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Abstract

Large pretrained language models are critical
components of modern NLP pipelines. Yet,
they suffer from spurious correlations, poor
out-of-domain generalization, and biases. In-
spired by recent progress in causal machine
learning, in particular the invariant risk mini-
mization (IRM) paradigm, we propose invari-
ant language modeling, a framework for learn-
ing invariant representations that generalize bet-
ter across multiple environments. In particu-
lar, we adapt a game-theoretic formulation of
IRM (IRM-games) to language models, where
the invariance emerges from a specific train-
ing schedule in which all the environments
compete to optimize their own environment-
specific loss by updating subsets of the model
in a round-robin fashion. We focus on con-
trolled experiments to precisely demonstrate
the ability of our method to (i) remove struc-
tured noise, (ii) ignore specific spurious corre-
lations without affecting global performance,
and (iii) achieve better out-of-domain general-
ization. These benefits come with a negligible
computational overhead compared to standard
training, do not require changing the local loss,
and can be applied to any language model. We
believe this framework is promising to help
mitigate spurious correlations and biases in lan-
guage models.

1 Introduction

While modern pretrained transformer models have
led to dramatic progress on many NLP tasks, im-
portant limitations remain. In particular, pretrained
language models suffer from poor generalization,
even under small perturbations of the input distri-
bution (Moradi and Samwald, 2021). Indeed, these
models encode (Moradi and Samwald, 2021) and
exploit (Tu et al., 2020; Niven and Kao, 2019) spu-
rious correlations, i.e., correlations that do not gen-
eralize across data distributions. Since language
models are trained on large unverified corpora, they
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Figure 1: High-level overview using a simplified
causal structure. The distinction between environ-
ments makes it possible to separate spurious from sta-
ble features. Indeed, the relationship between the tar-
get variable Y and the stable features XC is invariant
across environments: E[Y |XC,E] = E[Y |XC]. However,
the correlation between Y and XS is spurious and does
not generalize across environments: E[Y |XS,E = e] ̸=
E[Y |XS,E = e′] for e ̸= e′. Language models trained
with the standard ERM, denoted as eLM in this work,
exploit all correlations available during training and aim
to learn E[Y |XC,XS]. Our proposed invariant language
models, denoted as iLM, focus on invariant features and
aim to learn E[Y |XC]. In language modeling, Y could
represent the missing-word prediction task.

also suffer from biases (Nadeem et al., 2021; Bor-
dia and Bowman, 2019). Here the term “biases”
refers to correlations that may or may not be spu-
rious according to the available textual data distri-
butions, but are nevertheless undesired. Existing
techniques aiming to remove spuriousness or biases
involve computationally expensive domain align-
ment (Akuzawa et al., 2019; Liu et al., 2020; Zhao
et al., 2020), domain transfer (Balaji et al., 2018),
or the addition of penalty terms to the loss targeted
at specific undesired correlations (Qian et al., 2019;
Zhao et al., 2018). Alternatively, data preprocess-
ing (Zhao et al., 2017; Zhou et al., 2021) or manipu-
lation such as counterfacual data-augmentation (Lu
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et al., 2018) can yield datasets where undesired cor-
relations are less present. Pretraining with larger
and more diverse datasets can also help (Tu et al.,
2020; Brown et al., 2020).

However, recent works on the theory of causality
(Pearl, 2018; Schölkopf, 2019) argue that removal
of spurious correlations requires altogether differ-
ent learning and training paradigms going beyond
purely statistical learning. Indeed, generalization,
spuriousness, and biases are all better understood in
the language of causality (Pearl, 2018). Intuitively,
causal relationships are the ones expected to be sta-
ble (Schölkopf et al., 2021; Peters et al., 2017) and
generalizable (Peters et al., 2016). When the causal
graph underlying the data generation mechanism is
known, there exist causal identification algorithms
to distinguish desired from undesired correlations
(Shpitser and Pearl, 2008). However, for complex
tasks of interest, the underlying causal model is not
known. Language modeling is one of these tasks,
where it is unclear what would even be the relevant
random variables constituting the causal model.

Therefore, causal identification from the causal
graph seems out-of-reach for language modeling.
Similarly, removing undesired correlations one by
one is impractical due to the sheer amount of pos-
sible correlations to consider. In this work, we
propose to benefit from recent progress in causal
machine learning to offer a new and more flex-
ible lever for dealing with spuriousness and bi-
ases. We take inspiration from the invariance prin-
ciple, which states that only relationships invari-
ant across training environments should be learned
(Peters et al., 2016). Under specific assumptions,
the invariant representation would then only en-
code the causal relationships relevant to the task
and should thus generalize. Environments corre-
spond to different views of the learning task, i.e.,
different data distributions. The invariance princi-
ple is illustrated by Fig. 1 with a simplified causal
model as an example. E represents environment
indices, Y is the target variable, XC are the causal
features, such that E[Y |XC] is stable across envi-
ronments (E[Y |XC,E] = E[Y |XC]), and XS are the
spurious features, not generalizing across environ-
ments (E[Y |XS,E = e] ̸=E[Y |XS,E = e′] for e ̸= e′).
Language models trained with standard empirical
risk minimization (ERM), denoted as eLM in this
work, exploit all correlations available during train-
ing and aim to learn E[Y |XC,XS]. Our proposed
invariant language models, denoted as iLM, focus

on invariant features and aim to learn E[Y |XC]. In
practice, since the causal model is unknown, it
is the choice of environments that defines what
correlations are spurious. Invariant learning with
appropriate choices of environments is the lever
we propose to employ to more flexibly deal with
spuriousness and biases.

A practical formulation of the invariance princi-
ple was proposed by Arjovsky et al. (2019). They
introduced invariant risk minimization (IRM), an
alternative to ERM as a training objective enforc-
ing the learning of invariant representations. Ahuja
et al. (2020) later improved the training procedure
to solve the IRM objective with a method called
IRM-games. Unlike previous methods for remov-
ing biases and spurious correlations, IRM-games
does not modify the loss with a regularization
term and does not compute domain alignment (or
matching) statistics. The invariance benefits come
from the specific training schedule where environ-
ments compete to optimize their own environment-
specific loss by updating subsets of the model in a
round-robin fashion.

