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Abstract

Retriever-reader models achieve competitive
performance across many different NLP tasks
such as open question answering and dialogue
conversations. In this work, we notice these
models easily overfit the top-rank retrieval pas-
sages and standard training fails to reason over
the entire retrieval passages. We introduce a
learnable passage mask mechanism which de-
sensitizes the impact from the top-rank retrieval
passages and prevents the model from overfit-
ting. Controlling the gradient variance with
fewer mask candidates and selecting the mask
candidates with one-shot bi-level optimization,
our learnable regularization strategy enforces
the answer generation to focus on the entire
retrieval passages. Experiments on different
tasks across open question answering, dialogue
conversation, and fact verification show that
our method consistently outperforms its base-
lines. Extensive experiments and ablation stud-
ies demonstrate that our method can be general,
effective, and beneficial for many NLP tasks.

1 Introduction

Retriever-reader based approaches are popularly
considered in the knowledge-intensive tasks (e.g.,
open Question Answering (QA), fact verification).
It is designed to retrieve a set of support docu-
ments and extract the answer from these documents.
Mostly adopted retrieve and read models (e.g., Izac-
ard and Grave, 2020) are trained to generate the
annotated gold answers using the reader model,
based on passages obtained by the retrievers (e.g.,
Robertson and Zaragoza, 2009; Karpukhin et al.,
2020). This training process of reader disregards
the evidentiality of all retrieval passages and can
easily overfit the top ranked passages (Xu et al.,
2021; Lee et al., 2021). Even if the top-rank pas-
sages in the test setting do not have the correct
answers, these models still tend to find the answer
in the top-rank passages and yield worse perfor-
mance (Xu et al., 2021). It happens to the reader

model due to the overfitting and the memorization
of outdated information (Longpre et al., 2021).

To what extent does the reader model quality
depend on the retrieval passages? We analyze the
ranking impact of the retrieval passages from mask-
ing (e.g. mask out the top three passages), permut-
ing, and removing. The overfitting, as well as the
performance degradation, is observed. To desen-
sitize the impact from the top-rank passages, we
consider masking passages during training which
serves as a desensitizer and can improve the reader
model ability to reason over all retrieval passages.

However, the standard masking and dropout
strategies are not designed for our focused tasks
and also bring an increased gradient variance dur-
ing training due to their randomness. In the mean-
time, each neuron plays the same role and has the
same mask. However, in the reader model, in-
tuitively, top-rank passages often have a higher
chance to overfit during the training. To this end,
we introduce our passage mask (PM), which en-
courages to mask top-rank passages. Reducing the
gradient variance with fewer mask candidates and
optimizing the mask candidates with bi-level opti-
mization, the mask magnitude for each candidate
can be learned. Overall, the proposed mask param-
eters are jointly optimized with the entire network.

We run extensive experiments across represen-
tative knowledge-intensive tasks: open-domain
QA (Natural Questions Open (Kwiatkowski et al.,
2019); TriviaQA unfiltered (Joshi et al., 2017)), fact
verification (FaVIQ (Park et al., 2021)), and knowl-
edge grounded dialogue (Wizard pf Wikipedia (Di-
nan et al., 2018)). Our method shows large per-
formance improvements across different tasks and
datasets. Furthermore, we provide extensive ab-
lation studies on different design choices for the
proposed method, including the designs of masking
candidate space and efficiency. Our analysis shows
the passage mask contributes the performance im-
provement, helping the reader learn to focus on
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the retrieval passages without being distracted by
high-ranked passages with more lexical overlaps.
With little modification, our regularization can be
easily applied to other NLP tasks for a better an-
swer generation strategy. To the best of our knowl-
edge, we present the first mask regularization in
the open retriever-reader setting by preventing the
rank-related overfitting in Open QA, dialogue con-
versation, and fact verification. Our contributions
are summarized as follows:

• Demonstrate that current models, e.g., Fusion-
in-Decoder (Izacard and Grave, 2020), tend
to find answers in top-rank passages. These
models are neither robust to passage drop nor
able to utilize the entire retrieval passages.

• Present a passage mask mechanism for re-
trieval reader models. It improves the model
generalization and encourages the model to
extract answers from all the passages.

• Propose an efficient and effective way to train
the model and the mask hyper-parameters
jointly, which can one-shot search passage
mask hyper-parameters. First, we use smaller
number of mask candidates to reduce train-
ing gradient variance. Second, we jointly
optimize the model parameters and mask
candidate choices (a.k.a., parameters) with
theoretically-converged bi-level optimization.

• Verify the effectiveness and general applica-
bility of the proposed method in knowledge
intensive NLP tasks, e.g., open question an-
swering, fact verification, and dialogue tasks,
and provide a rich analysis of this method with
various design choices such as the masking
position and efficiency. The proposed strat-
egy can be easily incorporated or extended to
many other NLP tasks.

