
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 3035–3046
December 7-11, 2022 ©2022 Association for Computational Linguistics

Effective and Efficient Query-aware Snippet Extraction
for Web Search

Jingwei Yi1, Fangzhao Wu2, Chuhan Wu3, Xiaolong Huang4,
Binxing Jiao4, Guangzhong Sun1, Xing Xie2

1University of Science and Technology of China 2Microsoft Research Asia
3Tsinghua University 4Microsoft STC Asia

yjw1029@mail.ustc.edu.cn {wufangzhao,wuchuhan15}@gmail.com
{xiaolhu,binxjia,xingx}@microsoft.com gzsun@ustc.edu.cn

Abstract

Query-aware webpage snippet extraction is
widely used in search engines to help users
better understand the content of the returned
webpages before clicking. Although important,
it is very rarely studied. In this paper, we pro-
pose an effective query-aware webpage snippet
extraction method named DeepQSE, aiming to
select a few sentences which can best summa-
rize the webpage content in the context of input
query. DeepQSE first learns query-aware sen-
tence representations for each sentence to cap-
ture the fine-grained relevance between query
and sentence, and then learns document-aware
query-sentence relevance representations for
snippet extraction. Since the query and each
sentence are jointly modeled in DeepQSE, its
online inference may be slow. Thus, we fur-
ther propose an efficient version of DeepQSE,
named Efficient-DeepQSE, which can signif-
icantly improve the inference speed of Deep-
QSE without affecting its performance. The
core idea of Efficient-DeepQSE is to decom-
pose the query-aware snippet extraction task
into two stages, i.e., a coarse-grained candidate
sentence selection stage where sentence repre-
sentations can be cached, and a fine-grained
relevance modeling stage. Experiments on two
real-world datasets validate the effectiveness
and efficiency of our methods.

1 Introduction

Given an input search query, search engines such
as Google 1 and Bing 2, not only return the URLs
and the titles of the relevant webpages, but also
show the query-aware snippets of these webpages,
aiming to help users better understand the webpage
content before clicking. These webpage snippets
are usually one or two sentences extracted from
the webpage, which can not only summarize the
key content of the webpage, but also be relevant

1https://www.google.com
2https://www.bing.com

einstein achievement Query

einstein Query

Title

Title

Snippet

Snippet

https://en.Wikipedia.org > wiki > Albert_Einstein

Albert Einstein - Wikipedia

Listen); 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely

Acknowledged to be one of the greatest physicists of all time, Einstein …
Nationality: Germany, US, Swiss, Austro-Hung… Date of death: 18 April 1955

https://en.Wikipedia.org > wiki > Albert_Einstein

Albert Einstein - Wikipedia

His work is also known for its influence on the philosophy of science. He received the 1921

Nobel Price in Physics “for his services to the theoretical physics, and …

Figure 1: Examples of query-aware snippets in search
engines.

to the input query. Some examples are shown in
Figure 1. For the query ‘einstein’ and the webpage
of ‘Albert Einstein - Wikipedia’, a good snippet is
a brief introduction of Einstein’s life. While for the
query ‘einstein achievement’, a good snippet would
be sentences describing his influence on science.
In other words, the snippet is a summarization of
the webpage in the context of input query.

Although query-aware webpage snippet extrac-
tion is important and useful, it is very rarely studied.
Only a few works exist in this field, and most of
them are based on simple word-level text match-
ing method (Penin et al., 2008; Zou et al., 2021).
For example, Turpin et al. (2007) proposed to
utilize the number of overlapping words between
queries and sentences in webpages to extract snip-
pets. Tsegay et al. (2009) proposed to select snip-
pets through the summation of Kullback-Leibler
divergence or TF-IDF weight of overlapping words
between queries and sentences in webpages. How-
ever, these methods rely on counting features of
overlapping words, and cannot capture the deep
semantic relation between query and webpage.

