
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 6776–6791
December 7-11, 2022 ©2022 Association for Computational Linguistics

Vector-Quantized Input-Contextualized Soft Prompts for Natural
Language Understanding

Rishabh Bhardwaj∗ §‡† Amrita Saha∗ § Steven C.H. Hoi § Soujanya Poria ‡

§Salesforce Research
‡Singapore University of Technology and Design

Abstract

Prompt Tuning has been largely successful as
a parameter-efficient method of conditioning
large-scale pre-trained language models to per-
form downstream tasks. Thus far, soft prompt
tuning learns a fixed set of task-specific con-
tinuous vectors, i.e., soft tokens that remain
static across the task samples. A fixed prompt,
however, may not generalize well to the diverse
kinds of inputs the task comprises. In order
to address this, we propose Vector-quantized
Input-contextualized Prompts (VIP)1 as an ex-
tension to the soft prompt tuning framework.
VIP particularly focuses on two aspects—
contextual prompts that learns input-specific
contextualization of the soft prompt tokens
through a small-scale sentence encoder and
quantized prompts that maps the contextu-
alized prompts to a set of learnable codebook
vectors through a Vector quantization network.
On various language understanding tasks like
SuperGLUE, QA, Relation classification, NER
and NLI, VIP outperforms the soft prompt tun-
ing (PT) baseline by an average margin of
1.19%. Further, our generalization studies show
that VIP learns more robust prompt represen-
tations, surpassing PT by a margin of 0.6% -
5.3% on Out-of-domain QA and NLI tasks re-
spectively, and by 0.75% on Multi-Task setup
over 4 tasks spanning across 12 domains.

1 Introduction

With the increase in network size, it has become
more computationally expensive to fine-tune pre-
trained language models (PLMs) on downstream
tasks. Recent studies have shown that prompt-
based learning is a quite effective parameter-
efficient method of conditioning the behavior of
PLMs for a given predictive task (Lester et al.,

∗Equal contribution.
† This work was performed while the first author

was interning at Salesforce Research. Correspondence to:
<amrita.saha@salesforce.com>

1Our implementation of VIP is made publicly available
https://github.com/declare-lab/VIP

Figure 1: Comparison of model performance vs param-
eter size on SuperGLUE dataset. PT and FT denotes
prompt tuning (2021) and fine-tuning respectively while
Adapter (2019) learns adapter modules inserted be-
tween layers of the PLM. VIP-IDP denotes instance
dependent prompt generation (2022) under text-to-text
framework. VIP is our proposed approach of quantized
contextual soft prompts.

2021; Wu et al., 2022). The goal of prompt-based
learning, in contrast to traditional supervised learn-
ing approaches, is to find the task-specific template
that is augmented to the input text in order to guide
the PLM toward generating the correct output (Liu
et al., 2021). The initial efforts in this direction
involved manually designed templates to solve nat-
ural language processing (NLP) tasks (Brown et al.,
2020; Schick and Schütze, 2021, 2020).

In order to reduce the human effort required in
finding appropriate task and LM-specific prompt
templates, more recent works aim to automate the
process of prompt designing. One of the popu-
lar ways is to search for templates in the discrete
space of tokens (Jiang et al., 2020; Haviv et al.,
2021; Yuan et al., 2021). These are known as hard
prompts. Another popular line of research aims at
learning prompt token embeddings in a continuous
vector space, i.e., soft prompts (Li and Liang, 2021;
Lester et al., 2021). Our work is an extension of the
parameter-efficient soft prompt tuning framework,

6776

https://github.com/declare-lab/VIP

PT, which we describe below.
Given a frozen PLM, the soft prompt tuning

method PT (Lester et al., 2021) aims to learn a
set of soft tokens (vectors) to solve a downstream
task. There is a critical limitation of this approach,
that is, the learned prompt tokens are expected
to perform well across the samples of the task.
Thus they are static against the change in input.
Henceforth, we refer to them as static tokens. We
hypothesize that learning to attend and adapt the
prompt tokens to the input provides more flexibil-
ity to the system to find the distribution of prompts
that generalizes well to diverse forms of the in-
put. To address the limitation of PT, i.e., input-
inadaptability of static tokens, we introduce a novel
soft prompt tuning technique, Vector-quantized
Input-contextualized Prompts (VIP), with two
integral properties that are our main contributions:

• Prompt Contextualization. We propose a
“contextualizer”– a transformer-based sentence
encoder that generates input-adapted prompt to-
kens from the input text and static soft prompts.
While there has been some recent interest in
input-dependent prompt generation (Levine et al.,
2022; Clive et al., 2021; Wu et al., 2022), we ob-
serve that a straightway utilization of the contex-
tualized tokens as a replacement for static tokens
leads to performance degradation (VIP-C in Ta-
ble 3). The potential cause is training instability
due to noise in the contextual prompt represen-
tations that propagates through the frozen PLM
and leads to erroneous predictions.

• Prompt Quantization. We tackle the afore-
mentioned challenge by introducing a prompt
“Quantizer” to reduce the noise in the contex-
tual prompt representations. The quantizer dis-
cretizes the continuous space of contextualized
prompts, thus allowing us to control its repre-
sentational capacity. It maps each contextual
prompt token to a set of learnable vectors called
codebook. These mapped vectors are used as
final quantized prompts, with the codebook act-
ing as a parametric discrete latent variable model
over the contextual prompt space. Therefore, it
is worth noting, quantization limits the space of
contextual prompts based on the representation
capacity of the codebook vectors.

Similar to the other prompting methods, the orig-
inal input text is concatenated with the obtained

quantized (contextual) prompt tokens and subse-
quently fed into the frozen PLM. The contextual-
izer and static tokens are learned using backpropa-
gation to minimize the task-specific prediction loss.
Whereas the codebook vectors are learned using a
more stable update method of exponential moving
average (Roy et al., 2018; Angelidis et al., 2021).

Empirically, we demonstrate the utility of our
proposed approach VIP on a wide range of NLP
tasks. On SuperGLUE, QA, Relation Classifica-
tion, NER and NLI, VIP improves over the base-
line soft prompt tuning method PT by an aver-
age margin of 1.19%. Additionally we find that
VIP outperforms PT by a margin of 0.6% - 5.3%
on out-of-domain QA and NLI tasks respectively
and by 0.75% on Multi-Task setup over 4 different
tasks. Overall, our experiments showcase that VIP
learns more richer robust prompt representations
than static soft prompts PT.

2 Problem Formulation

Following Raffel et al. (2019), we cast all the tasks
into a text-to-text format. Therefore, tasks such as
text and relation classification are reformulated as
text generation and the model is expected to gener-
ate the class label y. Formally, given a pretrained
Language Model (PLM) parameterized by θ, we
formulate a task T as conditional text generation
Prθ(Y |X) where X and Y are respectively the se-
quences of token embeddings corresponding to the
texts x and y, generated by the tokenizer provided
by the frozen PLM.

The prompting approach of Lester et al. (2021)
prepends X with the set of learnable soft tokens
P = {p1, . . . , pn}. Soft tokens pi are vectors that
lie in a d-dimensional continuous space IRd. The
idea is to condition the model output Y directly on
P and X as Prθ(Y |P,X), where the static vectors
in P are conditionally independent of X given task
T i.e. Pr(P |X,T) = Pr(P |T). T denotes the
set of tokens obtained from task-specific attributes
such as task description and class labels. However,
such a setting restricts the system to find a singular
static set of prompt tokens that is effective for all
the diverse samples of a given task.