2 Method

2.1 Knowledge-intensive Tasks

Knowledge-intensive tasks (e.g., open QA, dia-
logue conversations) require to access a large body
of retrieval information. A retrieval-augmented
generation framework such as Fusion-in-Decoder
(FiD) (Izacard and Grave, 2020) that consists of
two components: a retriever model R and a gen-
erator model G has demonstrated the competitive
performance and scalability to the large collection
of retrieval evidence. FiD uses Dense Passage Re-
trieval (DPR) (Karpukhin et al., 2020) to retrieve a

Mask Position 1st 2nd 3rd 4th 5th FiD

Mask 1st ✓ 44.5
Mask 2nd ✓ 48.8
Mask 3rd ✓ 48.3
Mask 4th ✓ 49.1
Mask 5th ✓ 49.6
Mask Top 5 ✓ ✓ ✓ ✓ ✓ 35.7
N/A 50.1

Table 1: Examples of the trained FiD (Izacard and
Grave, 2021) reader model on Natural Questions Open
(Kwiatkowski et al., 2019) where the top-rank retrieval
passages are masked based on the mask position and the
reader generates the answer from non-mask passages.

set of documents, and the decoder attends over the
concatenation of all encoded document representa-
tions to generate the final answer. Specifically, the
retriever model R is trained to retrieve a set of pas-
sages P with the highest top K relevance score for
each training query. G is then trained to generate
the final output ŷ given an input query x and the
top retrieved passages: ŷ = G(x, P ).

Although FiD does not use the unnormalized
passage score as DPR, we still find out that FiD has
a preference over passages with higher retrieval
passage scores. Our analysis in Table 11 shows
that G trained in this manner overfits the passages
ranked high by the retriever. In this work, our goal
is to prevent the overfitting, extract the answers in
all given passages and improve the model general-
ization during the reader training.

2.2 Reader Model
The overall FiD reader model is composed of the
encoder and the answer generator.

Encoder. Each retrieved passage and its title are
concatenated with the question and processed inde-
pendently by the encoder. We add tokens question:,
title: and context: before the question, title and text
of each passage. The input query x is prepended
to each passage (Asai et al., 2021). The encoder is
usually a pre-trained T5 (Raffel et al., 2020).

Answer Predictor. Mark h as a summary rep-
resentation of the input, formed by concatenating
the final-layer hidden state of passages. h is fed
into the answer predictor and the final answer is
autoregressively output.

Objective. In the encoder-decoder structure, we
train the answer generator G given the originally

1Detailed discussions are in Section 4.1
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Figure 1: Overview of passage mask. Some notations are labeled along with corresponding components. ‘Passage
Rep’ refers to the passage representation, ‘Mask’ refers to the mask, ‘e’ refers to the encoder, ‘d’ refers to the
decoder, and ‘Q + P1’ refers to the question and the first passage. In the Mask, the black color represents the mask
and the white color represents the non-mask.

available data (x, y). In particular, our framework
with the model parameter θ is defined as:

Lgen = −
T∑

j

log pθ (yj | y<j , x,h) , (1)

where yj denotes the jth token of the annotated
gold answer y. The generator is based on the T5
architecture and uses cross attentions to model the
interactions between retrieved passages (Izacard
and Grave, 2021). This probability is normalized
over T5 vocabulary.

2.3 Passage Mask

Since the over-parameterized neural networks are
prone to overfitting, regularization methods such as
mask and dropout (Srivastava et al., 2014; Tomp-
son et al., 2015; DeVries and Taylor, 2017; Fan
et al., 2021) are usually adopted during training to
reduce the generalization error. Specifically, these
methods randomly drop part of units in each neu-
ral network layer to avoid co-adapting and overfit-
ting. Intuitively, mask and dropout approximately
perform to combine exponentially many different
neural network architectures efficiently (Srivastava
et al., 2014; Ghiasi et al., 2018).

There are few studies of the mask about the
reader model training in the retrieval-reader set-
tings. In a standard training setting, each neuron
plays the same role and has the same mask rate. In
the reader model, intuitively, top-rank passages of-
ten contain the answer and are easy to overfit while
the other passages have fewer chances to be fitted.
Based on our above observations, we propose the
Passage-Mask (PM) to regularize the top-rank pas-
sages which have larger probabilities to overfit as

demonstrated in Figure 1. Briefly, we propose to
drop top-rank passages during training.

Though simple and effective, masking increases
the gradient variance during training due to its ran-
domness. To reduce gradient variance and lead to
stable training, we propose to downsize and select
the candidate set of masking with one-shot bi-level
optimization in this work.

2.4 Mask Candidates

Denote P passage each with len tokens as t =
(t0, · · · , tP ) where ti = (ti,0, ti,1, · · · , ti,len). We
pass the passages t through the reader model
and get h = (h0,h1, · · · ,hP ) where hi =
(hi,0, hi,1, · · · , hi,len) is the corresponding final-
layer hidden state of a passage. Let DP be a set
of mask choice (e.g., retrieval passages) with N
candidates and each is denoted as o. For a typically
selected mask candidate, we define the mask index
set {i|i ≤ P, i ∈ N+} where P is the number of
passages and mask all the corresponding hi.

To relieve the noisy gradient (large gradient vari-
ance), we reduce the size of candidate set. Numer-
ous works (e.g., Ge et al., 2015; Jin et al., 2017;
Daneshmand et al., 2018; Chen et al., 2020) have
shown that the strong noisy gradient in the back-
ward pass caused by the dropout mask is detrimen-
tal to the model optimization. The gradient noise
is highly related to the number of drop candidates.
As only the top-rank passages play a huge impact
during the reader model training, we reduce the
size of mask candidates with preferences to mask
top-rank passages.

2.5 Fast Search for Mask Candidate Set

To decide the final candidate subset, instead of
manual search or grid search (Bergstra and Ben-
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gio, 2012; Li and Talwalkar, 2020) all the possi-
ble candidates, we propose to do a one-shot fast
search of mask candidate with an almost negligible
additional computation cost compared to standard
training schedule. First, we define the search space.