We argue that the IRM paradigm, and IRM-
games specifically, is well-suited to improve NLP
systems. Textual data naturally comes from dif-
ferent environments, e.g., encyclopedic texts, so-
cial media posts, news articles, etc. Moreover,
not knowing the causal mechanisms behind lan-
guage generation within these environments is not
a blocker, as the relevant variables can now remain
latent. By adapting IRM-games to language mod-
eling, we introduce invariant language modeling
(iLM), where the training of existing pretrained
models is continued to enforce invariant represen-
tations, using a simple and efficient modification
of the training process. We then investigate the
ability of iLM to deal with undesired correlations
in a series of controlled experiments, answering
our core research question: Does the invariance
principle give rise to a practical strategy to deal
with spurious correlations in language models?

Contributions. (i) We introduce a new training
paradigm (iLM) for language models based
on the invariance principle (Sec. 3). Thanks
to the use of the IRM-games training schedule
(see Sec. 2), our iLM framework results in
negligible computational overhead compared to
standard ERM training, does not require changing
the local loss, and is agnostic to the language
model architecture. (ii) In a series of controlled
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experiments (Sec. 4), we demonstrate the ability of
iLM to remove structured noise (Sec. 4.1), ignore
specific spurious correlations without affecting
global performance (Sec. 4.2), and achieve better
out-of-domain generalization (Sec. 4.3). (iii) We
discuss our contributions in relation to previous
work (Sec. 5). (iv) Finally, we release Huggingface-
compatible code for training iLM using existing
language model checkpoints (Wolf et al., 2020):
https://github.com/epfl-dlab/
invariant-language-models

2 Background

2.1 Invariance Across Environments (IaE)

Recent works on the theory of causality (Pearl,
2018; Schölkopf, 2019) have argued that out-of-
distribution generalization and removal of spurious
correlations require going beyond purely statisti-
cal learning. This is motivated by the intuition
that causal relationships are the ones that are ex-
pected to be robust and generalizable (Peters et al.,
2016). In causal machine learning, these ideas crys-
tallized in the invariance principle which states
that only relationships invariant across training en-
vironments should be learned (Peters et al., 2016;
Muandet et al., 2013). In this paradigm, different
environments correspond to data collected in differ-
ent setups, i.e., different data distributions (Pearl,
2018). For NLP, spurious correlations and lack of
out-of-distribution generalization are particularly
well-documented and important problems (Moradi
and Samwald, 2021; Tu et al., 2020; Niven and
Kao, 2019). Fortunately, separations between en-
vironments naturally emerge in textual data: ency-
clopedic, news, social media, movie subtitles, etc.
This separation makes invariance-based approaches
particularly well-suited for NLP.

2.2 Invariant Risk Minimization (IRM)

While the invariance principle is a general and
powerful idea, works based on this principle of-
ten require knowing which random variables are
part of the causal model (Akuzawa et al., 2019;
Peters et al., 2016). Arjovsky et al. (2019) intro-
duced invariant risk minimization (IRM), an al-
ternative to empirical risk minimization (ERM),
and a practical training objective enforcing invari-
ance in the learned latent representation. IRM also
builds on the idea that the training data comes from
different environments e ∈ E. Each environment
e ∈ E induces i.i.d. samples De from a distribution

P(Xe,Y e). The goal, then, is to use these multi-
ple datasets to learn a predictor Y ≈ f (X), which
performs well across the set of all environments
E ∗, only part of which were seen during training:
E ⊂ E ∗. This is accomplished by decomposing f
into a feature representation ϕ and a classifier w,
as f = w ◦ϕ, where ◦ denotes function composi-
tion. The feature representation ϕ elicits an invari-
ant representation of the data if the same classifier
w is simultaneously optimal for all environments
e ∈ E. Intuitively, ϕ learns a representation that is
invariant with respect to the environments if its rep-
resentation is equally useful for all environments.
For NLP, we propose to use the main body of a
language model as the invariant feature learner ϕ.
When trained on a language modeling task, w will
be the language modeling heads. Then, Y is the
masked word and X the context.

2.3 IRM-Games

IRM is a challenging bi-level optimization origi-
nally solved (Arjovsky et al., 2019) by setting the
invariance criteria as a regularizer. Later, Ahuja
et al. (2020) improved the training procedure by us-
ing a game-theoretic perspective in which each en-
vironment e is tied to its own classifier we. A global
classifier w is then defined as the ensemble of
all environment-specific classifiers: w = 1

|E|
∑
e∈E

we

(where the predictions, not the weights, are aver-
aged). Then, environments take turns making a
stochastic gradient update to minimize their own
local empirical risk, by updating only the weights
of their own classifier we, while the shared ϕ is
updated periodically. For more details see the al-
gorithm called V-IRM in the original paper. Ahuja
et al. (2020) showed that the equilibrium of this
game is a solution to the IRM objective, i.e., the
resulting ϕ learns invariant features. For NLP, we
argue that IRM-games is a particularly meaningful
candidate to adapt to language modeling because it
requires little structural modifications.

2.4 Why Invariance Is Needed for NLP

Textual data is particularly subject to distribution
shifts and out-of-domain distributions as texts nat-
urally come from different environments. This cre-
ates a highly non-i.i.d. setting with problems of gen-
eralizability and spurious correlations. The curse
becomes a blessing when moving to invariance-
based ideas, as having diverse and naturally emerg-
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ing environments is the necessary starting point of
algorithms like IRM-games.