Motivation. We hypothesize that to solve a com-
plex language understanding task, the dependence
of prompt on input X is a critical characteristic
that aids in generalization over the unseen in and
out-of-domain samples. In the parameter-efficient
prompt tuning methods such as Lester et al. (2021),

6777

Figure 2: Comparison of VIP with baseline PT. A) VIP tuning denotes the proposed approach where CQ module
contextualizes and quantizes the standard soft prompts. The quantized prompts are then added to the soft prompts
through a skip connection. B) Soft Prompt tuning (PT) (Lester et al., 2021) is the soft prompt tuning which learns
the vectors pi through backpropagation.

the PLM is not allowed to tune its parameters
and learn task-specific contextualization. This
motivates us to learn compact prompt represen-
tations in VIP that can encode task-specific infor-
mation and contextual information from each of
its samples. We represent VIP tokens by the set
of vectors P q = {pq1, . . . , pqn} ∈ IRd, which un-
like static tokens P , holds the desirable property
Pr(P q|X, T) ̸= Pr(P q|T).

3 Methodology

In order to obtain input-dependent soft prompts
P q, we start with trainable static prompt tokens P
similar to Lester et al. (2021). P along with the
original input token sequence X is then fed to a pa-
rameterized submodule called CQ, which performs
Contextualization and Quantization. Formally,
P q = CQϕ([P,X]) where ϕ is the parameter set of
CQ module. Our final prompt token representation
is obtained by combining the CQ module’s output
P q and the static tokens P through a skip connec-
tion i.e. P + P q. This we substitute in place of P
in Prθ(Y |P,X) from Lester et al. (2021)

Pr(Y |T, P, P q,X)
def
= PLMθ([T, P + P q,X]). (1)

Next, we elaborate on functioning of the CQ mod-
ule, which performs Contextualization followed
by Quantization of the soft prompts and is the
primary contribution of this work.

3.1 Contextualization & Quantization (CQ)

CQ expects the input as a sequence of token em-
beddings, by prepending input X with the input-
agnostic soft tokens P . As a first step, it performs
the token contextualization described below:

3.1.1 Prompt Contextualization
To reduce the number of trainable parameters and
perform meaningful contextualization that is co-
herent with the input space of PLM, we utilize
non-tunable input embedding of PLM for mapping

tokens in X to respective vectors. Then, as Fig-
ure 3 shows, [P,X] is passed through a trainable
transformer-based sentence encoder (Vaswani et al.,
2017). For a given task T , P acts as a set of con-
stant vectors. Through the attention mechanism,
the encoder fuses P with the context information
from X. The output of the sentence encoder is an
input-contextualized set of prompt tokens P c.

Sentence encoder. To keep the number of train-
able parameters low, we perform contextualiza-
tion in a lower dimensional space. We project
P ∈ IRn×d from d to d′ dimensions (d′<d) to ob-
tain Pl ∈ IRn×d′ . Pl is subsequently fed into a
two-layer transformer encoder layers having four
attention heads and dense layers of dimension
{d′× 2d′, 2d′×d′}. The output of this transformer
encoder is projected back from d′ to d-dimension
space to get the contextualized prompt token rep-
resentation P c. The input and output projections
are also dense layers with trainable parameters. In
our experiments, we have d=768 and d′=32. The
sentence encoder is trained from scratch since it is
significantly smaller (86K parameters) than stan-
dard PLMs.

3.1.2 Prompt Quantization
The continuous token embeddings P c at the output
of the sentence encoder suffer from high variance
in their representations across diverse inputs for
a given task, owing to their direct dependence on
X . This high variance behaves as noise for the
frozen PLM, resulting in unstable performance and
poor generalization. Another potential limitation of
directly utilizing the contextual tokens as prompts
is representation collapse resulting in P c becoming
a constant embedding ignoring the input context
We found that the posterior collapse issue persists
unless specifically treated, particularly due to the
downstream PLM being frozen.

This inspires us to learn a compact quantized
representation P q of the contextual prompt P c, fol-

6778

Figure 3: Contextualizer and quantizer in VIP.

lowing Angelidis et al. (2021); van den Oord et al.
(2017). Vector quantization achieves a desirable
discretization of the latent sentence representations
which has been shown to be particularly suitable
for language understanding tasks in (Roy et al.,
2018; Roy and Grangier, 2019; van den Oord et al.,
2017; Mercatali and Freitas, 2021) owing to the
inherent discrete nature of text.

Vector quantizer. We maintain a set of K learn-
able codebook vectors e ∈ IRK×d shared across all
the contextualized soft tokens in P c. The quantiza-
tion is independently performed on each pci ∈ P c,
by sampling a mixture of codebook entries from
e that are closest in representation to pci in order
to obtain the corresponding quantized prompts pqi .
For this, we first define logits lki for the ith token pci
as negative of its squared euclidean distance from
the kth codebook vector. We then sample, with re-
placement, m latent codes for each prompt token
pci , from a Multinomial distribution over the logits
li, which results in the Soft-EM training followed
by Angelidis et al. (2021); Roy et al. (2018).

lki = −1

τ
||pci − ek||22 (2)

z1i , . . . , z
m
i ∼ Multinomial(l1i , . . . , l

K
i) (3)

The quantized pci , i.e., pqi can be computed by av-
eraging over the m samples of codebook entries
obtained from the Multinomial sampling. pqi ’s are
discrete latent variables that correspond to centroid
of the cluster of the codebook entries closest to pci .

pqi =
1

m

m∑

j=1

e
z
j
i

(4)

The contextualization and quantization processes
are shown in Figure 3. For experimental stability
during the initial phase of training, we scale the
logits by a temperature hyperparameter τ in order
to encourage fair codebook usage when sampling

using Equation (3). In our experiments τ is fixed
to 100 across all tasks and datasets. It is chosen
based on the norm of the codebook vectors in the
initial training iterations, which is typically of order
102-103 for our initialization.

Learning a compact codebook (as described in
3.2) and setting the τ constant allows the quantizer
to explicitly control and bottleneck the informa-
tion capacity of prompt representations P q before
feeding it to the PLM, thus avoiding posterior col-
lapse. Also, this sampling process ensures that for
semantically similar inputs, the quantized prompts
will also have similar representations, thus reduc-
ing its representation variance w.r.t the input. This
consequently helps in stabilizing the frozen PLM’s
performance, as is evident from our empirical re-
sults. Essentially quantization serves as a trade-
off between input-agnostic soft prompts and input-
contextualized soft prompts, by sampling prompts
from a limited set of learnable codebook vectors.

Skip connection over CQ. Roy and Grangier
(2019) illustrated the importance of having a skip
connection over the input and output of the quanti-
zation bottleneck network. Following this, we also
add a skip connection over CQ module, combining
its input and output i.e. P + P q in order to ob-
tain the final Vector-quantized Input-contextualized
Prompt tokens. It is worth noting that the skip con-
nection allows us to effectively fuse the learned
information from the input-dependent aspects cap-
tured by P q with the static input-agnostic prompt
P . Empirically we observe that the information
bypass leads to more stable performance i.e. lower
variance across random initializations of prompt
embedding and sentence encoder parameters.