Discrete Search Space. To automatically choose
candidates, we consider a set DP with N candi-
dates and target at selecting S candidates for our
Passage-Mask (S < N ). Inspired by Zoph et al.
(2018); Liu et al. (2018); Hong et al. (2022), we
create S vectors, and each is a N -dimension vec-
tor representing the selected probability for all the
N candidates. We denote the hyper-parameter as
w ∈ RS×N , and each mask candidate as a function
o(h) where h is hidden representations for P .

To make the search space continuous, during
training, we relax the categorical choice of a par-
ticular operation to a SoftMax over all possible
operations, and the output is defined as,

h̄s =
∑

o∈DP

exp (ws
o)∑

o′∈DP exp
(
ws
o′
)o(h), (2)

where s ∼ {1, · · · , S} is sampled with equal prob-
ability. Then we pass the h̄s to the answer gener-
ator. During inference or evaluation, a discrete ar-
chitecture can be obtained by replacing each mixed
operation ĥs with the most likely operation. i.e.,
hs = o∗(h), o∗ = argmaxo∈DP ws

o.

Bi-level Optimization. To avoid grid-search over
the mask schedule, we target at jointly learning the
model parameter θ and the mask hyper-parameter
w. Formally, the training and the validation sets are
denoted by Dtr and Dval, respectively. The goal
for this optimization is to find θ∗ that minimizes
the train loss θ∗ = argminθ Ltrain(θ, w∗), where
w∗ is obtained by minimizing the validation loss
w∗ = argminw Lval(θ, w). For simplicity, we
write Ltrain and Lval as f and g, respectively.

This implies a bi-level optimization problem
(Franceschi et al., 2017; Shaban et al., 2019; Grazzi
et al., 2020, 2021) which has been shown the effec-
tiveness in the many machine learning fields such
as hyperpameter optimization and meta-learning
(e.g. Yang et al., 2021; Guo et al., 2021; Khanduri
et al., 2021). We optimize

minθ∈Rdmodel ℓ(θ) = f (θ, w∗) := Eθ [f (θ, w∗)]

s.t. w∗ = argminw∈Rdmask {g(θ, w) := Ew[g(θ, w)]},
(3)

Algorithm 1: Passage Mask (PM)
1: Input: Passage P , query x. Model para-

meter θ with learning rate αt, mask para-
meter w with learning rate βt, update
frequency u and time step t.

2: for t = 0 to final step do
3: θ ←− θ − αt∇ℓ(θ),
4: if t%u == u− 1 then
5: w ←− w − βtgradgt where gradgt is

calculated by Eqn (4).
6: end if
7: end for

where f , g: Rdmodel × Rdmask → R with θ ∈
Rdmodel and w ∈ Rdmask ; In practice, we do
stochastic sample to estimate the expectation value
E(·). Note here that f depends on the minimizer
of the mask hyper-parameter objective g, and we
refer to ℓ(θ) as the training objective function.

We adopt the recursive momentum techniques
developed in (Cutkosky and Orabona, 2019; Tran-
Dinh et al., 2019) which yield for-free one-shot
training. In summary, our updated mask schedule
can be summarized as the below. Define ηgt ∈
[0, 1], for the problem involving x, we utilize the
following momentum-assisted gradient estimator,
gradgt ∈ Rdmask , defined recursively as

gradgt = ηgt∇g (θt, wt)

+ (1− ηgt )
(
gradgt−1 +∇g (θt, wt)−∇g (θt−1, wt)

)
.

(4)

The gradient estimator gradgt are computed from
the current and past gradient estimates∇g (θt, wt)
and ∇g (θt−1, wt). Recent theoretical works in
(Khanduri et al., 2021; Ji et al., 2021; Yang et al.,
2021) have provided the convergence analysis for
the momentum-based recursive optimizer. Thus,
PM takes benefits from the model-independent
sample complexity and good convergence.

The Proposed Algorithm. Our passage mask
with momentum-based recursive bi-level optimiza-
tion is shown in Algorithm 1. We iteratively up-
date the model parameter θ and mask parameter
w in a single-loop manner. The model parameter
θ is updated by standard gradient descent, while
w is updated in a momentum recursive technique
(Cutkosky and Orabona, 2019) with a given fre-
quency u to save computation. We further show
in the experiments that the proposed method can
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effectively prevent overfitting, improve the model
generalization and introduce little additional time
cost.

3 Experimental Settings

Table 2 shows the experimental data configuration.

3.1 Task and Evaluation Metrics

Open Question Answering. We use Natural
Questions (NQ) (Kwiatkowski et al., 2019) and
TriviaQA (Joshi et al., 2017) to evaluate our method
on open QA. Natural questions consists of 79,168
train, 8,757 dev, and 3,610 test question answer
pairs. It contains questions corresponding to
Google search queries. The open-domain version
of this dataset is obtained by discarding answers
with more than five tokens. TriviaQA (Joshi et al.,
2017) contains questions gathered from trivia web-
sites. The unfiltered version of TriviaQA is used
for open-domain question answering. Following
the open domain splits from (Lee et al., 2019), it
contains 78,785 train, 8,837 dev, and 11,313 test
question answer pairs. For both datasets, we use
publicly available DPR retrieval results for training
and inference data, and do not further fine-tune re-
trievers. Following prior work (Lee et al., 2019),
we use Exact Match (EM) as our primary metric.

