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Abstract

We compare the 0-shot performance of a neu-
ral caption-based image retriever when given
as input either human-produced captions or
captions generated by a neural captioner. We
conduct this comparison on the recently in-
troduced IMAGECODE data-set (Krojer et al.,
2022), which contains hard distractors nearly
identical to the images to be retrieved. We find
that the neural retriever has much higher perfor-
mance when fed neural rather than human cap-
tions, despite the fact that the former, unlike the
latter, were generated without awareness of the
distractors that make the task hard. Even more
remarkably, when the same neural captions are
given to human subjects, their retrieval perfor-
mance is almost at chance level. Our results
thus add to the growing body of evidence that,
even when the “language” of neural models re-
sembles English, this superficial resemblance
might be deeply misleading.

1 Introduction

Neural vision-and-language models have achieved
impressive results in tasks such as visual common-
sense reasoning and question answering (e.g., Chen
et al., 2019; Lu et al., 2019). However, Krojer et al.
(2022) recently showed, in the context of caption-
based image retrieval, that state-of-the-art multi-
modal models still perform poorly when the candi-
date pool contains very similar distractor images
(such as close frames from the same video).

Here, we show that, when the best pre-trained
image retrieval system of Krojer et al. (2022) is fed
captions produced by an out-of-the box neural cap-
tion generator, its performance makes a big jump
forward. 0-shot image retrieval accuracy improves
by almost 6% compared to the highest previously
reported human-caption-based performance by the
same model, with fine-tuning and various ad-hoc
architectural adaptations. This is remarkable, be-
cause the off-the-shelf caption generator we use
(unlike the humans who wrote the original captions

in the data-set) is not taking the set of distractor im-
ages into account. Even more remarkably, we show
that, when human subjects are tasked with retriev-
ing the right image using the same neural captions
that help the model so much, their performance is
only marginally above chance level.

2 Setup

Data We use the more challenging video sec-
tion of the IMAGECODE data-set (Krojer et al.,
2022). Since we do not fine-tune our model, we
only use the validation set, including 1,872 data
points.1 Henceforth, when when we employ the
term IMAGECODE, we are referring to this subset.
Each data-point consists of a target image and 9
distractors, where the target and the distractors are
frames from the same (automatically segmented)
scene in a video. We also use the human captions
in the data-set, that were produced by subjects that
had access to the distractors while annotating each
target (they were instructed to take distractors into
account, without explicitly referring to them). Hav-
ing access to this “common ground” (Brennan and
Clark, 1996), annotators produced highly context-
dependent descriptions (see example human cap-
tions in Fig. 1). The data-set contains one single
caption per image.

Neural caption generation We use the ClipCap
caption generation system (Mokady et al., 2021)
without fine-tuning. For details and hyperparame-
ters of the generation process see Appendix A. In
short, ClipCap processes an image with a CLIP
visual encoder (Radford et al., 2021) and learns a
mapping from the resulting visual embedding to a
sequence of embeddings in GPT-2 space (Radford
et al., 2019), that are used to kickstart the genera-
tion of a sequence of tokens. We report experiments
with the ClipCap variant fine-tuned on the COCO

1We use the validation set because IMAGECODE test set
annotations are not publicly available.
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setup acc
neural captions, 0-shot 27.9
human captions, 0-shot 17.4
human captions, Krojer et al’s best 22.3

Table 1: Percentage IMAGECODE accuracy of 0-shot
image retriever when given neural vs. human captions
as input. Last row reports accuracy of best fine-tuned,
architecturally-adjusted model from Krojer et al. (2022)
(featuring a context module, temporal embeddings and
a ViT-B/16 backbone).

data-set (Lin et al., 2014), where the weights of
the multimodal mapper were updated and those of
the language model (GPT-2) were kept frozen. We
obtained very similar results with the other publicly
available ClipCap variants. We generate a single
neural caption for each IMAGECODE target image
by passing it through ClipCap. Note that, as there
is no way to make this out-of-the-box architecture
distractor-aware, the neural captions do not take
distractors into account.