As a simple example, consider gender bias in
pretrained language models. When the model is
queried with q = “MASK is the best doctor”, it
feeds q into its main body ϕ, from which a lan-
guage modeling head w outputs softmax scores
w◦ϕ(q). Despite the context q containing no gen-
der information, existing models score the pronoun
he much higher than she. The problem comes from
the presence of spurious correlations, where the
context, here the word doctor, is correlated with
he. In an invariance-based approach, the training
data comes from different environments. Suppose
there is an environment e where the data is not
gender-biased, i.e., there is no correlation between
the latent representation ϕ(q) and he. It is thus not
stable across environments (not invariant) and will
not be learned. Now, consider the slightly different
query q′ = “MASK is the best doctor, she is great!”.
Here, the context ϕ(q′) contains gender informa-
tion. In all environments, the pronoun she should
be preferred. This association arises not from a
spurious correlation in data but from a common-
sense, almost grammatical, constraint. Therefore,
this correlation is invariant and will be learned by
invariance-based approaches.

This exemplifies the potential benefits of
invariance-based approaches and illustrates the im-
portance of choosing environment splits appropri-
ately. One should not expect any arbitrary split of
environments to magically yield generalization ben-
efits. However, the choice of environments within
the invariance-based learning framework provides
a flexible new lever to inject (i) inductive biases,
(ii) knowledge about the data generation mecha-
nism, and (iii) desirable stable properties (like re-
moving gender bias).

3 Model

We introduce a way to train language models in-
spired by the IRM-games setup. This involves dis-
tinguishing the shared invariant feature extractor
ϕ from the environment-specific we’s. With mod-
ern language model architectures, a natural choice
emerges: ϕ as the main body of the encoder, and
we as the language modeling head that outputs the
logits after the last layer.

Formally, suppose we have n environments con-
sisting of data {(Xe,Y e)}e=1,...,n. For a batch
(xi,yi)∼ P(X i,Y i) from environment i, the model

output is formed using an ensemble of n language
modeling heads {we}e=1,...,n on top of the trans-

former encoder: ŷ = softmax
(

1
n

n∑
e=1

we ◦ϕ(xi)

)
.

Then, a (masked) language modeling loss L is
computed on the model output ŷ. Note that it is the
predictions of the n heads that are averaged not the
weights or the gradients. No head gets to predict
alone; the n heads always predict together as an
ensemble. The heads are subject to competitive
gradient updates in a round-robin fashion as de-
scribed below, which in turn creates the conditions
that enforce the invariance.

Training. The training of iLM follows the pseudo-
code described in Alg. 1, where environments take
turns to send a batch of data and update ϕ and
their associated head. An illustration is provided
in Appendix A. Each head periodically gets an op-
portunity to pull the global ensemble classifier w
and the feature learner ϕ towards fitting the distri-
bution of its associated environment. Intuitively,
since each head gets the same amount of updates,
the game converges to a global classifier that is
simultaneously optimal for each environment, as
demonstrated by Ahuja et al. (2020). While the V-
IRM algorithm of Ahuja et al. (2020) only updates
ϕ periodically, we found it more stable to update it
together with every head update.

Algorithm 1 iLM training

1: Initialize(ϕ,{we}e∈E )
2: for iteration ∈ {1,2, . . . , Nsteps

|E | } do
3: for environment e ∈ E do
4: (xi,yi)← GetBatchFromEnv(e)
5: CompetitiveUpdate(xi,yi,ϕ,{we}e∈E )
6: end for
7: end for
8: function COMPETITIVEUPDATE(xi,yi,ϕ,{we})
9: L = L

(
softmax

(
1
n

n∑
e=1

we ◦ϕ(xi)

)
,yi

)

10: GradientUpdate(L,ϕ,wi)
11: end function

An advantage of this implementation is that in-
variance is obtained with few modifications to lan-
guage models. Such simplicity arises from our
leveraging of IRM-games, where invariance comes
from the training schedules and ensembling of clas-
sifiers. Furthermore, we implement two baselines
that appear similar but do not enjoy the same the-
oretical properties: mtLM and ensLM. The multi-

5731



distilBERT RoBERTa

eLM 4.71± .04 3.93 ± .06

mtLM 4.65± .05 3.74 ± .05

ensLM 4.66± .03 3.79 ± .02

iLM 4.43± .03 3.66± .04

Table 1: Robustness to noise. Average perplexity over
hyper-parameters (lower is better). The differences be-
tween iLM and the others are statistically significant
(paired t-test, p < 10−7).

task baseline (Liu et al., 2019a), mtLM, also uses
data split into environments with one head per en-
vironment and each environment being seen as a
different task. The ensemble baseline (lan et al.,
2018), ensLM, has a similar architecture as iLM,
ensembling n heads for predictions but always up-
dating every head with every batch. The ensemble
baseline has the same forward pass as iLM but does
not perform the competitive gradient update. These
baselines serve as ablations of iLM to demonstrate
the importance of splitting the data into environ-
ments, ensembling the heads, and using the com-
petitive gradient update.

4 Experiments

Invariance training comes with the promise of ro-
bustness and generalization (Peters et al., 2016;
Muandet et al., 2013; Ahuja et al., 2020). In the fol-
lowing series of experiments, we test whether our
proposed architecture for language modeling can
provide such benefits. Since our approach is agnos-
tic to the language model, we focus on two small
LMs used heavily in practice: distilBERT (Sanh
et al., 2019) and RoBERTa (Liu et al., 2019b). In
this work, we do not aim to engineer the best possi-
ble LM but rather precisely test iLM in controlled
setups by crafting environments whose difference
is known, from which we know the expected be-
havior. We describe three experiments: robustness
to noise, bias removal, and out-of-domain general-
ization.

Throughout the experiments, we report esti-
mated uncertainties with 95% confidence inter-
vals. We repeat experiments for varying hyper-
parameters and different random seeds (see Ap-
pendix B).