Dialogue Conversation. Wizard of Wikipedia
(WoW) (Dinan et al., 2018) is a large dataset with
conversations directly grounded with knowledge
retrieved from Wikipedia. The utterances of the
speaker should be based on a specific knowledge
sentence from a Wikipedia page. We utilize the
officially available KILT DPR (Petroni et al., 2020)
to extract top passages and report F1 score for eval-
uation (Asai et al., 2021). Pre-process to match
our setting: As PM prevents the model from over-
fitting the top-rank passages, we preprocess the
existing development and test dataset by removing
the examples with the answers in the top four pas-
sages. Evaluating such a dataset, a model cannot
provide the true answers if it is overfitted on top 4
passages. This results in 974 dev and 989 test. We
report both the preprocess results (Section 4.3) and
the non-preprocess results (Section 5).

Fact Verification. FaVIQ (Park et al., 2021) rep-
resents fact verification derived from information
seeking questions, where the model is given a nat-
ural language claim and predicts support or refute
with respect to the English Wikipedia. FaVIQ Am-

big (FaVIQ-A) is composed from Natural Ques-
tions (Kwiatkowski et al., 2019) and AmbigQA
(Min et al., 2020). It is constructed from ambigu-
ous questions and their disambiguation. We use
the retrieved passages and baseline code provided
by Park et al. (2021). Accuracy is adopted as our
evaluation metric.

Task Dataset Train Val Test

Open QA Natulral Question Open 79.2K 8.8K 3.6k
TriviaQA unfiltered 78.8K 8.8K 11.3K

Dialogue Wizard of Wikipedia 63.7K 3.1K 2.9K
Fact Verification FaVIQ-Ambig (A) 17.0K 4.3K 4.7K

Table 2: Dataset Configuration. The top block is for the
Open QA, the middle block is for the dialogue conver-
sation, and the bottom block is for the fact verification.

3.2 Implementation Details

Due to the computational budget, we use the pro-
vided checkpoint for the reader model and con-
tinue the finetuning with our method. To have
fair comparisons, we also finetune the checkpoint
with standard training (Details are included in Sec-
tion 5). For Open QA, following the setting in
Izacard and Grave (2021), we utilize the provided
checkpoint for the reader and use the top 100 pas-
sages during training and inference. We set the
training steps as 30k and take the checkpoint that
achieves the highest score on the development set.
The batch size and the gradient accumulation step
are both set to be 1. The learning rate is set to
5 × 10−5 and the number of warm-up steps is
3k. For dialogue conversation and fact verifica-
tion, following the setting and the checkpoints in
(Asai et al., 2021), we use the top 20 passages
during training and inference. We set the gradi-
ent accumulation step to be 4, with learning rate
10−5 and 1k warm-up steps. The development set
is used for bi-level optimization. Search Space.
In all experiments, we use the top four retrieval
passages to compose our candidate search space,
{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}, where
(1, 3) is a candidate which indicates that the hid-
den representation of the 1st and 3rd passages are
masked. More detailed experimental settings are
included in Appendix A.

4 Experiments

We evaluate the performance of our mask and learn-
ing framework in this section. We bold the best
result within each column block. The results of our
method are obtained with three independent runs
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to determine the variance. See Appendix A for full
results with error bars.

Model NQ TriviaQA
dev test dev test

DPR (Karpukhin et al., 2020) - 41.5 - 57.9
RAG (Lewis et al., 2020) - 44.5 - 56.1
ColBERT-QA (Khattab et al., 2021) - 48.2 - 63.2
REALM (Guu et al., 2020) - 40.4 - -
FiD base (Izacard and Grave, 2021) 49.2 50.1 68.7 69.3
Ours base 49.9 51.3 69.3 69.9
FiD large (Izacard and Grave, 2021) 52.7 54.4 72.5 72.5
Ours large 53.3 55.3 73.1 72.9

Table 3: Comparison to models on Natural Questions
and TriviaQA. Exact Match scores are reported for each
model. ‘FiD base’ and ‘ FiD large’ represent the base
and large generator model (T5) sizes. RAG at here is
with BART large.

4.1 Open-Domain QA Results
We first report the results in Table 1. We use the
FiD (Izacard and Grave, 2021) base reader model
on Natural Questions Open (Kwiatkowski et al.,
2019). To verify that the model overfits the top-
rank passages, we purposely mask top retrieval
passage representations based on the mask position.
We observe huge performance degradation (e.g.,
50.1 to 44.5) by masking the top one passage rep-
resentation and even larger performance drop (50.1
to 35.7) by masking the top five retrieval passages.

Table 3 reports our results on two open question
answering datasets. ❶ The top block displays the
performance of baselines on the NQ and TriviaQA
datasets, and the bottom block shows the results of
incorporating the PM during the reader model train-
ing. We report the results on both base and large
settings. With PM, it shows consistent performance
gains and better model generalization on both de-
velopment and test dataset (e.g., 50.1 → 51.3 on
NQ with FiD base, 54.4→ 55.3 on NQ with FiD
large). ❷ Through these results, it further confirms
that PM can work as an effective module to be in-
corporated into different-scale models to prevent
the overfitting on the top retrieval passages and rea-
son over the entire passages. ❸ PM on improving
the reader model can be also seen as a comple-
mentary module to works focusing on improving
retrieval components (Paranjape et al., 2021; Mail-
lard et al., 2021).