In this paper, we propose an effective query-
aware webpage snippet extraction method for web
search, named DeepQSE 3. In DeepQSE, given an
input query and a webpage with multiple sentences,

3https://github.com/yjw1029/DeepQSE.

3035

we first learn query-aware sentence representations
for each sentence to capture the fine-grained rele-
vance between query, sentence and webpage title
using a query-aware sentence encoder. Then we
model the query-sentence relevance in the context
of the whole webpage using a document-aware rel-
evance encoder. Since the query and each webpage
sentence are jointly modeled, the online inference
speed of DeepQSE can be slow, while the search
engines have extremely high requirements for low
latency. Thus, we further design an efficient version
of DeepQSE named Efficient-DeepQSE, aiming to
significantly improve the inference speed of Deep-
QSE and keep its performance as much as possible.
The key idea of Efficient-DeepQSE is to decom-
pose the query-aware webpage snippet extraction
task into two stages, i.e., coarse-grained candidate
sentence selection and fine-grained relevance mod-
eling. The coarse-grained candidate sentence se-
lection aims to select a moderate number of most
potential sentences for snippet extraction using a
bi-encoder where sentence representations can be
cached for fast online serving. The fine-grained rel-
evance modeling stage aims to capture the deep se-
mantic relevance between the query and the candi-
date sentences selected by the previous stage using
query-aware cross-encoders. We conducted many
experiments on two real-world datasets, which ver-
ify the effectiveness and efficiency of our approach.
The contributions of this paper are as follows:

• We propose an effective query-aware web-
page snippet extraction method for web search
named DeepQSE, which can summarize the
webpage content in the context of input query.

• We further propose Efficient-DeepQSE which
can improve the inference speed of Deep-QSE
with a minor performance drop.

• We conduct extensive experiments on two real-
world datasets to verify the effectiveness and
efficiency of our methods.

2 Related Work

2.1 Query-aware Snippet Extraction
Query-aware snippet extraction is a widely-used
technique to select snippets which can help users
better understand the webpage content before click-
ing (Chen et al., 2020; Bando et al., 2010). Al-
though important, only a few works have been pro-
posed for query-aware snippet extraction based on
word-level text matching method (Zou et al., 2021;

Turpin et al., 2007; Penin et al., 2008; Tsegay et al.,
2009). For example, Turpin et al. (2007) propose
CTS, which selects snippets based on sentence po-
sitions and the number of overlapping words be-
tween queries and sentences. Zou et al. (2021) pro-
pose QUITE, which computes importance scores
for each word and sums the importance scores of
overlapping words to select snippets. These meth-
ods are mostly based on counting features of over-
lapping words and cannot capture deep semantic
relations between query and webpage. Recently,
Zhong et al. (2021) propose QMSUM for meeting
summarization, of which the locator can be used
for snippet extraction. The locator of QMSUM
applies a fixed PLM and CNN to encode sentence
and query, and a Transformer to model interac-
tions between sentences. QMSUM is a bi-encoder
which fails to encoder the word-level interactions
between query and sentences. Zhao et al. (2021)
propose QBSUM, which concatenates query and
body, and applies multiple predictors to compute
relevance scores. The simple body-query concate-
nation in QBSUM may fluctuate the information of
query and lead to some sentences being cut off due
to the length limitation of PLM. Recently, some
works (Ishigaki et al., 2020; Chen et al., 2020)
use abstractive generation model to generate snip-
pets for (query, document) pairs. For example,
Ishigaki et al. (2020) uses the RNN network with
copy mechanism to generate query-aware snippets.
However, abstractive methods need detailed pars-
ing and digesting, which usually takes a consider-
able amount of time (Wang et al., 2007). Therefore,
these methods are not compared in this paper.