4.1 Robustness to Noise
In this experiment, we test robustness in a con-
trolled setup. We craft two environments: Env-A

made of clean Wikipedia articles and Env-B made
of full HTML pages of Wikipedia articles. We use
120K articles split equally into the two environ-
ments (see Appendix B.1 for data details). Then,
we continue the training with the masked language
modeling (MLM) loss from existing checkpoints
for each of iLM, eLM, mtLM, and ensLM with
these two environments and evaluate the MLM per-
plexity on a held-out dataset of clean Wikipedia
articles (25K held-out sentences). Intuitively, eLM
should try to fit the HTML part of the training data
and thus be more surprised by the clean Wikipedia
articles during the test set. However, iLM should
learn to ignore the HTML because it does not gen-
eralize from Env-B to Env-A.

Results. The results averaged over 16 hyper-
parameters choices are reported in Table 1. See Ap-
pendix B.1 for hyper-parameters considered. For
reference, the perplexities on the same test set of
off-the-shelf pretrained distilBERT and RoBERTa
are, respectively, 14.43 and 6.71. We observe that
iLM systematically has a significantly better test
perplexity. Also, ensLM and mtLM perform sig-
nificantly better than eLM but significantly worse
than iLM. This indicates that splitting data in n
environments and ensembling n heads gives some
robustness benefits. The full benefit comes when
further combined with the training schedule of iLM.
We come back to this discussion in Sec. 4.4.

To compare architectures over the test set with
different hyper-parameters, base transformers, and
random seeds, we also performed paired aggrega-
tion comparison based on the Bradley–Terry model,
following the recommendations of Peyrard et al.
(2021). The Pairformance tool1 measures the prob-
ability that iLM beats eLM when hyper-parameters
are matched. We obtain that iLM significantly beats
eLM with .98 estimated probability. Similarly, iLM
beats ensLM with .89 estimated probability and
mtLM with .92 estimated probability. In these ex-
periments, paired comparisons are particularly im-
portant because varying hyper-parameters result
in large variations of perplexity, such that blindly
averaging can amplify the variance and hide the
structure of model performance.

4.2 Bias Removal

In this experiment, we test the capacity to remove
one precise and known correlation by crafting two

1https://github.com/epfl-dlab/
pairformance

5732

https://github.com/epfl-dlab/pairformance
https://github.com/epfl-dlab/pairformance


20 40 60 80 100
Relative sizes (in %)

0.20

0.25

0.30

0.35

0.40
A

ve
ra

ge
 b

ia
s (

te
st

 se
t)

iLM
eLM

DistilBERT
RoBERTa

Figure 2: Bias removal. The x-axis represents the rela-
tive size (x = 1−p

p in percentages) between the modified
environment and the unmodified one and the y-axis
is the average bias for both iLM and eLM. Note that,
according to Pairformance, P(iLM beats eLM)> 0.95
when the relative size is < 80%, and that eLM and iLM
become indistinguishable for relative sizes > 80%. Due
to space, we report the results obtained by ensLM and
mtLM in Appendix B.2 which also shows that they per-
form in between iLM and eLM.

environments differing only in this specific corre-
lation. We use binary gendered terms and create
two environments where the gendered terms are
used differently.2 We follow the standard setup
of Counterfactual Data Augmentation (CDA) (Lu
et al., 2018): we take a textual data source with
known gender bias, in this case, Wikitext-2 (Merity
et al., 2016). A fraction p of the data goes into Env-
A, the rest (1− p) goes into Env-B. Env-A remains
untouched and preserves all the properties of the
original data source, whereas Env-B is intervened
upon by inverting all gendered terms based on a
dictionary provided by previous work (Bordia and
Bowman, 2019). When p = 1− p = 0.5 and the
language model is finetuned with eLM, this setup
matches the CDA method (Lu et al., 2018) used
to mitigate gender bias in NLP. Intuitively, iLM
should learn to ignore gender-based correlations no
matter what the fraction p. However, eLM is only
expected to ignore them when p = 1− p = 0.5, i.e.,
the two environments precisely balance each other.

Experimental setup. To measure whether the cor-
relation has been successfully removed, we (i) take
all gendered terms in the test set, (ii) replace them
by the MASK token, (iii) use trained models to pre-

2We recognize the non-binary nature of gender as well
as the many ethical principles in the design, evaluation, and
reporting of results in studying gender as a variable in NLP
(Larson, 2017). Because iLM is not limited to training only
with two environments, this architecture can also support more
general bias removal goals.

dict the missing term, (iv) look in the softmax for
the scores received by the terms of the target gen-
dered pair. We note s f and sm the score assigned to
the female and male terms in the softmax. Finally,
(v) we compute an entropy-based bias measure:
BH = H2

( 1
2

)
−H2

(
s f

s f +sm

)
, where H2 is the binary

entropy (note that H2
( 1

2

)
= 1). BH measures the

extent to which a softmax has a preference for the
male or female term in a gendered pair of terms.
For example, in the sentence “MASK is the best doc-
tor” we look at the softmax score of the gendered-
pair [he, she]. If a model has learned to ignore
gender-based correlation, the entropy should be
high (entropy-bias low), not favoring one gendered
term over the other. We remove sentences with
several gendered terms from the test set to avoid
penalizing models for preferring a gender when the
context contains gender information.

We ran the experiments for varying values of p
averaging across different hyper-parameters, and
report the results in Fig. 2 for iLM and eLM.
The results for ensLM and mtLM are reported
in Appendix B.2. See Appendix B.2 for hyper-
parameters considered. For reference, the entropy
bias of distilBERT and RoBERTa before training are,
respectively, 0.39 and 0.46.