Image retrieval We use the simplest CLIP-based
retrieval system of Krojer et al. (2022) (the one
without context module and temporal embeddings),
which corresponds to a standard CLIP architecture
from Radford et al. (2021). The caption and each
image in the set are passed through a transformer-
based text encoder and a transformer-based visual
encoder, respectively. Retrieval is successful if
the dot product between the resulting caption and
target image representations is larger than that of
the embedded caption with any distractor represen-
tation. We use the ResNet-based CLIP retriever
(He et al., 2015), whereas Krojer et al. (2022) used
the ViT-B/16 architecture, since we found the for-
mer having a higher retrieval accuracy compared
to what they used (17.4% in Table 1 here vs. 14.9%
in their paper).

3 Results and analysis

Neural vs. human caption performance As
shown in Table 1, the out-of-the-box neural image
retrieval model has a clear preference for neural
captions. It reaches 27.9% IMAGECODE accuracy
when taking neural captions as input, vs. 17.4%
with human captions (chance level is at 10%).
For comparison, the best fine-tuned, architecture-
adjusted model of Krojer et al. (2022) reached
22.3% performance with human captions.

A concrete sense of the differences between the

two types of captions is given by the examples in
Fig. 1. The examples in this figure are picked ran-
domly. Based on manual inspection of a larger
set, we are confident they are representative of
the full data. Clearly, neural captions are shorter
(avg. length at 11.4 tokens vs. 23.2 for human
captions) and more plainly descriptive (although
the description is mostly only vaguely related to
what’s actually depicted). Since there is no way to
make the out-of-the-box ClipCap system distractor-
aware, the neural captions are not highlighting dis-
criminative aspects of a target image compared to
the distractors. Human captions, on the other hand,
use very articulated language to highlight what is
unique about the target compared to the closest dis-
tractors (often focusing on rather marginal aspects
of the image, because of their discriminativeness,
e.g., for the first example in the figure, the fact that
the blue backpack is hardly visible). It is not sur-
prising that a generic image retriever, that was not
trained to handle this highly context-based linguis-
tic style, would not get much useful information out
of the human captions. It is interesting, however,
that this generic system performs relatively well
with the neural captions, given how off-the-mark
and non-discriminative the latter typically are.

As more quantitative cues of the differences be-
tween caption types, we observe that human cap-
tions are making more use of both rare lemmas
and function words (see frequency plots in Ap-
pendix B).2 Extracting the lemmas that are statisti-
cally most strongly associated to the human caption
set (see Appendix C for method and full top list),
we observe “meta-visual” words such as visible
and see, pronouns and determiners cuing anaphoric
structure (the, her, his), and function words sig-
naling a more complex sentence structure, such
as auxiliaries, negation and connectives. Among
the most typical neural lemmas, we find instead
general terms for concrete entities such as people,
woman, table and food.

Are neural captions really discriminative? By
looking at Figure 1, we see that neural captions
might be (very noisily) descriptive of the target, but
they seem hardly discriminative with respect to the
nearest distractors. Recall that each IMAGECODE

set contains a sequence of 10 frames from the same
scene. In general, the frames that are farther away

2Code to reproduce our analysis with human and model-
generated captions is available at https://github.com/
franfranz/emecomm_context
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Figure 1: Randomly selected data points from IMAGECODE with neural (N) and human (H) captions, where, given
the neural caption, the neural retriever guessed the target and the human retriever failed. For each candidate set, we
show the target (marked in green) and (randomly) either the immediately preceding or following distractor frame.
Appendix E reports the whole candidate sets for each data-point (10 images per set), as well as providing details on
the random selection process.

in time might be easier to discriminate than the
closest ones (consider the full candidate set exam-
ples in Appendix E: it is in general much easier to
tell apart the first and last frames than two adjacent
images). It could be, then, that the non-random but
still low performance of the image retriever with
neural captions is due to the combination of two
factors. On the one hand, the neural captions might
suffice for the retriever to exclude the farthest dis-
tractors. On the other, its performance at telling the
closest frames apart is actually random.