2.2 Text Matching

Text matching has been widely applied in many
scenarios, such as information retrieval (Pang et al.,
2017) and clustering various articles for breaking
news detection (Yang et al., 2002). Recently sev-
eral text matching methods have been proposed.
Following Humeau et al. (2020), these methods
can be divided into two groups, i.e., bi-encoders
and cross-encoders. Bi-encoders (Palangi et al.,
2014; Reimers and Gurevych, 2019; Hu et al.,
2014) model the sentence-level interactions be-
tween queries and documents, in which the doc-
ument representations can be cached for fast on-
line serving. For example, Wan et al. (2016) pro-
pose C-DSSM, which computes query and docu-
ment representations with convolutional networks.

3036

Query-aware
Sentence Encoder

Query
Encoder

Document-aware Relevance Encoder

Predictor

𝑠1𝑑

𝒈𝒒 𝒈𝒔𝟏 𝒈𝒔𝑹

𝒗𝟏 𝒗𝑹
𝑠𝑅𝑑

Query-aware
Sentence Encoder𝑞 || 𝑡 𝑞 || 𝑡 || 𝑠1 𝑞 || 𝑡 𝑠𝑅||

𝑡 title 𝑠𝑖 the i-th sentence in webpage

𝑞 query || concatenation operation

Figure 2: Architecture of DeepQSE.

Cross-encoders (Guo et al., 2016; Li et al., 2020;
Chen et al., 2018) model the word-level interactions
between queries and documents in a fine-grained
manner. For example, Yilmaz et al. (2019) pro-
pose Birch, where (title, query) pairs are input into
a pre-trained language model to compute match-
ing scores. Cross-encoders usually perform bet-
ter than bi-encoders (Urbanek et al., 2019), but
have higher computation overhead since they can-
not cache the document representations. Since text
matching methods can retrieve the most relevant
sentence to query, we treat them as baseline meth-
ods and compare the performance with them in
Section 4. However, the text matching methods
only consider the similarity between queries and
sentences, and ignore the contextual information
of webpages, which might be sub-optimal.

3 Methodology

In this section, we give the problem formulation of
query-aware snippet extraction. Then we introduce
our DeepQSE and Efficient-DeepQSE in detail.

3.1 Problem Formulation

When a user submits a request with query q, the
search engine returns several webpages. Given one
of the webpage d with title t, it contains several sen-
tences {s1, s2, ...sR}, where R is the max number
of sentences in a webpage. The snippet extraction
model aims to select several consecutive sentences
{sk, ...sk+n} as the snippet that can summarize
the webpage content in the context of input query.
Since the number of sentences n is given by the
pre-defined snippet length, the snippet extraction
model needs to select the start sentence sk.

3.2 DeepQSE
DeepQSE aims to select snippets which can best
summarize the webpage content in the context of
the input query. The model structure of Deep-
QSE is shown in Figure 2, which is composed
of a query encoder, a query-aware sentence en-
coder and a document-aware relevance encoder.
The query encoder learns query representations,
which is initialized from a pre-trained language
model, such as BERT (Devlin et al., 2018) and
XML-RoBERTa (Chi et al., 2021). Given the query
q and title t, the concatenation of them is input
into the query encoder. The final hidden state of
the first token is the query representation gq. The
query-aware sentence encoder models the word-
level interactions between query, title and each sen-
tence to compute query-aware sentence representa-
tions. It is initialized from a pre-trained language
model, of which the input is the concatenation of
title, query and each sentence. The final hidden
state of the first token is the sentence representa-
tion gis. The document-aware relevance encoder
aims to model the sentence-level interactions be-
tween the query and sentences in the context of
the whole webpage, which is composed of several
Transformer blocks (Vaswani et al., 2017). We
concatenate the query representation and sentence
representations, add position embeddings and input
them into the document-aware relevance encoder.
The final hidden states are used as document-aware
query-sentence relevance representations vi, which
are then used to compute the selection score sdi .