3.2 Training

The sentence encoder, soft tokens P , and code-
book vector comprise the set of trainable parame-
ters while we freeze the parameter set of PLM. Our
training objective minimizes two losses: i) cross-
entropy loss between the output generated by the
frozen PLM and the ground truth sequence of to-
kens and ii) commitment loss which encourages an
encoder output to commit to a set of closest code-
book vectors, without fluctuating too much. This
is important in order to ensure the volume of code-
book embedding space does not grow arbitrarily.

L = LCE + β
n∑

i=1

||pci − sg(pqi)||22 (5)

6779

where LCE denotes the cross-entropy loss, sg
refers to the stop gradient operator such that
sg(x) = x in the forward pass and zero on the
backward pass. β is a hyperparameter referred to
as the commitment cost, which regulates the extent
to which the encoder output should remain close to
the sampled codebook vectors.

On back-propagation, the loss term will update
the parameters of the sentence encoder and the
prompt embedding layer that originally generated
P . However, a crucial part of the learning involves
updating the codebook which we described below.

Learning codebook. Following works van den
Oord et al. (2017); Roy et al. (2018); Angelidis
et al. (2021) that use codebook-based quantization,
we adopt the Exponential Moving Average (EMA)
style update of the codebook vectors. This has
been shown to result in more stable training than
gradient-based updates. For each batch, we per-
form the following two steps:
• Step 1 counts the number of times jth codebook

vector is sampled and updates the count cj .
cj = λcj + (1− λ)

∑

i∈[n],k∈[m]

1[zki = ej] (6)

• Step 2 updates the embedding of jth codebook
vector ej by taking the mean of sentence encoder
outputs for which that codebook vector was sam-
pled during Multinomial sampling.

ej = λej + (1− λ)
∑

i∈[n],k∈[m]

1[zki = ej]p
c
i

cj
(7)

where λ is decay parameter set to 0.99, 1 is the
indicator function, [n] denotes set {1, . . . , n}.

While we choose this online K-means clustering
style of quantization of the latent space, there are
other discretization techniques e.g. using Gumbel
softmax to select the most appropriate codebook
vector. We avoid that in our work due to its notori-
ous sensitivity to its temperature hyperparameter.

4 Experiments

Tasks. We base our experiments on a wide range
of language understanding tasks including natural
language inference, question answering of extrac-
tive and multiple choice nature, relation classifica-
tion, and named entity recognition.
• SuperGLUE (Wang et al., 2019). To gauge gen-

eral language understanding capabilities of VIP
against baselines, we evaluate on SuperGLUE
benchmark using the prescribed evaluation met-
rics. It comprises of eight tasks—BoolQ, CB,
COPA, MultiRC, ReCoRD, RTE, WiC, WSC.

• QA (Fisch et al., 2019). Here we focus on two
types of QA tasks: i) Extractive QA: MRQA
2019 shared task consists of multiple question-
answering datasets. Six datasets are dedicated
each for training and testing while a small portion
of training datasets is held-out for model selec-
tion. It focuses on evaluating the generalization
of a QA system, i.e., how well it performs on
out-of-domain examples. ii) Multiple choice QA:
RACE-middle (Lai et al., 2017) task to predict
the correct answer from four given candidates.
Other datasets of this category, MultiRC, and
ReCoRD, are incorporated in SuperGLUE.

• Relation classification. Relation classification
aims to identify the semantic relation between
two specified entities in a sentence. For this task,
we use two datasets—SemEval 2010 task 8 (Hen-
drickx et al., 2010) and TACRED (Zhang et al.,
2017). SemEval is a 19-way classification prob-
lem, while TACRED is a larger-scale dataset con-
sisting of 41 relation types.

• NER. For named entity recognition, we use the
English language dataset of CoNLL-2003 shared
task (Tjong Kim Sang and De Meulder, 2003).
We frame the same text-to-text format suitable
for T5 as in Qin and Joty (2022).

• NLI. We use Adversarial NLI (ANLI) that is
a large-scale benchmark dataset to gauge natu-
ral language inference capabilities of the system
(Nie et al., 2019). We further evaluate general-
ization of the model trained on the challenging
ANLI task to out-of-domain NLI datasets CB,
AXB, AXG, RTE and SNLI.

Baselines. We consider the following baselines.

• FT (Raffel et al., 2019). It refers to the standard
task-specific fine-tuning of PLM.

• Adapter (Houlsby et al., 2019). It inserts learn-
able modules between layers of a pretrained trans-
former to perform transfer learning from PLMs
to the downstream tasks.

• PT (Lester et al., 2021). Soft prompt tuning (PT)
is the primary baseline for our work. As shown
in Figure 1, PT prepends a set of continuous
vectors P to X and feeds it to PLM. P is learned
via backpropagation through the frozen model.
Thus P relies only on the task at hand and choice
of PLM while being independent of X.

• VIP-IDP. Instance-Dependent Prompt Genera-
tion Method (IDPG) is a recent approach similar

6780

Model
CB COPA WSC RTE WiC BoolQ MultiRC ReCoRD

Avg
acc./F1 acc. acc. acc. acc. acc. EM/F1a EM/F1

FT 92.9±3.69 57.0±1.0 63.5±0.1 78.1±1.74 71.9±0.7 79.8±0.23 77.6±0.31 72.3±0.32 74.2±0.99

Adapter 92.7±1.42 56.7±1.53 65.6±3.58 79.1±1.29 68.9±0.57 79.3±0.8 77.7±0.98 70.2±1.76 73.8±1.49

PT 75.8±3.61 59.0±2.0 66.7±1.48 70.8±2.25 67.4±0.78 69.3±0.6 69.6±0.55 63.3±1.10 67.7±1.55

VIP-IDP 37.6±28.4 53.0±23.7 66.7±1.1 49.8±28.2 61.2±8.16 62.6±0.55 52.8±3.21 18.2±4.91 57.0±12.28

VIP-C 73.4±2.39 57.0±1.0 65.1±1.43 70.9±1.5 65.4±3.12 69.2±0.71 69.7±0.35 63.7±1.65 66.7±1.52

VIP 75.5±2.63 62.7±0.57 68.7±1.30 72.1±0.87 68.0±0.61 69.6±1.07 70.5±0.40 65.2±0.81 69.1±1.03

Table 1: Performance of VIP vs. baseline models on SuperGLUE development set. acc., EM , F1, F1a and acc./F1
denote accuracy, exact match, macro and micro F1 scores and average of accuracy and macro F1 respectively. The
numbers in subscript show the standard deviation across 3 random trials using different seeds.

Model
Rel. classification NER NLI

SemEval TACRED CoNLL ANLI
F1a F1a F1a F1

FT 84.8 87.7 90.2 49.8
Adapter 84.4 85.8 89.9 47.7

PT 70.9 83.5 87.1 41.6
VIP-IDP 68.95 79 87.2 29.8
VIP-C 71.8 83.6 87 39.3

VIP 72.4 84.4 87.4 43.2

Table 2: Performance comparison on relation classifica-
tion, NER and NLI tasks.

to our idea of making prompt tokens dependent
on the input (Wu et al., 2022). IDPG cannot
be directly treated as a baseline, since it uses
RoBERTa-large as PLM and has only restricted
applicability to text classification tasks, where it
fine-tunes a classifier head over the frozen PLM.
Instead, we adopt the IDPG-style prompt gen-
eration with our backbone T5-base model and
reduce the trainable parameters to be comparable
to ours. This version, named VIP-IDP, fetches
the input representation from a frozen T5-base en-
coder and applies two nonlinear projections - first
to a low dimension and then upscaling to a space
of dimension 768*n to generate n prompt tokens.
One limitation is that this network requires two
forward passes through the T5-encoder.