To rule out this explanation, we repeated the re-
trieval experiment in the most challenging setup, in
which we excluded all but the distractors immedi-
ately preceding and following the target frame (if
the target is the first/last image, we pick the two
frames following/preceding it, respectively). The
retriever using neural captions still reaches 48.7%
accuracy, well above chance level (33.3%). We
must thus conclude that neural captions such as
those in Fig. 1 do carry a non-negligible degree of
discriminative power for a neural image retriever.

On a related point, neural captions such as those
in the figure seem so generic that one could imag-
ine the neural caption generator would produce the
same caption for close-by frames. This is not the
case. We consider the 678 IMAGECODE cases in
which a candidate set is repeated across multiple
data points, with only the target changing, and in
which the targets are adjacent or one-frame apart.
In 93.7% of such cases, ClipCap generated at least

two non-identical captions. For example, the frame
on the left of the center-bottom pair in Fig. 1 is also
used as a target, and for it ClipCap generates the
caption “A person holding a water bottle with a dog
in it.” Looking at the right-bottom pair, the frame
on the right is also a target, and ClipCap generated
the following caption for it: “A picture of a kitchen
with a bunch of televisions on it.” Future research
should ascertain to what extent these intuitively un-
informative variations in frame description actually
contain cues that are systematically discriminative
for the retrieval system.

Human performance on neural captions Look-
ing again at examples such as those in Fig. 1 (all
cases in which the image retriever correctly identi-
fied the target), we might conjecture that the neural
captions are more informative for the neural re-
triever model than they are for humans. To verify
this hypothesis, we organized a crowd-sourcing ex-
periment in which human subjects had to perform
the same 10-image-set target discrimination task
we submitted to the neural image retriever.

More precisely, we selected a subset of
IMAGECODE that is balanced in terms of image
retriever performance as follows. We used all 522
sets where the retriever guessed the target, and we
randomly added the same number of sets where the
retriever got it wrong (so that its accuracy, on this
subset, is at 50% by construction). We collected
human discrimination decisions for this subset of
1,044 items, when either human or neural captions
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retriever
captions

human neural

human 54.3 12.8
neural 16.3 50.0

Table 2: Percentage accuracy on an IMAGECODE sub-
set (balanced to get 50% accuracy of the 0-shot neural
retriever with neural captions): human vs. neural retriev-
ers tested with neural vs. human captions as inputs.

are given as input. We collected one rating per item-
caption combination from a total of 36 Amazon
Mechanical Turk3 participants, that each provided
a total of 58 ratings. Experimental details are given
in Appendix D.

On the relevant IMAGECODE subset, humans
clearly outperform the neural retriever when hu-
man captions are given: 54.3% human discrimina-
tion accuracy vs. 16.3% for the neural retriever.4

Strikingly, the pattern sharply reverses with neu-
ral captions: 50.0% for the neural image retriever
vs. 12.8% for humans (not much above the 10%
random baseline).

We thus confirm that neural captions such as
those presented in Fig. 1, despite being apparently
vague and inaccurate descriptions of the target im-
age “in plain English”, carry significantly more
discriminative value for the neural retriever than
they do for humans (recall that the examples in this
figure were selected among the cases where the
neural caption allowed the neural retriever to guess
the right target, while human subjects failed the
task).

4 Conclusion

Previous research has shown that neural caption
generators occasionally produce highly counterin-
tuitive or irrelevant image descriptions (e.g., Lake
et al., 2017; Rohrbach et al., 2018). We provide
here evidence that such descriptions might only be
misleading or uninformative for humans, while still
being relatively “understandable” to neural models.
We discuss below the Limitations that delimit the
scope of our finding. Still, we can tentatively con-
clude that, even when they are trained on English,
deep nets might pack and retrieve information from
token sequences that are different from those an

3https://www.mturk.com/
4See Appendix D for discussions of why our human-to-

human discrimination accuracy is considerably lower than that
reported by Krojer et al. (2022) on the whole IMAGECODE
data-set.