4.2 Fact Verification
We further show the experimental results on FaVIQ-
A in Table 4. We adopt several baselines from the
existing literature. ① For TF-IDF + BART, follow-
ing Park et al. (2021), it takes a concatenation of

a claim and retrieved passages by TF-IDF from
Chen et al. (2017). ② DPR + BART, the baseline,
takes a concatenation from passages retrieved by
DPR (Karpukhin et al., 2020). ③ For EQA, follow-
ing Asai et al. (2021), it is built on FiD (Izacard
and Grave, 2020) pipeline with T5 base and fur-
ther incorporates evidentiality of passages into the
training of the generator.

In Table 4: ❶ We observe sizable gains over
all baselines with a clear margin (from FiD’s 64.3,
from EQA’s 65.7 to ours 66.5), yielding SOTA per-
formance on this dataset. ❷ PM demonstrates the
strong capability of avoiding overfitting during the
training and allowing the reader model to extract
the information from all passages. Thus, it comes
to the best performance in most of the settings.

Model FaVIQ-A
dev test

DPR+BART (Park et al., 2021) 66.9 64.9
TF-IDF + BART (Park et al., 2021) 65.1 63.0
FiD base (Izacard and Grave, 2021) 67.8 64.3
EQA base (Asai et al., 2021) 69.6 65.7
Ours base 70.6 66.5

Table 4: Performance on FaVIQ-A. We report the accu-
racy on the development and test dataset. Previous best
model is EQA from Asai et al. (2021).

4.3 Dialogue Conversations

Table 5 shows the results on the Wizard of
Wikipedia development dataset. We use the FiD
(Izacard and Grave, 2021) as our primary baseline,
and also include the recent generator model EQA
(Asai et al., 2021). Following Asai et al. (2021)
and Petroni et al. (2020), we load the official check-
point from KILT2 and pre-processed Wikipedia file
using the DPR official implementation to retrieve
top passages. On Wizard of Wikipedia, by desensi-
tizing the impact from the top-retrieval candidate,
our model improves the F1 score from the EQA
by 0.7 and the base FiD model by 1.6. Although
the input format is conversation and output format
is long abstractive sentences, it is interesting to
see the consistent improvement of our proposed
mask in knowledge-enhanced dialogue. It further
demonstrates that PM can be utilized for many
ranking-related problems in general NLP tasks.

5 Analysis

What is the influence of the vanilla mask and
Dropout? Here we verify whether PM is better

2
https://github.com/facebookresearch/KILT

3936

 https://github.com/facebookresearch/KILT


Model F1
FiD base (Izacard and Grave, 2021) 17.1
EQA base (Asai et al., 2021) 18.0
Ours base 18.7

Table 5: Results across different strategies on Wizard of
Wikipedia. The input format is conversation and output
format is abstractive sentences.

than the standard dropout and masking out strate-
gies. With the designed mask candidates, PM tar-
gets the top retrieval passages. We compare PM
with two standard masking out setting - dimension-
wise dropout and vanilla mask. Dimension-wise
dropout represents the standard dropout while
vanilla mask represents per-passage mask with a
scaling factor 1/(1− p) where p denotes the mask
rate. We set the dropout rate and masking as 0.5
and study whether the standard masking out is ap-
plicable to our focused tasks. As shown in Table 6,
these two strategies only achieve marginal improve-
ments (e.g. 0.1) while PM yields better results with
a clear margin. Training Loss Variance. To verify
the small number of candidates coming to a smaller
gradient variance, we investigate the training loss
variance for vanilla mask with the different number
of candidates. We notice that the vanilla mask with
a smaller number of candidate set achieves smaller
variance (for s.t.d., 0.042 for six mask candidates
vs. 0.046 for sixteen mask candidates). This gets
along with our intuition.

Data FiD base Dimension Dropout Vanilla Mask Ours
NQ 50.1 50.1 50.2 51.3
TriviaQA 69.3 69.4 69.3 69.9

Table 6: Comparison of different masking on Natural
Questions and TriviaQA.

More evidence for rank-related overfitting? ❶

We observe huge performance degradation by only
masking the top retrieval passage representation
during evaluation in Table 1. These results con-
firm our analysis and motivation for the rank-aware
mask. ❷ However, would these results and ob-
servations still hold if we try different masking
strategies? We use more masking strategies, such
as permuting (i.e., random permute the top-K re-
trieval passages) and removing (i.e., remove the
top one retrieval passage and only use the succeed
passages), to give more evidences. Similar trend is
observed in Table 7.

Efficiency and running time. We provide the pa-
rameter sizes, GPU peak memory, and per step time

Position 1st 2nd 3rd 4th 5th FiD base

Permute Top 3 ✓ ✓ ✓ 50.0
Permute Top 5 ✓ ✓ ✓ ✓ ✓ 50.0
Remove 1st ✓ 44.9
Remove 2nd ✓ 48.7
Remove 3rd ✓ 49.3

Table 7: Results of different masking strategies on Nat-
ural Questions. FiD (Izacard and Grave, 2021) base
model is presented.

comparisons between the baseline and PM. Experi-
ments in this part are performed on a Tesla V100
GPU during training with batch size as 1. ❶ Table
8 shows that PM keeps the parameter size at the
same level as the FiD base. The GPU memory and
running time of PM are slightly higher (2.7% for
memory and 1.6% for running time) than FiD. PM
gives the best Exact Match score outperforming
FiD, while keeping the comparable efficiency and
running time. ❷ Even with the momentum-based
recursive optimizer, our passage-aware mask is still
computational productive as the bi-level optimiza-
tion (e.g., applying mask operators and optimizing
low-dimension w) has almost zero cost.