Analysis. Compared to off-the-shelf models, both
eLM and iLM largely decrease the average entropy
bias in the balanced setup but only iLM succeeds
in the unbalanced setup. In the balanced setup (rel-
ative sizes close to 100%), eLM and iLM perform
within each other’s confidence intervals. However,
in the unbalanced setup, iLM largely outperforms
eLM. We note that, according to Pairformance,
the probability that iLM beats eLM for any given
hyper-parameter configuration is > 0.9 for both
distilBERT and RoBERTa when the relative sizes
is below 80%. As desired iLM is not affected by
the relative size of the environments. These results
confirm the hypothesis, that bias removal needs
a precisely balanced dataset for eLM (Lu et al.,
2018), while it does not matter for iLM. Further-
more, this entropy bias reduction does not happen
at the cost of worst general perplexities (see Ap-
pendix B.2). These findings are significant for the
field of bias removal, as iLM offers a practical and
efficient way of removing biases. It is now not
necessary to carefully counter-balance the bias in
the augmented data. In Fig. 2, we see that already
at 10% of relative size, iLM performs as well as
existing approaches (100% relative size + eLM).
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InD-LM↓ OoD-LM↓ GLUE↑

distilBERT
eLM 26.02± 0.35 31.52± 0.20 72.12
ensLM 22.31± 0.56 32.80± 0.23 72.34
mtLM 22.73± 0.29 31.16± 0.44 72.22
iLM 20.25*± 0.52 30.32*± 0.43 72.45

RoBERTa
eLM 14.55± 0.21 17.72± 0.25 76.89
ensLM 12.40± 0.34 17.68± 0.22 77.49
mtLM 12.56± 0.33 17.43± 0.23 76.55
iLM 11.88*± 0.28 16.97*± 0.19 78.54*

Table 2: ThePile environment experiments. The first
column is for language modeling evaluation in-domain
(perplexity, lower is better), the second column is for
language modeling evaluation out-of-domain (perplex-
ity, lower is better), and the last column is for GLUE
tasks averaged (higher is better). We mark with * the
cases where iLM is statistically significantly better than
other architectures (paired t-test).

4.3 Out-of-Domain Generalization

In this experiment, we venture beyond controlled
environments and test out-of-domain generaliza-
tion with naturally occurring environments. We use
thePile dataset (Gao et al., 2020) which contains
20 very diverse textual domains: OpenSubtitles,
ArXiv papers, News, GitHub comments, etc.

Experimental setup. We randomly sample 11 do-
mains from thePile for training, the remaining 9
domains are used for testing language models out-
of-domain. Once the models are trained, using
domains as environments, we evaluate their per-
plexity in-domain (InD) using held-out data from
the training environments and OoD using data from
unseen environments. See Appendix B.3 for details
regarding training domains and hyper-parameters.
Furthermore, the trained models are evaluated on
the GLUE benchmark. Indeed, models trained with
iLM can be used downstream exactly as if they
were trained with eLM. We report aggregated re-
sults in Table 2. The results also show significant
improvement of iLM over other architecture across
the board. In particular, iLM is beneficial for both
in-domain (InD) and out-of-domain (OoD) evalua-
tion.

4.4 Ablation

The eLM, mtLM, and ensLM architectures serve
as ablated versions of iLM testing the three main
components of iLM: splitting the data into envi-

eLM mtLM ensLM iLM

eLM - .92± .06 .26± .09 .28± .09

mtLM .08± .06 - .04± .04 .03± .04

ensLM .72± .09 .96± .04 - .37± .10

iLM .74± .09 .97± .04 .63± .10 -

Table 3: Paired aggregated results. Estimated prob-
ability that one architecture (row i) is better than any
other (column j) across all previous experiments, based
on the pairwise Bradley–Terry aggregation model.

ronments with one head per environment (mtLM
over eLM), ensembling the heads during training
(ensLM over mtLM), using the specific competi-
tive gradient update schedule (iLM over ensLM).
The four variants were run over all experiments pre-
viously described varying hyper-parameters yield-
ing a total of 1320 experimental results (see Ap-
pendix B for details) per architecture. To get a
global view, we again aggregated these results with
the paired aggregation given by the Bradley–Terry
model. It estimates a strength for each architecture
based on how likely it is to beat other architec-
ture on the same experiments with the same hyper-
parameters. It provides a scale-independent metric-
independent way to aggregate scores (Peyrard et al.,
2021) across tasks and experiments.

The results are reported in Table 3 and confirm
the intuition built-up with previous experiments
that simply having n environments with n heads
is not beneficial on its own, as mtLM does not
provide benefits over eLM. However, when com-
bined with head ensembling (ensLM), significant
improvements can be observed over both eLM and
mtLM. Further significant benefits arise from the
competitive gradient update specific to iLM. While
both mtLM and ensLM have slightly better capac-
ity to overfit with their n heads, they don’t bene-
fit from the invariance regularization provided by
competitive gradient updates. Notice that iLM is
significantly better than any other architecture, as
shown by the last row of Table 3 (or equivalently,
the last column).

5 Discussion

In this section, we discuss our contributions in the
context of previous work.
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5.1 Related Work

Domain generalization. The performance of
deep learning models substantially degrades on
out-of-domain (OoD) datasets, even in the face
of small variations of the data-generating process
(Hendrycks and Dietterich, 2019). Blanchard et al.
(2011) have proposed domain generalization (DG)
as a formalism for studying this problem. In DG,
the goal is to learn a model using data from a single
or multiple related but distinct training domains,
in such a way that the model generalizes well to
any OoD testing domain, unknown during training.
Recently, the problem of DG has attracted a lot of
attention, and has been approached from different
facets. Most of the existing methods fall under
the paradigm of domain alignment (Muandet et al.,
2013; Li et al., 2018b; Akuzawa et al., 2019; Liu
et al., 2020; Zhao et al., 2020). Motivated by the
idea that features that are stable across the train-
ing domains should also be robust to the unseen
testing domains, these methods try to learn domain-
invariant representations. A group of other methods
is based on meta-learning (Dou et al., 2019; Balaji
et al., 2018; Li et al., 2018a). The motivation be-
hind this approach is that it exposes the model to
domain shifts during training, which will allow it
to generalize better during testing. Regularization
through data augmentation is commonly used in
the training of machine learning models to allevi-
ate overfitting and thereby improve generalization
(Zhou et al., 2021, 2020). Based on this idea, (Zhou
et al., 2021, 2020) apply transformations on the
original data to simulate a domain shift in training.