English speaker would encode in and extract from
them.

A better understanding of this behaviour could
help design higher-performance systems. For ex-
ample, we could implement a module translating
human captions to the “machine code” that neural
models prefer, leading to better caption-based re-
trieval; or, from a model-to-model communication
perspective (Zeng et al., 2022), optimize caption
generation directly for neural model understanding,
instead of imitating human captions. Similar ideas
have recently proposed in the context of textual
information retrieval (e.g., Haviv et al., 2021; Shin
et al., 2020).

From a less optimistic perspective, our results
can be interpreted as another cautionary tale about
the degree to which neural models truly “under-
stand language” (Webson and Pavlick, 2022), and
suggest that a good grasp of their counter-intuitive
behaviour should be a priority of current research,
or else malicious agents could rely on the models’
opaque behaviour for adversarial attacks (Wallace
et al., 2019) and other types of model misuse.

Limitations

The results we presented are limited to one specific
data-set tested with a single caption generator and
image retriever pair (with both systems relying on
the CLIP image encoder). Future work should ver-
ify whether they generalize to other neural model
combinations and data-sets.

We observe a considerable increase in accuracy
when the neural image retriever is fed machine-
generated captions instead of human ones. How-
ever, accuracy is still at 27.9%, suggesting that
the retrieval system has only a very partial under-
standing of captions, whether machine- or human-
produced. How to improve its performance remains
a question for future work. In the current setup, the
caption generation system, unlike human annota-
tors, only receives the target image as input, and
it is unaware of the distractors. Making the cap-
tion generation system distractor-aware (perhaps
taking inspiration from work on “image difference
captioning”, e.g., Guo et al., 2022) might improve
the performance of the image retriever. Distractor-
aware neural captions would also be more fairly
comparable to the distractor-aware human captions
we got from the IMAGECODE data-set.

Last but not least, we provided evidence that
captions that carry virtually no discriminative infor-
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mation for humans are instead helping the neural
retriever identify target images well above chance
level. We still lack, however, an understanding
of how the neural retriever accomplishes this sur-
prising feat: developing such an understanding is
perhaps the most important direction for future
work.

Ethics Statement

We rely on existing, publicly available data-sets
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models (Mokady et al., 2021; Radford et al., 2021).

We re-normed a subset of the data used by Kro-
jer et al. (2022) using crowdsourcing. The experi-
ment was approved by the ethical board of Univer-
sitat Pompeu Fabra in the context of the AMORE
project (grant agreement No. 715154). Participants
had to agree to an informed consent form before do-
ing the experiment, and they were allowed to leave
it at any time. No personal data were collected, ex-
cept for the participants’ AMT worker IDs, needed
for their payment. They were paid 12.5$ for com-
pleting the task (that took about 20 minutes). The
crowdsourcing experiment procedure is described
in more detail in Appendix D.

As we only run zero-shot experiments with pre-
trained models, compute usage is negligible.

Our research contributes to an expanding body
of evidence showing that, while pre-trained deep
models are apparently responding to natural lan-
guage prompts, their “language” might differ from
human language (e.g., Lu et al., 2022; Shin et al.,
2020; Webson and Pavlick, 2022). Understanding
this gap between human and machine language
is important, in order to improve human-machine
interaction, but also because it can be exploited
for harmful purposes, such as adversarial attacks
(Wallace et al., 2019).
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A Neural caption generation details

In our experiments, we use the pre-trained Clip-
Cap caption generation model from Mokady et al.
(2021), which employs a Transformer mapper
trained on the COCO data-set (Lin et al., 2014)
while the CLIP image encoder (Radford et al.,
2021) and the GPT-2 language model (Radford
et al., 2019) are frozen. In the ClipCap architecture,
the mapper projects a CLIP-extracted embedding
into the multidimensional space of GPT-2 word
embeddings to trigger image-conditioned text gen-
eration. ClipCap has two architectural variants,
one that uses a Transformer-based mapper and one
that employs an MLP-based mapper. We refer to
Mokady et al. (2021) for a detailed description of
the MLP variant. The model that uses a Trans-
former mapper extracts a visual embedding from a
pre-trained CLIP image encoder and feeds such rep-
resentation together with a set of learned constant
embeddings into GPT-2.