• VIP-C. This is an ablation of our VIP architec-
ture, obtained by removing the quantization net-
work. The contextualized prompt tokens from the
output of the sentence encoder, P c, are directly
augmented to X and fed to the frozen PLM.

• An important point to note is that while quantiza-
tion is meaningful for input-dependent prompts,
it cannot be applied to standard soft prompts

where the prompt tokens have fixed embedding
across all input instances of a task.

In results Tables 1 to 3, bold numbers represent the
best performing prompt-based model, as FT and
Adapter enjoy a much larger parameter size. For
cross-domain QA, NLI, and multi-task settings we
compare VIP against only primary baseline PT.

Experimental settings. To compare with PT, we
base our experiments on the LM-adapted version
of T5-base encoder-decoder. We refer to Lester
et al. (2021) for finding the best prompt length and
fix the prompt token length to n = 100 for PT,
VIP, VIP-IDP. Our quantizer comprises 1000
codebook vectors and m in the multinomial sam-
pling is fixed to 10. We select commitment cost
β = 0.1 through grid search over {0.01, 0.1, 1}.
We relegate precise details to Appendix A.4.

4.1 In-domain performance
In Table 1, we report the development set scores
on SuperGLUE. Following Lester et al. (2021),
we report results averaging across three random
seeds. We find FT and Adapter with a large num-
ber of trainable parameters show significantly bet-
ter performance than prompt-based methods on the
three largest datasets, i.e., ReCoRD, BoolQ, and
MultiRC. However, these models perform slightly
worse than prompt-based methods on COPA which
is a small-scale dataset with only 400 training sam-
ples. COPA is a difficult task that requires com-
monsense causal reasoning, hence reliable tuning
a large number of parameters will require a large
number of training samples. On the other hand
large parameter-sized models can be tuned with
less number of samples to solve simpler tasks such
as textual entailment in CB.
VIP-IDP’s performance ranks poorest amongst

all models across most of the SuperGLUE tasks

6781

Model SQuAD NewsQA TriviaQA SearchQA HotpotQA Natural QA RACE-M Parameter

FT 83.2 65.6 80.7 77 61.6 71.1 73.6 250 M
Adapter 81.4 63.9 79.3 75.1 60.1 71.6 69.9 2.5 M

PT 77.5 59.3 53.4 77.6 72.9 69.6 63.4 0.1 M
VIP-IDP 73.9 55.6 14.8 71.5 62.5 64.4 50.5 0.9 M
VIP-C 77.8 59.6 52.3 77.6 73.1 68.5 62.5 0.1 M

VIP 78.7 61.1 53.9 77.9 73.5 69.7 65.9 0.9 M

Table 3: Performance comparison (using F1 score) on Extractive QA from MRQA and multichoice QA RACE-M.

Train domain
Test domain Results in form of F1-Scores of {PT / VIP}

BioASQ DROP DuoRC RACE RE TextbookQA Micro-Avg.

SQuAD 54.3 / 54.7 29.0 / 34.4 35.9 / 35.1 42.6 / 40.4 78.7 / 80.0 20.8 / 16.6 48.9 / 49.3
NewsQA 50.9 / 49.4 24.9 / 25.5 36.7 / 36.9 39.4 / 39.6 73.7 / 73.0 38 / 37.6 48.8 / 48.4
TriviaQA 43.2 / 46.5 17.1 / 18.1 29.4 / 29.5 27.6 / 29.3 55.5 / 54.1 27.7 / 29.7 37.2 / 37.9
SearchQA 42.9 / 48.3 19.0 / 24.3 27.5 / 26.4 21.9 / 17.8 58.9 / 56.8 29.8 / 32.7 38.1 / 39.2
HotpotQA 54.1 / 53.9 33.6 / 34.2 33.7 / 35.0 36.0 / 37.2 79.1 / 80.0 21.1 / 23.5 49.0 / 50.0
NaturalQA 52.7 / 52.3 29.2 / 31.8 29.8 / 30.5 35.3 / 32.8 75.8 / 77.5 27.7 / 28.3 47.4 / 48.3

Table 4: Out-of-domain performance comparison (using F1 Score) of VIP vs. primary baseline PT on MRQA.

Model
CB AXB AXG SNLI RTE

acc./F1 acc. acc. F1 acc.

PT 43.1 63.8 49.9 62.6 70.2
VIP 59.7 66.1 51.9 66.7 71.8

Table 5: ANLI out-of-domain evaluation.

while also suffering a very high variance across
seeds. This is possibly due to straightaway feeding
the input-dependent prompts into the frozen PLM.
This variance issue is greatly alleviated in VIP
by combining the input-agnostic representation P
with the quantized representation P q.

VIP outperforms the prompt-based baselines on
seven out of eight SuperGLUE tasks, while also
achieving the lowest variance across all prompt-
tuning models. We also notice the drop in per-
formance when the quantization bottleneck is re-
moved (VIP-C). We posit that directly using the
sentence encoder’s output results in a high variance
of the prompt representation w.r.t the input leading
to training instability. The performance difference
between VIP and VIP-C is higher for the tasks
with lesser training samples such as CB, COPA,
and WSC where underfitting is likely, leading to
high performance variance.

Likewise in Table 2, we observe that VIP out-
performs all other prompt-based baselines on all
three tasks - relation classification, NER and NLI.
Particularly on NLI, the improvement is very sig-
nificant – 1.5% better than PT and 4-14% better
than VIP-IDP and VIP-C, while on other tasks it
improves by 1% over the prompt baselines.

We next compare our models on question an-
swering. In MRQA shared task, since the test do-
main is different from the train and development
domain, we perform in-domain testing of models
on the development data. For model selection, we
held out 10% from the training set. Table 3 com-
pares performance on QA datasets from MRQA
task and multi-choice based RACE-M. Across the
board, VIP proves superior to all prompt baselines
- outperforming PT and VIP-C by an average mar-
gin of 1% and VIP-IDP by over 8%. However,
fine-tuning (FT) and Adapter consistently outper-
form all prompt models, owing to their large pa-
rameter size and due to using T5-base as PLM.

In Tables 1 to 3, by comparing VIP with con-
textualized soft prompt VIP-C and VIP-IDP on 20
datasets across 5 tasks, we empirically substantiate
the necessity of a capacity bottleneck.

4.2 Out of domain performance

We next evaluate VIP and its primary baseline PT
on out-of-domain (OOD) MRQA test set. In 5
out of the 6 training domains, the micro-average
OOD test performance of VIP is better than PT,
whereas, on NewsQA, both perform comparably.
The more fine-grained results show that on all the
training domains VIP performs better than PT in
at least half of the OOD test datasets. Similarly on
all the 6 test datasets VIP consistently outperforms
PT in at least half of the training domains.

