurring collisions vs. not occurring collisions
correctly.

Performance for First Collision vs Subsequent
Collisions. In the CRIPP-VQA dataset, a colli-
sion between a pair of objects may lead to subse-
quent collisions between other objects. We analyze
the performance of the best model (Aloe*+BERT)
on counterfactual questions, by comparing the accu-
racy on questions about the first collision, with the
accuracy on questions about subsequent collisions.
To correctly predict subsequent collisions, models
need to understand the mass of the objects involved
in the first collision to learn the consequences (i.e.,
sequence of future events). From Table (5), we
observe that for all three actions, there is a drop in
performance on subsequent collisions; the drop is
highest (28.48%) for “remove”.

Importance of mass as intrinsic property.
There are many hidden factors (i.e., mass, friction,
object shape, velocity) that play roles in object tra-
jectories and collisions. To understand the dynam-
ics, we analyze the number of collisions in differ-
ent counterfactual scenarios and collisions between
two different types of objects (in terms of mass).
Table 6 shows that if first collision is between either
two light or two heavy objects then it leads to al-
most similar number of collisions. If first collision
is between light and heavy objects then the number
of collisions either decreases or increases based on
the intuitive conditions. Analysis on the number
of collisions in counterfactual settings shows that
there are on an average 3.0, 2.06, 3.31, and 4.15
collisions in vanilla, “remove”, “replace”, and “add”
counterfactual settings, respectively.

To summarize, these analyses show that each
counterfactual scenarios are unique and contain dif-
ferent challenges. This also strengths our argument
that models fail to learn various reasoning capabili-
ties including but not limited to intrinsic physical
properties, and consequences of the actions.

6 Conclusion

In this work, we present a new video question an-
swering benchmark: CRIPP-VQA, for reasoning

Action First
Collision

Subesequent
Collisions Difference

Remove 90.52 62.45 28.07
Replace 75.38 66.03 9.35
Add 55.45 41.01 14.44

Table 5: Per-option accuracy of Aloe*+BERT for detect-
ing first collision vs. subsequent collisions from the set
of occurring collisions in counterfactual scenario.

First collision type L → L H → H L → H H → L

Remove 3.12 3.23 1.78 4.03

Table 6: Average number of collisions in ground truth
videos (i.e., vanilla) when different types of objects
participate in first collision. “x → y′′, where x, y ∈
{Light,Heavy}, means that x mass object collides
with y mass object. Moreover, H: Heavy object and L:
Light object.

about the implicit physical properties of objects.
CRIPP-VQA contains novel tasks that require coun-
terfactual reasoning and planning, over three hy-
pothetical actions (i.e., remove, replace, and add).
We evaluate state-of-the-art models on this bench-
mark and observe a significant performance gap
between descriptive questions about visible prop-
erties and counterfactual and planning questions
about implicit properties. We also show that mod-
els can learn the initial dynamics of object trajec-
tories but they fail to detect subsequent collisions,
which requires an understanding of relative mass.
This result is positioned as a challenge for the V&L
community for building robust video understanding
systems that can interact with language.

7 Limitations

While CRIPP proposes the implicit reasoning about
intrinsic physical properties, it is limited to two
physical properties (mass and friction). However,
even these fundamental properties are a big chal-
lenge for existing systems. While other properties
and complex dynamics can be considered, that is
beyond the scope of this work. Our benchmark is
limited to a synthetic environment in blockworld,
and we believe that future work should extend our
work with real-world objects and backgrounds.
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Appendix

A Training details

We follow the standard training guidelines provided
by the authors of each baseline papers. We train all
systems on Quadro RTX 8000 GPUs. We train each
model with a maximum of 200 epochs. And select
the best model based on average performance accu-
racy. We follow the below instructions to support
each model which are MAC, HCRN, Aloe, and
Aloe+BERT. For planning based task, we add extra
four classifier heads on top of all models which
predicts: 1) the type of the action, 2) an object on
which action needs to be performed, 3) an object
which needs to be added through replace or add
action, and 4) relative direction of the object if we
are adding a new object.