Model EM ↑ Params ↓ GPU memory ↓ s/step ↓
FiD base 50.1 223M 10.9G 12.4
Ours base 51.3 223M 11.2G 12.6

Table 8: Results of parameter size, GPU memory, and
step time for FiD base and our base on Natural Question.
‘s/step’ represents step time (second/per step) with batch
size as 1.

Ablation studies on the components in PM. We
conduct the ablation study to exam the role of bi-
level optimization and reduced mask candidate set.
For ablation, instead of searching the mask proba-
bility for different mask candidates, we randomly
sample a candidate in the search space. Through
isolating performance of each components, our fo-
cus here is to identify the impact of the introduced
mask parameter w and the reduced mask set. ❶

Table 9 shows that each component of our method
brings benefits. ❷ We find that even without w,
‘−w’ still shows a superior performance to the FiD
across both base and large models, indicating that
it is often beneficial to have the reduced mask can-
didate set and target the potential overfitting candi-
dates. ❸ Optimizing w further increases the perfor-
mance from 50.8 to 51.3 and from 55.0 to 55.3 for
FiD base and Large, respectively. It demonstrates
the necessity and effectiveness of the fast search
for mask candidate set in PM structure.
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Data FiD base Ours base −w FiD large Ours large −w
NQ 50.1 51.3 50.8 54.4 55.3 55.0

Table 9: Ablation study of the components in PM. ‘−w’
refers to the removal of the mask parameter w and use a
randomly-sampled set of candidates.

WoW additional results. We show the non-
preprocessed development set results on the Wiz-
ard of Wikipedia in Table 5. We include the RAG
(Lewis et al., 2020), DPR + BART (Petroni et al.,
2020; Park et al., 2021), and EQA (Asai et al.,
2021) as baselines. Even without removing the ex-
amples which has the answers in the top 4 passages,
PM consistently yields better results than all the
baselines. These results verify our conjecture in
Section 4.3 that PM not only improves the model
generalization for specific cases but also can serve
as a plug-in module for general settings since it
never hurts the performance in our case.

Model F1
DPR+BART (Petroni et al., 2020) 15.5
RAG (Lewis et al., 2020) 13.8
FiD base (Asai et al., 2021) 16.9
EQA base (Asai et al., 2021) 17.6
Ours base 18.4

Table 10: Results on Wizard of Wikipedia development
set for non-preprocessed dataset.

Would we see improvements if finetuning the
given checkpoint with baselines? As discussed
in Section 3.2, due to computation cost limita-
tion, we use the provided checkpoint for the reader
model and continue the finetuning with our method.
However, if we continue finetuning the baseline
checkpoint, would we still see the improvements?
We conduct the experiments on open QA, dialogue
and fact verification tasks. We adopt the best base-
line models for each task such as FiD base for NQ
and TriviaQA, and EQA base for dialogue con-
versations and fact verification. In Table 11, ours
indicates strong improvements. This further proves
that our selection method is capable of reasoning
over the retrieval passages. By only finetuning the
baselines, it keeps similar performance such as the
baseline on WoW and FaVIQ-A.

6 Related Work

Retrieval Read Architecture Recent retriever
models (e.g., Lee et al., 2019; Karpukhin et al.,
2020; Khattab et al., 2021) learn to encode the
input query and large-scale passage collection to
score their similarities. Readers (generators) aim

Model NQ TriviaQA WoW FaVIQ-A
Baseline 50.1 69.3 17.6 65.7
Baseline finetuning 50.2 69.4 17.5 65.5
Ours base 51.3 69.8 18.4 66.5

Table 11: Finetuning results on Natural Questions test
dataset, TriviaQA test dataset, FaVIQ-A test dataset and
Wow non-preprocessed development dataset. We report
results of our mask strategy with baseline and baseline
finetuning.

to generate answers condition on the question and
the retrieved passages (Yang et al., 2019; Lewis
et al., 2020; Mao et al., 2020). Our work relies on
this architecture and further fine-grain the reader
model to introduce the passage-aware masking and
promote the reasoning over the entire passage set.

Rank-Related Studies Passage ranking has
shown promising performance improvements. The
most popular approach is combining the passage
score and answer score together (Karpukhin et al.,
2020; Xiong et al., 2020; Qu et al., 2020). Other
works (e.g., Nogueira et al., 2020; Fajcik et al.,
2021; Zhang et al., 2021b) propose additional mod-
ules or operations to re-identify the passage rank.
Nogueira et al. (2020) uses seq2seq model to iden-
tify the document’s relevance to the query, Fajcik
et al. (2021) introduces a passage re-ranking mod-
ule, and Zhang et al. (2021b) proposes to use the
calibrator as an answer reranker. There are some
works that focus on the ranking efficiency. Luan
et al. (2021) creates a simple neural model that
combines the efficiency of dual encoders. Simi-
larly, we also find out that directly taking the rank
makes the model overfitting. Different from ex-
isting works, PM rethinks the impact of retrieval
passage ranking from the regularization and gener-
alization perspective. We focus on preventing the
overfitting and improving the reasoning generaliza-
tion during training. In the meantime, PM is also
compatible with other previous ranking works with
the potential to jointly improve the performance.