Next, in Table 5 we present the cross-domain
performance of the ANLI model trained using VIP
and PT with model selection done on ANLI devel-

6782

Model ANLI RTE TACRED SemEval ReCoRD RACE-M SQuAD TriviaQA NewsQA SearchQA HotpotQA Nat. QA Avg.

PT 27.5 60.3 81.7 72.6 53.3 57.7 76.1 48.7 57.0 73.8 69.1 64.7 61.9
VIP 30.6 62.5 80.9 72.9 55.3 57.9 76.1 48.4 57.9 74.2 69.7 64.8 62.6

VIP: NR 38.5 66.4 80.8 67.0 53.5 59.3 75.1 48.0 57.9 73.1 69.8 65.0 62.9
VIP: NR+DC 39.1 56.3 79.4 64.9 53.0 58.6 75.5 48.2 57.5 73.5 69.8 64.6 61.7

Table 6: Performance comparison of VIP and its ablations (from Section 4.4) against PT on multi-task setting.

opment set. The test domains consist of the test set
of SNLI corpus (Bowman et al., 2015) and AXB
and AXG and the combined train and development
set of RTE from SuperGLUE. We observe that VIP
achieves significantly better results on all the OOD
NLI tasks as compared to PT. These results empir-
ically justify that the quantized contextual prompts
learned by VIP indeed have a richer and more ro-
bust representation than the static soft prompts.

4.3 Multi-task performance

We also perform multi-task experiments consider-
ing tasks from NLI (ANLI and RTE), extractive QA
(MRQA train set), multi-choice QA (ReCoRD and
RACE-M), and relation classification (SemEval
and TACRED). For each task, we choose upto
a maximum of 10K samples at random for both
the training and validation set. For evaluation, we
consider the complete standard test split of all the
datasets. For SuperGLUE-based tasks RTE and
ReCoRD, we consider the test on the validation
set. We run the experiments for 50K steps, per-
forming validation at every 2K step with an early
stopping set to 5. The validation is done on each
dataset separately and the model is chosen based
on the best mean validation score. As shown in
Table 6, VIP outperforms its primary baseline PT
in 10 out of 12 tasks and achieves an overall 0.7%
better mean performance. This indicates that our
proposed CQ module is indeed able to learn more
robust soft prompts. We posit that a lower score on
TACRED and TriviaQA is due to the average vali-
dation performance-based model selection strategy.

4.4 Further Experiments

Dedicated codebook. In this ablation, instead
of having a shared codebook across all prompt to-
kens, we assign a dedicated codebook matrix (of
dimension K

n) to each of the n prompt tokens.

Noise resilience. We also employ noise resilience
training of the sentence encoder (Gao et al., 2021)
which outperforms on several tasks as discussed
later. We pass the same input to the sentence en-
coder twice to obtain two sets of representations

Model ANLI TACRED RACE-M SQuAD TriviaQA Nat. QA

PT 41.6 83.5 63.4 77.5 53.4 69.6
VIP 43.2 84.4 65.9 78.7 53.9 69.7

VIP:NR 43.6 85.0 63.4 78.8 54.5 69.9
VIP: NR+DC 44.5 84.6 66.0 79.4 54.3 70.2

Table 7: Ablations of VIP with additional Noise Re-
silience (NR) & Dedicated Codebook (DC) training.

of the same batch. For a batch with B samples,
we define noise as the similarity between two sen-
tence encoder representations (pc), by taking the
negative of their Euclidean distance. With i and
i+ representing the two samples obtained by feed-
ing an input instance i twice to the encoder, the
sample-wise noise resilience loss li is defined to be

li = − log(
esim(i,i+)

∑
(i∈[B],j∈[B])

esim(i,j) + esim(i,j+)
), (8)

The average sample-wise noise resilience loss over
the batch is added to the loss term in Equation (5).
Table 6 and Table 7 show adding noise resilience
and dedicated codebook boosts performance in
ANLI, RACE-M, SQuAD, and Nat. QA, while TA-
CRED, TriviaQA and multi-task settings perform
better with only noise resilience-based training.

5 Discussions

Training-time and memory overhead. As com-
pared to PT, we did not observe an adverse impact
of VIP on training time even with more trainable
parameters, and notice a similar convergence pat-
tern. The number of training steps required on
SuperGLUE datasets in order (Dataset, PT, VIP)
are—(WSC, 180, 90), (CB, 320, 300), (COPA,
377, 442), (WiC, 4080, 1530), (RTE, 546, 760),
(BoolQ, 5015, 2360), (RACE-M, 17500, 22000),
(MultiRC, 5000, 6000), (ReCoRD, 13500, 19500),
where per-iteration time-overhead of VIP is 0.07
seconds (1.96 (VIP) vs 1.89 (PT)). Thus, for WSC,
CB, WiC, BoolQ, VIP converges faster. Regarding
memory overhead, VIP (97.7MB) is slightly worse
(3.3MB) than PT (94.4MB), with the main mem-
ory bottleneck being the common frozen T5-base
PLM (892MB). While codebook in VIP increases
the parameter size, it can be shared across multiple

6783

tasks, thus reducing the parameter overhead. In our
multi-task experiment, VIP with codebook shared
across 3 tasks still outperforms the PT baseline.

Learning codebook for small datasets. Even
on small SuperGLUE datasets such as CB, COPA,
and WSC with only 200-400 training instances,
VIP performs an average 1.8% better than PT. Fur-
thermore for CB, the codebook visualization and
interpretability analysis (Appendix A.3, Figure 4)
shows that VIP indeed learns meaningful represen-
tations even for small scale datasets.

Comparison with L2 regularization. While L2-
regularization can also limit the capacity of prompt
space, quantization achieves a clustering over the
contextualized prompts with the discrete latent
variables (codebook vectors) being the clusters.
This encourages the quantized prompts to have
similar representations for semantically similar in-
puts, which can neither be achieved in VIP-C nor
through L2-regularization. Experiments with L2-
regularization did not show any performance gain,
in fact, it degraded the performance for a large
regularization constant. On SuperGLUE datasets
CB and COPA, our pilot-study in the standard
PT setting yielded these results in the form (L2-
reg constant, Accuracy): For CB-(0,75.8), (1e-
4,66.78), (1e-3,70.933), (1e-2,66.77), (1e-1,23.71).
For COPA-(0,59.0), (1e-4,53.99), (1e-3,59.20), (1e-
2,54.34), (1e-1,45.24). Lastly, learning the code-
book can also lead to better interpretability of the
prompt space (Appendix A.3, Figure 4).

Comparison with Adapters. Adapters fall under
a different genre of parameter efficient tuning that
require amending the PLM to add tunable interme-
diate layers. This makes them more complicated
and expensive than prompt-tuning methods from
practical implementation and usage perspective. In
general, they are also much less parameter efficient
than prompt tuning-based approaches, such as PT
and VIP, and hence not directly comparable to them
as one of the main baselines.

Comparing by making PT/VIP parameter-size
more similar. Increasing the number of parame-
ters in PT, i.e., prompt length > 100 shows adverse
effects on model performance as mentioned by PT
paper (Figure3-a of Lester et al. (2021)) and also
observed in our experiments. In Appendix Table 8,
we investigate different-sized VIP models by vary-
ing number of VIP-prompt-tokens and codebook-

size, and each of these models still perform better
than the best-setting of PT on SuperGLUE.