MAC: We modify the public implemen-
tation of MAC from https://github.com/
rosinality/mac-network-pytorch to adapt
the video frames as input. We first resize the each
125 frames leading (125, 3, 224, 224) video dimen-
sion. Later, we use ResNet101 to extract the fea-
tures (125, 512, 14, 14). After taking the channel-
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Hyper-parameter Value

# of layers 28
# of attention heads 128

embedding size 768
visual feature size 512

text embedding size 768
Batch Size for descriptive 96

Batch Size for Counterfactual 32
Batch Size for Planning 16

Learning rate 0.00005
Optimizer RAdam

Table 7: Aloe*+BERT architecture and hyper-parameter
details.

wise mean of features, we get the final video re-
presentation of (125, 14, 14) dimension matrix sup-
portable for the rest of the pipeline. We also do the
necessary changes described for the planning task
as well.

HCRN: As HCRN is the VideoQA model and
official implementation is available at: https:
//github.com/thaolmk54/hcrn-videoqa, we
use the source code as it is. Except we do important
changes to do planning tasks.

Aloe*/Aloe*+BERT: We first reproduce the
Aloe on PyTorch based on the architecture details
from the research paper by (Ding et al., 2021) and
their public available demo at https://github.
com/deepmind/deepmind-research/tree/
master/object_attention_for_reasoning.
However, we use the code base from transformers2

library (as it is well tested and used across
the industry and academia) and modify it to
support the VideoQA in the same way as Aloe
does. Our initial experiments on CLEVRER
showed that Aloe cannot reproduce the results on
CLEVRER with the specified set of architecture
details and hyper-parameters from the original
paper. Therefore, we do extensive experiments
on Aloe architecture and hyper-parameter to
reproduce similar results. After achieving a similar
performance from the paper, we use this new
reproducible Aloe architecture in our experiments.
Table (7) shows the hyper-parameter details to
reproduce the results. The Aloe* source code
from our experiments is available at https:
//github.com/Maitreyapatel/CRIPP-VQA/

B Dataset Examples

The demo page contains several examples of the
CRIPP-VQA dataset. Apart from that, Table 8
shows the types of questions asked in different sub-
categories of the QAs.

C MONet failure cases

We learn that MONet-based unsupervised object
decomposition is not working on complex realistic
visuals and it is hard to guarantee that it will decom-
pose each object on independent images/features.
Here, we show three failure cases from the CRIPP-
VQA. Basically, from the figures, we can observe
that MONet is not only able to decompose the ob-
jects independently, but it is also not able to learn
the color of the objects. While MONet can learn
the texture (i.e., metal or cardboard). As a result,
we can see that the re-generated images lack greatly
in terms the important features. Hence, we drop
the MONet from the pipeline and adapt mask r-cnn
to work on our CRIPP dataset.

D Physical out-of-distribution results

In this section, we provide the accuracy tables for
the OOD evaluations. First, Table (9) shows the
performance of all models when the mass of few
objects are changed (either increased or decreased
to 8 from 2 or 14). Second, Table (10) shows the
results when the surface friction is removed. Third,
Table (11) shows the results where we have two
objects initialized with fixed velocity creating more
collisions. At last, Table (12) contains the results
when we slightly increase the initial velocity of
the object. Overall, we observe that for both coun-
terfactual and planning tasks all model performs
poorly.

E Neuro-symbolic methods

Recently, a lot of neuro-symbolic approaches are
proposed for CLEVRER-like settings. For exam-
ple, IEP (Johnson et al., 2017b), NS-DR+ (Mao
et al., 2019), are CPL (Chen et al., 2022) proposed
for physical reasoning. The goal of our study is
to evaluate whether systems can learn the implicit
relationship from counterfactual tasks. Symbolic
approaches either require providing this implicit
information or learning through a physics engine,

2https://github.com/huggingface/
transformers
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Input Object 1 Object 2 Object 3 Object 4 Object 5Background Reconstructed

Figure 8: Example outputs of MONet-based scene decomposition failure cases. Left most images represents
the input image. The Middle six images represent the predicted masks. And right most images represent the
reconstructed input image by MONet.

which is not feasible for real-life situations. There-
fore, in this study, we only consider neural models
to evaluate their performance where learning im-
plicit information is necessary.
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Question Type Examples

Descriptive - Type 1 How many teal cardboard cube objects are there ?
How many cardboard sphere objects are static when video ends ?

Descriptive - Type 2 Do teal cardboard cube objects exist in the video ?
Do purple aluminium cube objects exist in the video ?