Domain generalization applied to language mod-
els. In NLP, the default pipeline involves pre-
training a task-agnostic language model, which
is then finetuned on downstream tasks. This pre-
training/finetuning division of learning is already
known to improve robustness on downstream tasks
(Hendrycks and Dietterich, 2019). However, the
language models themselves suffer from spuri-
ous correlations and poor generalization even with
small perturbations of the inputs (Moradi and
Samwald, 2021). To alleviate such problems, Oren
et al. (2019) adapted Distribution Robust Optimiza-
tion (Ben-Tal et al., 2013) to language models. This
resulted in a new loss minimizing the worst-case
performance over subsamples of the training set.
They focused on domains with topic shifts. Later,
Vernikos et al. (2020) used domain -adversarial

regularization to improve testing performance on
unseen domains.

Compared to these previous works, iLM enjoys
theoretical justification rooted in the causal frame-
work of invariance (Peters et al., 2016). Our im-
plementation is simple, comes at negligible com-
putational cost and can be applied directly to any
transformer LM.

5.2 Environment Design

One question that might arise from the iLM training
schedule is what happens when environments have
no lexical overlap. Maybe no correlation would
remain for iLM to model? We emphasize that
iLM learns a latent representation ϕ and stable
correlations are those connecting this latent rep-
resentation to observables, and not surface corre-
lations between observables. To demonstrate that
iLM operates on latent variables and not just on
surface-level correlations, we performed a simple
experiment with languages as environments. We
trained iLM with a pretrained multilingual model
(XLM-RoBERTa) using English Wikipedia articles
and Farsi Wikipedia articles as two environments.
Despite almost no surface-level overlap, iLM is
still able to improve perplexity in each language in-
dividually and does not destroy previously learned
correlations. This experiment is detailed in Ap-
pendix B.4.

Also, if the number of environments grows ar-
bitrarily large, certainly iLM would not find any
stable correlations in the data? We emphasize that
the choice of environments is not intended to be ar-
bitrary; simply contriving as many environments as
possible could not be expected to be useful. Rather,
the choice of environments has to reflect assump-
tions about the underlying data generation mecha-
nism; iLM then leverages the assumptions encoded
in the choice of environments.

Indeed, after this work has shown that iLM can
effectively remove unstable correlations, the next
question becomes that of environment design:
how to choose environment splits to be useful in
practice? Useful environment splits will likely
be different for different tasks and different pur-
poses. This work already demonstrated that the new
paradigm of (i) environment design then (ii) iLM
is practical for language-related problems. Choos-
ing environment splits is a flexible way to inject
priors and inductive biases, compared to manually
deciding which correlations are desired (as in bias
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removal) or fully learning the causal graph (as in
causal reasoning). Now, iLM provides a compu-
tationally efficient framework to inject such pri-
ors and move the discussion from model inductive
biases to data inductive biases. It already offers
robustness to noise, a ready-to-use bias removal
strategy for any existing language model needing
few data points, and improves OoD generalization.

6 Limitations

In this work, we focus on crafting controlled experi-
ments with easily manageable dataset and language
model sizes to carefully test the invariance benefits
of iLM. However, it is possible to expect different
qualitative behavior for large-scale language mod-
els recently deployed due to emergent properties.

Our implementation could be applied largely
to various downstream tasks, other than language
modeling measured by perplexity. Here, we fo-
cus on the language modeling task and perplexity
measure because they allow clear and precise ex-
periments measuring the ability of iLM to deal with
spurious correlations. The strong positive results
observed in this work motivate future work to test
iLM in other setups closer to direct practical use-
cases.

It is expected that different choices of environ-
ment splits will be useful for different downstream
tasks. While this work demonstrates that iLM is
useful to remove spurious correlation, it does not
say how to choose environments for which tasks.
For instance, we observed smaller improvements
when using thePile datasets and evaluating on the
downstream GLUE tasks, indicating that thePile
environment splits are not optimal for these down-
stream tasks. We believe that environment design
is an important avenue for future research.
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A Illustration of iLM Architecture

In the main paper, we described formally the
pseudo-code involved in training iLM models. The
model architecture and the logic of the training
schedule is illustrated in Fig. 3 for the special-case
of 2 environments (n = 2).

A.1 mtLM and ensLM baselines

We implemented two similar architectures that do
not enjoy the same theoretical justifications.

In the mtLM baseline, the data is also split into
n environments with one head per environment. As
in iLM, environments take turns to send a batch
of data and perform a batch update on the body of
the transformer ϕ and the head associated with this
environment. This is like viewing different envi-
ronments as different tasks with uniform weights,
even though they are all language modeling loss.

In the ensLM baseline, the data is split into n en-
vironments with one head per environment. How-
ever, here, the heads are always predicting as an
ensemble like iLM. Here also the environments
take turns to send a batch of data. The forward pass
is exactly the same as the one of iLM. In the back-
ward pass, every head and the transformer body ϕ
are always updated for every batch of every envi-
ronment.

B Details about Experiments

B.1 Robustness to Noise

Data. The data used for this experiment comes
from an HTML Wikipedia Dump of August 2018.
The files were pre-processed to remove the HTML
content resulting in clean text articles. We ran-
domly selected 60K articles with HTML (Env-B),
and 60K different articles without HTML (Env-A).
The test set contains 25K sentences coming from
Wikipedia without HTML.

Hyper-parameters. We ran the experiments
reported in the main paper while varying
several hyper-parameters: base transform-
ers (ϕ): [distilBERT, RoBERTa], learning
rates: [1e−5,5e−5], number of training steps:
[10,100,200,500,2500,5000], 5 random restarts
with different random seeds, 2 ·2 ·6 ·5 = 120, ran
with eLM, mtLM, ensLM, and iLM resulting in
480 experiments.