7 Conclusion

Our work demonstrates the benefits of introduc-
ing a passage mask mechanism. The proposed
mask can desensitize the impact from the top-rank
retrieval passages and prevent the model from over-
fitting. The proposed strategy shows noticeable
gains in performance across open question answer-
ing, dialogue conversation, and fact verification.
We further conduct the detailed study with the pro-
posed masking strategy in different settings, e.g.,
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comparing with vanilla masking, providing more
evidence for rank-related overfitting, and verifying
the impact of different components. To summarize,
the proposed PM is effective and general, with the
potential to be incorporated into existing models
for various NLP tasks.

8 Limitations

In real practices or real-life scenarios, the data is
often biased. The gap between the training and
testing data might be large and unexpected. Thus,
incautious implementation or vague understanding
of model output might lead to unanticipated false
consequences. In addition, with computational con-
sumption, environmentally sustainability and users
friendly should be considered.

Acknowledgments

The authors thank Eunsol Choi and Anqi Lou for
helpful comments on the paper draft.

References
Akari Asai, Matt Gardner, and Hannaneh Ha-

jishirzi. 2021. Evidentiality-guided generation for
knowledge-intensive nlp tasks. arXiv preprint
arXiv:2112.08688.

James Bergstra and Yoshua Bengio. 2012. Random
search for hyper-parameter optimization. Journal of
machine learning research, 13(2).

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading wikipedia to answer open-
domain questions. arXiv preprint arXiv:1704.00051.

Pengguang Chen, Shu Liu, Hengshuang Zhao, and Ji-
aya Jia. 2020. Gridmask data augmentation. arXiv
preprint arXiv:2001.04086.

Ashok Cutkosky and Francesco Orabona. 2019.
Momentum-based variance reduction in non-convex
sgd. Advances in neural information processing sys-
tems, 32.

Hadi Daneshmand, Jonas Kohler, Aurelien Lucchi, and
Thomas Hofmann. 2018. Escaping saddles with
stochastic gradients. In International Conference
on Machine Learning, pages 1155–1164. PMLR.

Terrance DeVries and Graham W Taylor. 2017. Im-
proved regularization of convolutional neural net-
works with cutout. arXiv preprint arXiv:1708.04552.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela
Fan, Michael Auli, and Jason Weston. 2018. Wizard
of wikipedia: Knowledge-powered conversational
agents. arXiv preprint arXiv:1811.01241.

Martin Fajcik, Martin Docekal, Karel Ondrej, and
Pavel Smrz. 2021. R2-d2: A modular baseline for
open-domain question answering. arXiv preprint
arXiv:2109.03502.

Xinjie Fan, Shujian Zhang, Bo Chen, and Mingyuan
Zhou. 2020. Bayesian attention modules. Advances
in Neural Information Processing Systems, 33:16362–
16376.

Xinjie Fan, Shujian Zhang, Korawat Tanwisuth, Xi-
aoning Qian, and Mingyuan Zhou. 2021. Contex-
tual dropout: An efficient sample-dependent dropout
module. arXiv preprint arXiv:2103.04181.

Luca Franceschi, Michele Donini, Paolo Frasconi, and
Massimiliano Pontil. 2017. Forward and reverse
gradient-based hyperparameter optimization. In In-
ternational Conference on Machine Learning, pages
1165–1173. PMLR.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. 2015.
Escaping from saddle points—online stochastic gra-
dient for tensor decomposition. In Conference on
learning theory, pages 797–842. PMLR.

Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. 2018.
Dropblock: A regularization method for convolu-
tional networks. Advances in neural information
processing systems, 31.

Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil,
and Saverio Salzo. 2020. On the iteration complex-
ity of hypergradient computation. In International
Conference on Machine Learning, pages 3748–3758.
PMLR.

Riccardo Grazzi, Massimiliano Pontil, and Saverio
Salzo. 2021. Convergence properties of stochastic
hypergradients. In International Conference on Ar-
tificial Intelligence and Statistics, pages 3826–3834.
PMLR.

Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, and Tianbao
Yang. 2021. On stochastic moving-average estima-
tors for non-convex optimization. arXiv preprint
arXiv:2104.14840.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training. arXiv
preprint arXiv:2002.08909.

Weijun Hong, Guilin Li, Weinan Zhang, Ruiming Tang,
Yunhe Wang, Zhenguo Li, and Yong Yu. 2022. Drop-
nas: Grouped operation dropout for differentiable ar-
chitecture search. arXiv preprint arXiv:2201.11679.

Gautier Izacard and Edouard Grave. 2020. Leverag-
ing passage retrieval with generative models for
open domain question answering. arXiv preprint
arXiv:2007.01282.

Gautier Izacard and Edouard Grave. 2021. Distilling
knowledge from reader to retriever for question an-
swering. In ICLR 2021, 9th International Conference
on Learning Representations.

3939



Kaiyi Ji, Junjie Yang, and Yingbin Liang. 2021. Bilevel
optimization: Convergence analysis and enhanced
design. In International Conference on Machine
Learning, pages 4882–4892. PMLR.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade,
and Michael I Jordan. 2017. How to escape saddle
points efficiently. In International Conference on
Machine Learning, pages 1724–1732. PMLR.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601–1611.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Ledell
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A Experimental details

A.1 Full Results With Error Bar

We report the full results of our method with the
error bar for open question answering and dialogue
conversations in Table 12 and 13, respectively. The
full result of fact verification is demonstrated in
Table 14.