Descriptive - Type 3 What is the color of the collidee of purple aluminium cube in collision number 1?
What is the material of the collider of purple cardboard cube in collision number 2?

Descriptive - Type 4 How many collisions are there between teal sphere objects and teal aluminium objects ?
How many collisions are there between purple cardboard cube objects and teal objects ?

Descriptive - Type 5 What is the maximum occurring shape of objects in the video ?
What is the minimum occurring material of objects in the video ?

Counterfactual - Remove
What will happen, if the teal cardboard sphere is removed ?
Choice: purple cardboard sphere would collide with purple cardboard cube
Choice: teal cardboard cube would collide with purple cardboard cube

Counterfactual - Replace
What will happen, if the purple cardboard sphere is replaced by the purple aluminium sphere?
Choice: purple aluminium sphere would collide with olive aluminium sphere
Choice: teal cardboard sphere would collide with purple aluminium sphere

Counterfactual - Add
What will happen, if the purple cardboard sphere is added to the right of teal aluminium sphere?
Choice: teal aluminium sphere would collide with purple cardboard cube
Choice: olive aluminium cube would collide with teal aluminium sphere

Planning Make the collision between olive cardboard cube and olive aluminium sphere.
Make the collision between teal cardboard sphere and olive cardboard sphere .

Table 8: Examples of the CRIPP-VQA questions asked from different types of question categories as shown in
Figure 2.

Model Remove Replace Add Planning QAPQ PO PQ PO PQ PO

Frequency 0.00 50.27 0.00 50.00 0.00 50.00 21.00
Random 9.61 49.95 10.57 49.71 10.29 49.85 21.16
Blind-BERT 13.52 49.67 13.72 48.71 9.44 50.80 16.43

MAC 12.99 48.36 18.89 53.25 12.21 50.00 17.34
HCRN 18.15 55.47 20.08 56.84 14.03 54.58 43.94

Aloe* 20.46 57.00 12.98 52.05 12.90 54.93 46.07
Aloe*+BERT 26.16 60.67 22.42 56.21 20.34 62.62 48.71

Table 9: Performance evaluations when mass dist. is
different than the training.

Model Remove Replace Add Planning QAPQ PO PQ PO PQ PO

Frequency 0.00 50.16 0.00 50.00 0.00 50.00 20.46
Random 10.41 50.51 3.92 50.42 6.58 49.93 20.49
Blind-BERT 10.86 49.90 11.90 49.77 13.96 50.80 12.34

MAC 11.6 50.30 14.23 49.82 7.86 50.53 14.07
HCRN 11.74 49.20 13.74 51.54 13.27 61.32 36.73

Aloe* 11.46 48.11 19.58 57.91 16.83 63.67 38.27
Aloe*+BERT 7.21 48.85 24.87 55.93 18.37 64.66 43.67

Table 10: Performance evaluations with zero surface
friction.

Model Remove Replace Add Planning QAPQ PO PQ PO PQ PO

Frequency 0.00 50.57 0.00 50.00 0.00 50.00 5.04
Random 5.09 49.92 4.76 50.75 9.00 49.37 8.15
Blind-BERT 12.64 49.70 12.70 49.64 5.82 51.58 7.57

MAC 14.87 50.84 13.78 52.99 12.17 50.33 8.51
HCRN 19.75 55.80 13.78 52.10 13.10 55.03 18.92

Aloe* 17.39 55.73 12.50 50.82 10.61 52.55 27.76
Aloe*+BERT 12.81 55.10 18.37 52.54 21.10 60.86 25.95

Table 11: Performance evaluations with multiple objects
moving.

Model Remove Replace Add Planning QAPQ PO PQ PO PQ PO

Frequency 0.00 50.20 0.00 50.00 0.00 50.00 19.20
Random 10.93 49.47 3.66 50.12 6.99 49.83 19.53
Blind-BERT 10.02 50.27 16.06 52.17 5.73 51.82 13.68

MAC 10.76 49.80 15.09 51.44 6.34 48.66 11.54
HCRN 10.89 50.52 17.62 52.89 12.67 60.93 33.48

Aloe* 11.63 48.79 14.51 54.15 15.36 62.82 39.30
Aloe*+BERT 6.43 48.63 29.53 61.37 15.82 65.02 42.10

Table 12: Performance evaluations with higher initial
velocity.
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