To produce a caption, we generate text using
beam search with 5 beams, without tuning this
value, and retaining the single maximum likelihood
sequence. We set a maximum caption length of 67
tokens. Given that neural captions have an average
length of around 11 tokens, it is unlikely that this
limit is of any practical import. Additionally, the
pre-trained CLIP text encoder from Radford et al.
(2021), which both Krojer et al. (2022) and we use,
cannot process contexts larger than 75 tokens, and
thus extra tokens would be ignored in any case.

B Caption frequency distribution analysis

We tokenize, part-of-speech tag and lemmatize hu-
man and neural captions with Spacy.5 We use the
resulting part-of-speech and lemma sequences to
compute the statistics reported in this Appendix
and in Appendix C.

We counted the occurrences of the different parts
of speech, normalized over the total amount of pro-
duced tokens, in both human and neural captions
(Fig. 2). Their distribution reveals that, unsurpris-
ingly, both types of caption mostly use nouns to

5https://spacy.io/
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Figure 2: Part of Speech frequency distribution in hu-
man and neural captions.

Figure 3: Lemma frequency spectrum in human and neu-
ral captions (only frequency of first 20 counts shown).
The x-axis represents an occurrence count, the y-axis
the number of distinct lemmas with that count in the
captions, normalized over the total amount of distinct
lemma types.

denote the entities presented in the images, but hu-
mans tend to modify them with remarkably higher
adjective usage. Human-generated captions also
display more functional words, pointing to the
higher syntactic complexity already suggested by
sentence length.

We computed the frequency spectrum (Baayen,
2001) of lemma types occurring in the two sets of
captions. The normalized count of distinct lemmas
with caption occurrence from 1 to 20 are plotted
in Fig. 3. Human captions make a larger use of
lemmas occurring only once, displaying a clear
Zipfian trend. This trend is also present, but much
less pronounced, in the neural captions.

C Neural vs. human caption lemma
analysis

We use the Local Mutual Information score (Evert,
2005) to extract lemmas that are most significantly
associated with neural vs. human captions, based
on their relative frequency of occurrence in the two
sets.

Top 20 most typical lemmas of neural caption
set (min LMI: 124.2): a, stand, of, in, next, hold,
people, woman, group, front, on, sit, man, person,
table, with, food, couple, cell, phone.

Top 20 most typical lemmas of human
caption set (min LMI: 89.7): the, be, right, see,
left, can, and, ’s, visible, you, her, have, hand, his,
not, there, at, face, but, just.

Besides looking at lemmas most typical of
each set, we explore whether there is some
non-trivial degree of overlap between the words
occurring in the neural vs. human captions for
each target (excluding stop words and punctuation,
that would artificially increase overlap). We find
that the average lemma overlap, measured as
intersection-over-union (IOU), is at 5.2% (st. dev.:
6.6%). This might look non-negligible, but it
does not significantly differ from random overlap
according to a permutation test.

D Crowdsourcing experiment details

We populated the IMAGECODE stimulus subset for
the human retrieval experiment as follows. We
took all 522 candidate sets where the neural re-
triever guessed the target from the IMAGECODE

video section. We further sampled without replace-
ment the same amount of cases from the sets that
the retriever got wrong (thus obtaining a balanced
sample where the neural retriever accuracy is at
50%). We presented to subjects these 1,044 sets
with both the human captions from Krojer et al.
(2022) and the captions produced by our neural
caption generation system. This resulted in 2,088
questions posed to subjects.

We randomly divided the entire set into 36
blocks of 58 questions (always containing both
neural and human captions in similar amounts). In
each screen, the 10 images from a set were pre-
sented at the center, arranged in two arrays of 5
images, with the caption written above–see Fig. 4a.
Participants were asked to click on the image that
matched the caption best. They were shown one
example before starting the task. They were also
warned that some cases could be more challenging
than others. We asked them to always reply with
the answer they found most plausible. Finally, they
were warned that the experiment contained some
control items, used to ensure annotation quality.
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Figure 4: Examples of screens shown to the participants. In panel (a), a set with a human caption; In panel (b), an
attention check.