3.3 Efficient-DeepQSE
In DeepQSE, the query and each sentence are
jointly modeled, which may have slow compu-
tation speed for online serving. In order to re-
duce the computation overhead, we further design
an efficient version of DeepQSE named Efficient-
DeepQSE, which is shown in Figure 3. We de-
compose the query-aware snippet extraction into
two stages, i.e., coarse-grained candidate sentence
selection and fine-grained relevance modeling.

3.3.1 Coarse-grained Sentence Selection
The coarse-grained candidate sentence selection
aims to select K candidate sentences and parse
them to the fine-grained relevance model for fi-
nal snippet extraction. It separates the modeling
of candidate sentences and queries, which enables
caching sentence representations for fast online
serving. The model structure of the coarse-grained

3037

Sentence
Encoder

Sentence
Encoder

Query
Encoder

Document-aware Relevance Encoder

Predictor

𝑠1𝑐 𝑠𝑅𝑐

𝒉𝒒 𝒉𝒔𝟏 𝒉𝒔𝑹

𝒄𝟏 𝒄𝑹
cacheable

Query

Encoder

Document-aware Relevance Encoder

Predictor

𝑠1𝑓

Query-aware
Sentence Encoder

𝑲,𝑽

𝑠𝐾𝑓
𝒇𝟏 𝒇𝑲

𝒍𝒒 𝒍𝒔𝟏 𝒍𝒔𝑲
Query-aware

Sentence Encoder

𝑡 title 𝑠𝑖 the i-th sentence in webpage 𝑞 queryconcatenation operation

𝑞 || 𝑡 𝑡 || 𝑠1 𝑡 𝑠𝑅|| 𝑞 || 𝑡 𝑠1 𝑠𝐾
(a) Coarse-grained candidate sentence selection (b) Fine-grained relevance modeling

||

Figure 3: Framework of the two stages in Efficient-DeepQSE.

candidate selector is shown in Figure 3(a), which
contains three core modules, i.e., a query encoder,
a sentence encoder and a document-aware rele-
vance encoder. The query encoder and sentence
encoder aim to learn the query and sentence repre-
sentations respectively, which are initialized from
a pre-trained language model. We input the con-
catenation of query and title into the query encoder,
and use the final hidden states of the first token as
the query representation hq. The concatenation of
title and each sentence is input into the sentence
encoder, and the final hidden states of the first to-
ken are treated as the sentence representation hi

s.
The document-aware sentence relevance encoder
aims to model query-sentence relevance in the con-
text of the whole webpage, which is composed of
several Transformer blocks. We concatenate the
query representation and sentence representations,
add position embeddings and input them into the
document-aware sentence relevance encoder. The
final hidden states are the document-aware query-
sentence relevance representations ci, which are
further used to predict selection scores sci through
an MLP network.

3.3.2 Fine-grained Relevance Modeling
The fine-grained relevance modeling aims to cap-
ture the deep semantic relevance between query
and the candidate sentences parsed from the coarse-
grained sentence selection stage. It is composed of
a query encoder, a query-aware sentence encoder
and a document-aware relevance encoder, of which
the model structure is shown in Figure 3(b). A
naive implementation is directly using the same

architecture of DeepQSE. However, in DeepQSE,
the query and title are concatenated with differ-
ent R sentences and their word representations are
repetitively computed for R times. We assume the
word representations of query in the query-aware
sentence encoder have little help for query-aware
snippet selection, which is validated in Section 4.6.
Therefore, we design the Cross Transformer, where
the word representations of the query and title
are only computed once in the query encoder and
parsed into the query-aware sentence encoder. The
architecture of a Cross Transformer block is shown
in Figure 4.