Model NQ TriviaQA
dev test dev test

DPR (Karpukhin et al., 2020) - 41.5 - 57.9
RAG (Lewis et al., 2020) - 44.5 - 56.1
ColBERT-QA (Khattab et al., 2021) - 48.2 - 63.2
REALM (Guu et al., 2020) - 40.4 - -
FiD base (Izacard and Grave, 2021) 49.2 50.1 68.7 69.3
Ours base 49.9±0.3 51.3±0.2 69.3±0.2 69.9±0.2
FiD large (Izacard and Grave, 2021) 52.7 54.4 72.5 72.5
Ours large 53.1±0.1 55.3±0.2 72.9±0.1 72.9±0.2

Table 12: Full results on Natural Questions and Trivi-
aQA. Exact Match scores are reported for each model.
‘FiD base’ and ‘ FiD large’ represents the base and large
generator model (T5) sizes. RAG at here is with BART
large.

Model F1
FiD base (Izacard and Grave, 2021) 17.1
EQA base (Asai et al., 2021) 18.0
Ours base 18.7±0.2

Table 13: Full results across different strategies on dia-
logue conversations (Wizard of Wikipedia). The input
format is conversation and the output format is abstrac-
tive sentences.

Model FaVIQ-A
dev test

DPR+BART (Park et al., 2021) 66.9 64.9
TF-IDF + BART (Park et al., 2021) 65.1 63.0
FiD base (Izacard and Grave, 2021) 67.8 64.3
EQA base (Asai et al., 2021) 69.6 65.7
Ours base 70.6±0.2 66.5±0.2

Table 14: Full performance on FaVIQ-A. We report the
accuracy on the development and test dataset.

A.2 Experimental Datasets

Open Question Answering. Following the set-
ting in Lee et al. (2019) and Karpukhin et al. (2020)
for Natural Questions and TriviaQA, the original
development set is used as the test set, and 10%
of the training set is used as the development set.
All questions with answers longer than five tokens
are discarded for the Natural Questions. We use
the Wikipedia dumps from Dec. 20, 2018 for NQ
and TriviaQA and apply the same preprocessing as
Chen et al. (2017).

Fact Verification. FAVIQ (Park et al., 2021) rep-
resents fact verification derived from information
seeking questions, where the model is given a nat-
ural language claim and predicts support or refute
with respect to the English Wikipedia. It con-
sists of 188k claims derived from an existing cor-
pus of ambiguous information-seeking questions.
FaVIQ Ambig (FaVIQ-A) is composed from Natu-
ral Questions (Kwiatkowski et al., 2019) and Am-
bigQA (Min et al., 2020). AmbigQA provides dis-
ambiguated question-answer pairs for NQ ques-
tions, thereby highlighting the inherent ambiguity
in information-seeking questions. FaVIQ-A uses
the disambiguated question-answer pairs and gener-
ates support and refute claims from matching pairs
(filmed–2000, released–2001) and crossover pairs
(filmed–2001, released–2000), respectively (Park
et al., 2021).

Dialogue Conversation. With the goal of mak-
ing virtual assistant conversations more engaging
and interactive, Sun et al. (2020) develops an en-
gaging chatbot that can discuss a variety of topics
with a user. The conversation history and the next
utterance are used as input and output, respectively
(Petroni et al., 2020). Wizard of Wikipedia (WoW)
(Dinan et al., 2018) is a large dataset of conver-
sation grounded with knowledge retrieved from
Wikipedia. In the conversation, the utterances from
the speaker should be relied on a specific knowl-
edge sentence from a Wikipedia page.

A.3 Experimental Settings

For Open QA, we follow the setting in (Izacard
and Grave, 2020, 2021) and initialize our models
with the pretrained T5 model (Raffel et al., 2020)
from the HuggingFace Transformer library3(Fan
et al., 2020; Zhang et al., 2021a). Two model sizes,
base (220M parameters) and large (770M param-
eters), are considered. We finetune the models on
each dataset independently and use provided check-
points from (Izacard and Grave, 2021)4. Following
Izacard and Grave (2021), we adopt the AdamW
(Loshchilov and Hutter, 2017; Zhang et al., 2022)
with the learning rate 5× 10−5 and weight decay
0.25. The training step is 30k. The batch size and
gradient accumulation step are both set to 1. The
development dataset is used for bi-level optimiza-

3https://github.com/huggingface/
transformers

4https://github.com/facebookresearch/
FiD
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tion and the warm-up steps is 3000. We evaluate
models every 500 steps and select the best one on
the validation set based on the Exact Match score.
For Natural Question, we sample the target among
the list of answers during the training. For Trivi-
aQA, we use the unique human-generated answer.
For both training and testing, we retrieve 100 pas-
sages and truncate them to 250 word pieces. The
retrieval passages are from DPR (Karpukhin et al.,
2020) for NQ and TriviaQA.

For fact verification and dialogue conversation,
following Petroni et al. (2020) and Asai et al.
(2021), we use the top 20 passages during train-
ing and inference. The batch size is set to 1. We set
the gradient accumulation step to be 4 to keep the
same batch size as previous works. The AdamW
(Loshchilov and Hutter, 2017) with the learning
rate 1 × 10−5 and weight decay 0.25 are utilized.
The training steps are 30k and warm-up steps are
1k. Following (Asai et al., 2021)5, for fact verifi-
cation, we report the accuracy as evaluation metric
and report the results on FaVIQ-A test set in Table
4. For dialogue, we evaluate model based on the F1
score and report the results on WoW development
set in Table 5.

5
https://github.com/AkariAsai/evidentiality_qa
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