Impact of prompt quantization. We observed
representation collapse empirically when the model
ignores input during the prompt generation step, re-
sulting in prompt representations collapsing to a
single fixed embedding. We observed VIP-C (or
removing quantization from VIP) is highly prone
to this as the contextual prompt representations in
the sentence encoder’s output collapse to a con-
stant embedding for several random seeds. VIP’s
Quantizer alleviates this by limiting the capacity of
the prompt space, achieving a clustering over the
contextual prompts through the codebook.

6 Related work

In this section, we briefly compare with recent
prompt-based studies which particularly use dy-
namic prompts. Clive et al. (2021) proposes a vari-
ant of prefix-tuning (Li and Liang, 2021) which
augments input-dependent activations to each layer,
resulting in a much larger parameter size com-
pared to us. Similarly Levine et al. (2022) also
learns a cross-attention network of size 25M over
a frozen T5-encoder to generate input-specific
prompts, leading to 25x larger parameter size than
VIP. (Wu et al., 2022) is another input-dependent
prompt generator that we adapt to our setting as
VIP-IDP and compare as a baseline. Jin et al.
(2022) re-scales the soft prompt tokens based on
their attention over input tokens, but also fine-tunes
the PLM, hence they cannot be considered in a
parameter-efficient model tuning regime.

7 Conclusion

We propose a novel extension of soft prompt tun-
ing (PT) - Vector Quantized Input-Contextualized
Prompt Tuning (VIP), designed to have two desir-
able characteristics - (i) contextualizing the soft
prompt tokens w.r.t input text using a learnable
sentence encoder (ii) discretizing the contextual
prompts using a Vector Quantization network. On
an extensive set of language understanding tasks -
SuperGLUE, QA, NLI, NER, and Relation Clas-
sification, VIP outperforms PT baseline. Further,
our generalization studies on out-of-domain evalu-
ations of QA and NLI and multi-task settings over
4 tasks also show that VIP is able to learn richer
and more robust prompt representations than PT.

6784

8 Limitations

In this section, we point out the limitations of VIP
and its potential future directions.

• Pretraining prompt contextualizer. The sen-
tence encoder in VIP is trained from scratch for
each downstream task. However, following the
prompt pre-training proposed in Gu et al. (2021),
a possible future work is to pretrain the prompt
contextualizer in a task-agnostic way.

• Larger parameter size. VIP framework de-
mands a larger parameter size than the baseline
soft prompt tuning, owing mainly to the code-
book. In Appendix A.2 we show that by reducing
the number of VIP-prompt tokens and codebook-
size, we can reduce the parameter size to one-
third while compromising performance slightly
on SuperGLUE. More extensive experimental
analysis and better techniques for compressing
the codebook, we leave as future work.

• More hyperparameters. Other than the stan-
dard hyperparameters of the sentence encoder,
the quantizer introduces new hyperparameters
- codebook-size, multinomial sample size, and
the temperature constant τ to scale logits. While
VIP needs additional hyperparameters, in all our
experiments across 20 training datasets from 5
tasks, we fix all hyperparameters related to code-
book and sentence-encoder. This shows that our
model is indeed not sensitive to the hyperparam-
eters and does not need very specific tuning for
each task/setting.

• Training challenges. Learning the codebook re-
quires an EMA style updating scheme instead
of the standard gradient update. With the PLM
being frozen, this needs more careful handling -
for e.g. a critical hyperparameter is the value of
the temperature constant τ . A very high value
can lead to representation collapse of the code-
book while very low values can lead to sparse
codebook usage. However, as discussed above,
τ is independent of the task and depends on the
initial norm of codebook vectors.

• Impact on small-scale datasets. We posit that
due to the larger parameter size of VIP, it per-
forms worse than PT in tasks with lesser training
data, e.g. scores on the CB dataset in Table 1.
This is due to the larger parameter size of VIP.
Indeed, by reducing the parameter size of VIP

(in Appendix Table 8), we achieve much better
performance on CB.

• T5-base as backbone PLM. Due to resource
limitations, in all our experiments we use T5-
base as the backbone. Following Lester et al.
(2021) where larger PLMs are shown to improve
prompt-tuning performance, we speculate VIP
to showcase a similar effect. Also, though we use
T5 as PLM in this work, our VIP architecture
can be used in BERT or GPT style prediction or
generation as well. However, a formal analysis
of this is left as future work.

• Data and model bias. The language understand-
ing tasks and datasets were predominantly in the
English language, and thus limit our claims to the
English language. Gender, age, race, and other
socioeconomic biases may exist in these datasets,
and models trained on these datasets may propa-
gate these biases. It is likely that additional biases
are also embedded within the T5-base PLM that
was used as the backbone of VIP.

Acknowledgement

Soujanya Poria acknowledges the Ministry of Ed-
ucation, Singapore, under its AcRF Tier-2 grant
(Project no. T2MOE2008, and Grantor reference
no. MOET2EP20220-0017). Any opinions, find-
ings, conclusions, or recommendations expressed
in this material are those of the author(s) and do
not reflect the views of the Ministry of Education,
Singapore.

References
Stefanos Angelidis, Reinald Kim Amplayo, Yoshihiko

Suhara, Xiaolan Wang, and Mirella Lapata. 2021.
Extractive opinion summarization in quantized trans-
former spaces. Transactions of the Association for
Computational Linguistics, 9:277–293.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

6785

https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044.

Jordan Clive, Kris Cao, and Marek Rei. 2021. Con-
trol prefixes for text generation. arXiv preprint
arXiv:2110.08329.

Marie-Catherine De Marneffe, Mandy Simons, and Ju-
dith Tonhauser. 2019. The commitmentbank: Inves-
tigating projection in naturally occurring discourse.
In proceedings of Sinn und Bedeutung, volume 23,
pages 107–124.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
DROP: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In NAACL.

Matthew Dunn, Levent Sagun, Mike Higgins, V. Ugur
Güney, Volkan Cirik, and Kyunghyun Cho. 2017.
SearchQA: A new Q&A dataset augmented with con-
text from a search engine. arXiv:1704.05179.

Adam Fisch, Alon Talmor, Robin Jia, Minjoon Seo,
Eunsol Choi, and Danqi Chen. 2019. Mrqa 2019
shared task: Evaluating generalization in reading
comprehension. arXiv preprint arXiv:1910.09753.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. arXiv preprint arXiv:2104.08821.

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang.
2021. Ppt: Pre-trained prompt tuning for few-shot
learning. arXiv preprint arXiv:2109.04332.

R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo
Giampiccolo, Bernardo Magnini, and Idan Szpektor.
2006. The second pascal recognising textual entail-
ment challenge. In Proceedings of the Second PAS-
CAL Challenges Workshop on Recognising Textual
Entailment, volume 7.

Adi Haviv, Jonathan Berant, and Amir Globerson. 2021.
Bertese: Learning to speak to bert. arXiv preprint
arXiv:2103.05327.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva,
Preslav Nakov, Diarmuid ’O S’eaghdha, Sebastian
Pad’o, Marco Pennacchiotti, Lorenza Romano, and
Stan Szpakowicz. 2010. SemEval-2010 task 8: Multi-
way classification of semantic relations between pairs
of nominals. In Proceedings of the 5th International
Workshop on Semantic Evaluation, pages 33–38, Up-
psala, Sweden. Association for Computational Lin-
guistics.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know? Transactions of the Association for
Computational Linguistics, 8:423–438.