Number of lines vs. number of articles. In the
main paper, we report the results of iLM and eLM

25 50 75 100

distilBERT
eLM .372± .012 .358± .033 .326± .001 .308± .016

mtLM .363± .010 .352± .037 .308± .022 .328± .022

ensLM .322± .003 .350± .032 .324± .020 .315± .015

iLM .309± .006 .322± .033 .318± .012 .309± .004

RoBERTa
eLM .317± .010 .305± .008 .273± .045 .259± .025

mtLM .308± .011 .299± .009 .271± .29 .260± .12

ensLM .291± .011 .300± .011 .270± .031 .271± .033

iLM .290± .013 .291± .003 .271± .033 .267± .025

Table 4: Complementary gender-bias removal results.
Average bias BH as described in Sec. 4.2 across 4 differ-
ent relative sizes of environments (25%, 50%, 75% and
100%).

when trained with environments having the same
number of articles. However, the HTML articles
have more lines and thus more sentences. There-
fore, we also report in Fig. 4 the same analysis
repeated when the number of lines between Env-A
and Env-B is the same, meaning Env-B contains
fewer articles. The conclusion remains largely un-
changed in this scenario. As seen in Fig. 4 (c), iLM
has still a probability of beating eLM for match
hyper-parameters close to 1, highly significantly
far away from 0.5.

B.2 Bias Removal

Data. The dataset used for this experiment is
Wikitext-2 (Merity et al., 2016) where we follow
the existing train/dev/test split. The dictionary of
gendered terms comes from Bordia and Bowman
(2019) which was originally constructed to mea-
sure gender bias in language models.

The dictionary contains basic gender-pairs aug-
mented with their variations in terms of casing,
plural vs. singular forms and different spellings.
The basic gendered pairs are: (actor, actress), (boy,
girl), (boyfriend, girlfriend), (father, mother), (gen-
tleman, lady), (grandson, granddaughter), (he, she),
(hero, heroine), (him, her), (husband, wife), (king,
queen), (male, female), (man, woman), (mr., mrs.),
(prince, princess), (son, daughter), (spokesman,
spokeswoman), (stepfather, stepmother), (uncle,
aunt)

Hyper-parameters. We ran the experiments re-
ported in the main paper while varying several
hyper-parameters: base-model (ϕ): [distilBERT,
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Figure 4: Structured noise removal experiment with environments having the same number of lines: a) average
perplexity over all hyper-parameters b) average perplexity as a function of the number of training steps (for learning
rate 10−5), c) Probability that iLM is better than eLM when compared on the same hyper-parameters

RoBERTa], learning-rates: [1e−5,5e−5], number
of training steps: [10,50,100,200,1000,2500],
5 random restarts with different random seeds.
This gives 2 · 2 · 6 · 5 = 120 experimental param-
eters, ran for eLM, iLM, mtLM, and ensLM
while varying the relative sizes of environments
in [10,25,30,50,70,75,90,100] resulting in 3840
experiments.

Results for mtLM and ensLM. In Fig. 4, we re-
port the average bias as a function of the relative
sizes of environments for mtLM and ensLM along-
side those of iLM and eLM. We also observe here
that iLM outperform other architectures. Interest-
ingly, ensLM seems to bring benefits in comparison
to eLM and mtLM.

Details about the results. Here, we report comple-
mentary analysis compared to the results described
in the paper. We report the performance of eLM
and iLM as a function of the number of training
steps and the probability that iLM is better then
eLM when matched on hyper-parameter configura-
tion as computed by the Bradley-Terry model. This
is reported by Fig. 5 for two relative size: 25% (the

modified environment has 4 times fewer examples)
and 100%.

Perplexities after training. To ensure that the
gender-based correlations were not removed at the
cost of a worse perplexity, we report in Table 5
the perplexities of iLM models in comparison eLM
ones on the test set of Wikitext-2. For reference,
before our training distilBERT and RoBERTa had,
this same test set, perplexities of 14.25 and 6.92,
respectively.

In Table 5, the 95% confidence intervals all give
uncertainties ≈ 0.15, meaning that for a fixed base
model (distilBERT or RoBERTa) all perplexities are
within each other’s error bounds. There is no signif-
icant perplexity difference between eLM and iLM
or between the unbalanced and balanced setups.

B.3 Out-of-domain Generalization

Data. The data used for this experiment comes
from subsamples of thePile (Gao et al., 2020).

We randomly selected train and test domains as
follow:

5740



DistilBERT RoBERTa
0.2

0.3

0.4

0.5

U
nb

al
an

ce
d 

se
tu

p 
(2

5%
) 

 a
) A

ve
ra

ge
 b

ia
s iLM eLM

0 500 1000 1500 2000 2500
0.2

0.3

0.4

0.5

b)
 A

ve
ra

ge
 b

ia
s iLM

eLM
DistilBERT
RoBERTa

DistilBERT RoBERTa
0.0

0.2

0.4

0.6

0.8

1.0

c)
 

(iL
M

 b
ea

ts
 e

LM
)

= 0.5

DistilBERT RoBERTa
Base model

0.2

0.3

0.4

0.5

Ba
la

nc
ed

 se
tu

p 
  d

) A
ve

ra
ge

 b
ia

s

0 500 1000 1500 2000 2500
Number of training steps

0.2

0.3

0.4

0.5

e)
 A

ve
ra

ge
 b

ia
s

DistilBERT RoBERTa
Base model

0.0

0.2

0.4

0.6

f) 
(iL

M
 b

ea
ts

 e
LM

)

Controlled correlation removal

Figure 5: Controlled correlation removal experiment: On the first row, the modified environment is 25% of the
size of the unmodified environment. On the second row, both have the same number of samples. On the left-most
column, average bias over all hyper-parameters. On the center column: average bias as a function of the number of
training steps. On the right-most column: Probability that iLM is less biased than eLM when compared on the same
hyper-parameters.

Unbalanced Balanced

iLM RoBERTa 4.16 4.13
iLM distilBERT 5.82 5.81
eLM RoBERTa 4.14 4.14
eLM distilBERT 5.82 5.85

Table 5: Perplexities of iLM and eLM models after
training.