Each subject was presented with one block of
questions, plus 5 randomly placed controls, de-
signed to ensure that annotators were paying at-
tention to the task. These cases were made inten-
tionally very simple: targets were surrounded by
random distractors, i.e., images that were neither
contextually relevant nor very similar to the target.
Targets and distractors for the attention checks were
extracted from the less challenging static section
of the IMAGECODE data-set (Krojer et al., 2022).
We made sure internally that these sets could be
easily processed with 100% retrieval accuracy. See
Fig. 4b for an example.

The data collection routine was written in Psy-
chopy (Peirce et al., 2019) and launched through
Pavlovia.6 There was no time limit for completing
the study.

We recruited participants via Amazon Mechani-
cal Turk.7 We only accepted annotators from the
US, with HIT approval rate higher than 89% and
number of approved HITs higher than 1,000. We in-
formed them that we would not collect any personal
data (except for their workerID, that we would not
make public), and that the goal of the experiment
was to study how well people identify images based
on descriptions. Before being able to access the
link of the experiment, participants had to complete
an informed consent form. They were able to quit
the experiment at any time. We paid them 12.5$
for completing the task. The experiment was ap-
proved by the ethical board of Universitat Pompeu
Fabra in the context of the AMORE project (grant
agreement No. 715154).

6https://pavlovia.org/
7https://www.mturk.com/

We excluded the data of participants that made
more than one mistake when scoring the controls,
suggesting that they were not paying enough at-
tention to the task. After a first round of data col-
lection, we computed mean accuracy and standard
deviation on human captions (without looking at
neural caption performance). To further filter out
low-quality trials, we removed participants with
human caption accuracy more than one standard
deviation below the mean, again suggesting scarce
attention to the task. This resulted in 6 participants
being removed, with the corresponding data be-
ing collected again. The boxplot in Fig. 5 shows
the distribution of accuracy on human and neural
captions for our final 36 participants. All partici-
pants reached well-above-chance accuracy on hu-
man captions, with a clear contrast with respect to
their neural caption performance (the worst perfor-
mance on human captions is comparable to the best
performance on neural captions).

Our final cumulative human accuracy on hu-
man captions is considerably lower than the one
reported by Krojer et al. (2022) for the whole
IMAGECODE collection (54.3% vs. 90%). We
conjecture that this is due in part to the fact that
our items only come from the more challenging
IMAGECODE video subset, and in part to the fact
that their two-stage data-collection setup allowed a
subject white-listing procedure we could not imple-
ment. Still, three authors performed the caption re-
trieval task, with resulting accuracies at 52%, 56%
and 76%, respectively. The performance distribu-
tion of this supposedly “high-quality” annotators
is comparable to the one of the 36 crowd-sourced
participants, suggesting that the low overall accu-
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Figure 5: Accuracy of our 36 participants on human
vs. neural captions. Each point represents one partici-
pant. The red line represents chance level.

racy is genuinely due to the difficulty of the task,
and not to poor quality control.

E Fig. 1 example selection method and
full candidate sets

The examples in Fig. 1 were randomly selected
among trials in which, given the neural caption,
the neural model guessed the target and the human
annotators missed it. We avoided re-sampling the
same candidate set more than once. We also dis-
carded images displaying identifiable persons or
large portions of text.

In each example, the target image is presented
with a distractor, which can be the frame immedi-
ately preceding the target or the frame following
it in the original sequence. The choice to show
the preceding vs. following distractor frame was
random.

In Fig. 6, we report the full sequences of distrac-
tors of each selected set, with the target marked in
green, and the corresponding captions produced by
the neural model (N), and by humans (H).
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Figure 6: Whole candidate sets for each example in Fig. 1. The target image is marked in green.
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