Feihu Jin, Jinliang Lu, Jiajun Zhang, and Chengqing
Zong. 2022. Instance-aware prompt learning for lan-
guage understanding and generation. arXiv preprint
arXiv:2201.07126.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In ACL.

Aniruddha Kembhavi, Minjoon Seo, Dustin Schwenk,
Jonghyun Choi, Ali Farhadi, and Hannaneh Ha-
jishirzi. 2017. Are you smarter than a sixth grader?
textbook question answering for multimodal machine
comprehension. In CVPR.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking
beyond the surface: A challenge set for reading com-
prehension over multiple sentences. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 252–262.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Matthew Kelcey,
Jacob Devlin, Kenton Lee, Kristina N. Toutanova,
Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. TACL.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. RACE: Large-scale read-
ing comprehension dataset from examinations. In
EMNLP.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Hector Levesque, Ernest Davis, and Leora Morgenstern.
2012. The winograd schema challenge. In Thir-
teenth international conference on the principles of
knowledge representation and reasoning.

Yoav Levine, Itay Dalmedigos, Ori Ram, Yoel Zeldes,
Daniel Jannai, Dor Muhlgay, Yoni Osin, Opher
Lieber, Barak Lenz, Shai Shalev-Shwartz, Amnon
Shashua, Kevin Leyton-Brown, and Yoav Shoham.
2022. Standing on the shoulders of giant frozen lan-
guage models.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettle-
moyer. 2017. Zero-shot relation extraction via read-
ing comprehension. In CoNLL.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

6786

https://www.aclweb.org/anthology/S10-1006
https://www.aclweb.org/anthology/S10-1006
https://www.aclweb.org/anthology/S10-1006
https://doi.org/10.48550/ARXIV.2204.10019
https://doi.org/10.48550/ARXIV.2204.10019

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
arXiv preprint arXiv:2107.13586.

Giangiacomo Mercatali and André Freitas. 2021. Disen-
tangling generative factors in natural language with
discrete variational autoencoders. In EMNLP.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2019. Adversarial
nli: A new benchmark for natural language under-
standing. arXiv preprint arXiv:1910.14599.

Mohammad Taher Pilehvar and José Camacho-Collados.
2018. Wic: 10,000 example pairs for eval-
uating context-sensitive representations. CoRR,
abs/1808.09121.

Chengwei Qin and Shafiq Joty. 2022. LFPT5: A unified
framework for lifelong few-shot language learning
based on prompt tuning of t5. In International Con-
ference on Learning Representations.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In EMNLP.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S Gordon. 2011. Choice of plausible alter-
natives: An evaluation of commonsense causal rea-
soning. In AAAI spring symposium: logical formal-
izations of commonsense reasoning, pages 90–95.

Aurko Roy and David Grangier. 2019. Unsupervised
paraphrasing without translation. arXiv preprint
arXiv:1905.12752.

Aurko Roy, Ashish Vaswani, Arvind Neelakantan,
and Niki Parmar. 2018. Theory and experiments
on vector quantized autoencoders. arXiv preprint
arXiv:1805.11063.

Amrita Saha, Rahul Aralikatte, Mitesh M. Khapra, and
Karthik Sankaranarayanan. 2018. DuoRC: Towards
Complex Language Understanding with Paraphrased
Reading Comprehension. In ACL.

Timo Schick and Hinrich Schütze. 2020. Exploit-
ing cloze questions for few shot text classification
and natural language inference. arXiv preprint
arXiv:2001.07676.

Timo Schick and Hinrich Schütze. 2021. Few-shot text
generation with natural language instructions. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages 390–
402.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning,
pages 4596–4604. PMLR.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 142–
147.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Kaheer
Suleman. 2017. NewsQA: A machine comprehen-
sion dataset. In Proceedings of the 2nd Workshop on
Representation Learning for NLP.

George Tsatsaronis, Georgios Balikas, Prodromos
Malakasiotis, Ioannis Partalas, Matthias Zschunke,
Michael R Alvers, Dirk Weissenborn, Anastasia
Krithara, Sergios Petridis, Dimitris Polychronopou-
los, et al. 2015. An overview of the bioasq large-scale
biomedical semantic indexing and question answer-
ing competition. BMC bioinformatics, 16(1).

Aaron van den Oord, Oriol Vinyals, and Koray
Kavukcuoglu. 2017. Neural discrete representation
learning. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, NIPS’17, page 6309–6318, Red Hook, NY,
USA. Curran Associates Inc.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stick-
ier benchmark for general-purpose language under-
standing systems. Advances in neural information
processing systems, 32.

Zhuofeng Wu, Sinong Wang, Jiatao Gu, Rui Hou, Yux-
iao Dong, VG Vydiswaran, and Hao Ma. 2022. Idpg:
An instance-dependent prompt generation method.
arXiv preprint arXiv:2204.04497.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. HotpotQA: A dataset
for diverse, explainable multi-hop question answer-
ing. In EMNLP.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021.
Bartscore: Evaluating generated text as text gener-
ation. Advances in Neural Information Processing
Systems, 34.

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng
Gao, Kevin Duh, and Benjamin Van Durme. 2018.
Record: Bridging the gap between human and ma-
chine commonsense reading comprehension. arXiv
preprint arXiv:1810.12885.

6787

https://openreview.net/forum?id=HCRVf71PMF
https://openreview.net/forum?id=HCRVf71PMF
https://openreview.net/forum?id=HCRVf71PMF
https://www.aclweb.org/anthology/W03-0419
https://www.aclweb.org/anthology/W03-0419

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli,
and Christopher D. Manning. 2017. Position-aware
attention and supervised data improve slot filling. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2017), pages 35–45.

6788

https://nlp.stanford.edu/pubs/zhang2017tacred.pdf
https://nlp.stanford.edu/pubs/zhang2017tacred.pdf

A Appendix

A.1 Dataset details
SuperGLUE (Wang et al., 2019). To gauge
the general language understanding capabilities
of VIP against baselines, we evaluate on Super-
GLUE benchmark. It comprises of eight tasks—
BoolQ (Clark et al., 2019), CB(De Marneffe
et al., 2019), COPA (Roemmele et al., 2011), Mul-
tiRC(Khashabi et al., 2018), ReCoRD(Zhang et al.,
2018), RTE(Haim et al., 2006), WiC (Pilehvar and
Camacho-Collados, 2018), and WSC(Levesque
et al., 2012).

MRQA (Fisch et al., 2019). MRQA com-
prises of multiple question answering datasets.
Six datasets are dedicated each training—SQuAD
(Rajpurkar et al., 2016), NewaQA (Trischler
et al., 2017), TriviaQA (Joshi et al., 2017),
SearchQA(Dunn et al., 2017), HotpotQA(Yang
et al., 2018), NaturalQuestions(Kwiatkowski et al.,
2019). Six separate datasets are kept for testing—
BioASQ(Tsatsaronis et al., 2015), DROP(Dua
et al., 2019), DuoRC(Saha et al., 2018), RACE(Lai
et al., 2017), RelationExtraction (Levy et al., 2017),
TextbookQA (Kembhavi et al., 2017). A small
portion of training datasets is held-out for model
selection.