• Train: "europarl", "freelaw", "dm mathe-
matics", "youtubesubtitles", "USPTO back-
grounds", "arxiv", "books3", "wikipedia(en)",
"stackexchange", "hackernews", "pile-cc"

• Test: "github", "ubuntu irc", "openwebtext2",
"pubmed central", "enron emails", "pubmed
abstracts", "gutenberg pg-19"

Hyper-parameters. We ran the experiments re-
ported in the main paper while varying several
hyper-parameters: base-model (ϕ): [distilBERT,
RoBERTa], learning-rates: [1e−5,5e−5], number
of training steps: [2500,5000,25000,50000], 5
random restarts with different random seeds, for
eLM, mtLM, ensLM, and iLM. This results in
2 ·2 ·4 ·5 ·4 = 320 experimental models, each eval-
uated in 3 tasks: in-domain language modeling,
out-of-domain language modeling, GLUE. This is
a total of 960 experimental setups.

Evaluation. For the in-domain language modeling
evaluation, we measure perplexity on 10K held-out
sentences from each of the train domain. Similarly
for out-of-domain language modeling evaluation,

we measure perplexity on 10K sentences from each
of the test domain.

For GLUE, we used the default scripts from hug-
gingface to evaluate trained models from check-
points.

B.4 Languages as Environments

One question that might arise from iLM training
schedule is whether it simply focuses on surface-
level lexical correlations in the data. For example,
if the lexical correlations are different across envi-
ronments, maybe no correlation remain generaliz-
able and iLM learns an empty set of correlations.
To better demonstrate that iLM operate on latent
variable and not on surface-level correlations, we
perform a simple experiment with languages as
environments.

Description. We use two languages with no lexical
overlap: English and Farsi. We put english Wikipe-
dia articles as one environment and farsi Wikipedia
articles as the other. In this setup, no surface-level
correlations can generalize across environment as
the two environments don’t even have the same
vocabulary.

We train iLM with a multilingual pre-trained
RoBERTa: XLM-RoBERTa for 5000 steps with
these two environments of equal size (10K arti-
cles per language). Then, we test whether this
choice of environments destructs previously learn
correlations in the language model by comparing
perplexities on a balanced held-out test set of en-
glish and farsi documents against the model before
finetuning. If the perplexities decrease, we would
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Figure 6: Comparing distance between heads weights in-
and out-domain as functions of the number of training
step. (95% confidence interval from random restart with
different seeds.)

conclude that iLM destroy surface-level correla-
tions.

Results. We found that before finetuning, XLM-
RoBERTa had a perplexity of 14.56 on the held-out
test set, where iLM could improve it perplexity
down to 6.44. This indicates that iLM with environ-
ments having no lexical overlap does not destroy
previously learned correlations. It can even im-
prove its perplexities for each language. A possible
reason why iLM can even improve so dramatically
compared to before finetuning might come from
the fact that ϕ learns to recognize the languages,
separate them and treat them separately. Similar
effects have been observed in previous work (Guo
et al., 2021) when the correlation between the envi-
ronment index and the target variable is very strong
(which is the case here).

B.5 Head dynamics

The main components of our framework are the
heads and their training dynamic. Therefore, we in-
vestigate aspects related to behaviour of the heads.

Description. During training, the loss of each head
is still entangled with the prediction of every other
head. So we wonder whether the heads still capture
information related to the environment it is tied to
during training. In particular, we ask (i) whether the
parameters of the heads for different environments
are drifting apart during training? Indeed, all heads
are initialized to the same pretrained weights at the
beginning of training. (ii) Are the parameters of
the heads predicting which environments are more
similar?

Experimental setup. To answer these two ques-
tions in one go, we take two environments A and B
and split each of them into two new environments

resulting in A1, A2, B1, and B2 such that A1 and
A2 are very similar B1 and B2 are very similar but
Ai and Bi are different. We then train iLM with
the four environments and, thus, with four heads
wA1 , wA2 , wB1 , and wB2 . We measure whether the
heads’ weights can predict the similarities between
A’s and B’s environments.

Din =
1
2
(d(wA1 ,wA2)+d(wB1 ,wB2)) , (1)

Dout =
1
4

∑

i, j

d(wAi ,wB j), (2)

where d is the L2 distance between the linearized
weights of two heads. Then, Din is the average
distance between heads tied the same domain, and
Dout is the average distance between heads tied
to different domains. Remember that in this case,
there are 2 domains A and B and 4 environments
Ai and Bi.

In this experiment, we randomly select the base
environments A and B from the domains of thePile
(A is the Enron-Email, and B is PubMed abstract).
We create Ai and Bi by randomly subsampling 2
environments of the same size from each domain.
We train iLM with RoBERTa for 5000 training steps,
taking checkpoints of the heads every 500 steps.
We perform 10 random restarts with different seeds
to uncertainty estimates. In Fig. 6, we report Din

and Dout as functions of the number of training
steps.

Maths
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2D MDS embedding of heads
 after 5000 steps

Figure 7: Heads embeddings: 2D projection of the
heads parameters similarity structure after training iLM
with RoBERTa for 5000 steps with 9 domains. Each dot
represent one head of the model after training and the
labels indicate to which domain it is tied to.

Analysis. We first notice that indeed the heads
are drifting apart from each other as training ad-
vances. More interestingly, the distance between
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heads from the same domain is significantly much
smaller than the distance between heads from dif-
ferent domains. We conclude that heads retain
environment-specific information in their parame-
ters and are predictive of environment similarities.

Now, we visualize the geometry of head similar-
ity by training iLM with RoBERTa for 5000 steps
with 9 environments from thePile: . After train-
ing, we take the heads’ parameters and compute
the pairwise distance between all 9 heads and em-
bed them in 2D with Multi-Dimensional Scaling
to visualize the similarity structure. The result is
depicted in Fig. 7.
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