NLI. We use Adversarial NLI (ANLI) which
is a large-scale benchmark dataset to gauge the
natural language inference capabilities of the sys-
tem (Nie et al., 2019). We further evaluate the
generalization of the model trained on the chal-
lenging ANLI task to out-of-domain NLI datasets
CB, AXB, AXG, RTE (taken from SuperGLUE
benchmark) and SNLI (Bowman et al., 2015).

A.2 Additional Analysis
Combining Soft and VIP Tokens for Super-
GLUE Table 8 reports SuperGLUE development-
set scores for different variants of the VIP model
obtained by taking different combinations of soft
prompt tokens and VIP tokens. We observe that for
the configuration with all prompt tokens as VIP,
i.e., input-contextualized and quantized, the best
average performance is achieved while also having
a very low variance across multiple runs.

Another notable observation is that the perfor-
mance improves consistently as we increase the
number of VIP tokens replacing static soft prompts.
On the other hand, this also shows the trade-off be-
tween parameter size and performance Following
this analysis, in our main experiments, we choose

the configuration of VIP with 100 VIP-tokens and
0 soft prompt tokens.

A.3 Codebook Visualization

In this section we perform visualization and inter-
pretability analysis on the learnt codebook, tak-
ing the CommitmentBank (CB) dataset (De Marn-
effe et al., 2019) as our setting. This is an NLI
task where each sample is associated with one of
3 class labels (‘neutral’, ‘entailment’, ‘contradic-
tion’). For each instance in the CB development,
we first compute the m sampled codebook vectors
(i.e. z1i , . . . , z

m
i from Equation 3) that are used

to construct each of the 100 VIP prompt tokens.
Thus for each label across all instances in the de-
velopment set, we can accumulate the information
regarding which codebook vectors are sampled for
instances of that label. With this, for each label we
find the codebook vectors dedicated to that label
i.e. the codebook vectors that are have high odds
of getting assigned to that particular label than to
any other label.

For each soft token, we thus select the three (i.e.,
number of classes) codebook vectors that are most
dedicated to each of the 3 class labels. Note that
this corresponds to codebook vectors with least-
entropy label distribution and the mode of the dis-
tribution is that particular class label.

Figure 4 shows the t-SNE plot of 300 codebook
vectors (3 labels × 100 prompt tokens) selected in
this manner. Each codebook vector is color-coded
by the corresponding class label it is dedicated
to. We observe two characteristics of the learned
codebooks:

1. codebook vectors of the same color are typ-
ically clustered together. These are label-
specific codebook vectors that encode exclu-
sive knowledge about that label. This clus-
tering effect is naturally achieved through the
EMA style learning of the codebook;

2. there are some clusters with codebook vectors
that are dedicated to multiple labels. This we
interpret as clusters of codes that capture gen-
eral label-agnostic information coming from
the input context or task description.

Model Selection in Multi-Task Setting Since
the multi-task setting constructed by us involves
sampling 10K instances randomly for the train and
validation sets, we provide additional details on the

6789

SuperGLUE PT-(100,0) VIP-(80,20) VIP-(50,50) VIP-(10,90) VIP-(0,100)

Tune param 76K 315K 546k 853K 930K

CB 75.83±3.61 73.43±0.50 78.47±3.89 79.43±4.44 75.47±2.63

COPA 59.00±2.00 59.33±0.58 58.00±2.65 59.00±1.73 62.67±0.57

WSC 66.67±1.48 68.26±0.95 65.39±0.01 66.97±1.16 68.73±1.30

RTE 70.77±2.25 70.17±1.46 72.53±1.29 71.10±0.70 72.10±0.87

WiC 67.37±0.78 66.50±1.37 66.70±1.51 67.37±0.25 68.00±0.61

BoolQ 69.27±0.60 70.97±0.71 70.40±0.44 70.01±0.38 69.63±1.07

MultiRC 69.57±0.55 70.60±1.01 71.53±0.29 72.50±0.87 70.47±0.40

ReCoRD 63.33±1.10 65.47±0.51 64.37±1.00 64.70±1.22 65.23±0.81

Avg 67.72±1.55 68.09±0.88 68.42±1.38 68.89±1.34 69.04±1.03

Table 8: SuperGLUE Performance of different VIP models obtained by combining u soft prompts and n VIP
prompts denoted by (u, n) and codebook size of 10*n. Number of tunable parameters (denoted by # Tune params)
varies across the models due to the different codebook sizes. Numbers in subscript show the standard deviation
across 3 randomized trials over different seeds

Figure 4: t-SNE map of the learnt codebook representa-
tion for NLI task in CB dataset

model selection here. In Figure 5 we plot the av-
erage validation performance of the proposed VIP
model and the baseline PT method, against the
number of training steps, for the multi-task setting
reported in Section 4.3. VIP model is observed
to be consistently performing better on the valida-
tion dataset than the baseline PT method at all the
evaluation steps.

A.4 Experimental Setup
Experimental settings. For a direct comparison
with PT, we base our experiments on the LM-
adapted version of T5-base encoder-decoder PLM2.

2T5-lm-adapt

Figure 5: Plot of Validation performance on Multi-task
dataset vs training iterations. Model selection in Section
4.3 and Table 6 is done based on this plot. VIP achieves
more superior performance to baseline PT throughout
all evaluation steps

We refer to the study of Lester et al. (2021) to
find the best prompt length and fix the number
of prompt tokens to n = 100 for PT, VIP and
VIP-IDP. The sentence encoder settings are pre-
viously discussed in Section 3.1.1. For the clas-
sification tasks such as relation classification and
NLI, we prepend the set of label tokens to [P q,X]
along with the task description (Equation (1)) as
non-trainable hard prompt tokens. For VIP-IDP
setting, we keep the weight as learnable parame-
ters in the feedforward generator network. This
is to enforce the model to rely its predictions on
soft tokens which are generated from the input
X3. FT feeds X to the PLM and fine-tunes the

3experimentally, we found the systems ignore information
from X and rely only on the learned bias terms

6790

https://huggingface.co/google/t5-base-lm-adapt

model parameters. Following the same setting
as FT, Adapter learns adapter layer weights as
proposed by (Houlsby et al., 2019) while keep-
ing the PLM parameters frozen. For all the ex-
periments, standard cross-entropy is used as pre-
diction loss. For optimization, we use Adafactor
(Shazeer and Stern, 2018) with constant learning
rates (LR), selected via grid search over values
{0.0001, 0.0005, 0.001} for each of the models,
CQ, VIP-IDP, and Adapter. The parameters of
the soft prompt (P) embedding layer, however,
need a significantly different LR, which we set
to 0.3, following Lester et al. (2021). Batch size
is set to 128 for the multi-task setup and to 32 for
all remaining experiments following Lester et al.
(2021). The quantizer comprises 1000 codebook
vectors as parameters learned through EMA. We se-
lect commitment cost β = 0.1 through grid search
over {0.01, 0.1, 1}. All our experiments are run for
30K steps, except multi-task setting which is run
for 50K steps. We employ different evaluation step
sizes for different datasets including epoch-wise
evaluation, at 500 steps, and at 2K steps. We tune
early stopping according to the evaluation step size
and the number of train data samples.

6791