The query encoder aims to learn query represen-
tations, which is initialized from a Transformer-
based pre-trained language model. We input the
concatenation of query and title into the query en-
coder and use the final hidden state of the first
token as the query representation lq. Meanwhile,
the query encoder outputs the key and value of ev-
ery multi-head self attention network to the query-
aware sentence encoder. Given the previous hidden
state Hi−1

q , the key and value of the i-th multi-head
self attention network are computed as follows:

Kq
i = Wi

KHi−1
q ,Vq

i = Wi
V Hi−1

q , (1)

where Wi
K and Wi

V are trainable parameters.
The query-aware sentence encoder aims to

model the fine-grained interactions between query
and each sentence. It contains an embedding
layer and several Cross Transformer blocks, which
are initialized from a pre-trained language model.
Given a sentence si, we first compute its initial hid-
den state H0

s through the embedding layer. The i-th

3038

Feed

Forward

Multi-Head

Attention

Add & Norm

Add & Norm

Feed

Forward

Multi-Head

Attention

Add & Norm

Add & Norm

Key𝑾𝑲𝒊Query 𝑾𝑸𝒊 Value𝑾𝑽𝒊

Multi-Head

Attention

Value𝑾′𝑽𝒊Key𝑾′𝑲𝒊 Query𝑾′𝑸𝒊

Multi-Head

Attention

Concat

Concat

𝑯𝒒𝒊−𝟏 𝑯𝒔𝒊−𝟏hidden states of query encoder hidden states of sentence encoder

Figure 4: Architecture of the Cross Transformer model.

Cross Transformer block contains a multi-head at-
tention network and a feed-forward network. In or-
der to compute query-aware sentence hidden states,
we modify the key (or value) of multi-head atten-
tion network as the concatenation of key (or value)
from query encoder and the transformed hidden
state of the sentence. Given the hidden state Hi−1

s

of the previous Cross Transformer block, the query,
key and value of the i-th multi-head attention net-
work are formulated as follows:

Qs
i = Wi′

QHi−1
s ,

Ks
i = Kq

i ||Wi′
KHi−1

s ,

Vs
i = Vq

i ||Wi′
V Hi−1

s ,

(2)

where Wi′
Q, Wi′

K and Wi′
V are trainable parameters,

|| is the concatenation operator. The query, key and
value are then input into the multi-head attention
network and feed-forward network to compute Hi

s.
We use the final hidden state of the first token as
the query-aware sentence representation lis.

The document-aware relevance encoder aims to
model query-sentence relevance in the context of
the whole webpage, which contains several Trans-
former blocks. We concatenate the query represen-
tations and K candidate sentence representations,
add position embeddings on them and input them
into several transformer blocks. The document-
aware query-sentence relevance representations fi
are the final hidden states, which are then fed into
an MLP to predict selection scores sfi .

3.3.3 Model Training and Serving
For model training, we use cross-entropy loss to
train the DeepQSE, which is computed as follows:

L = −
R∑

i=1

yi × log(
exp(sdi)∑R
k=1 exp(s

d
k)
), (3)

where yi ∈ {0, 1} indicates whether the i-th sen-
tence is the start sentence of the snippet. For

Snippet extraction dataset English Multi-lingual
#sample 545,240 348,673
#query 420,816 291,559

#document 330,545 240,005
Manually labeled dataset English Multi-lingual

#sample 19,331 25,851
#query 14,522 17,935

#document 16,995 22,726

Table 1: Statistics of datasets.

Efficient-DeepQSE, we also use the cross-entropy
loss to train the coarse-grained candidate sentence
selector and the fine-grained relevance model re-
spectively, which is formulated as follows:

Lc = −
R∑

i=1

yi × log(
exp(sci)∑R
k=1 exp(s

c
k)
),

Lf = −
R∑

i=1

yi × log(
exp(sfi)∑R
k=1 exp(s

f
k)
).

(4)

For model serving, when a user submits a re-
quest with query q, the search engine returns sev-
eral webpages. For one of the webpages d with title
t, DeepQSE directly computes selection scores for
all sentences {sd1, ...sdR}. The sentence with the
maximum selection score is selected. For Efficient-
DeepQSE, the server needs to offline compute the
sentence representations of coarse-grained candi-
date sentence selector for every webpage. For
the webpage d, with its sentence representations
of the coarse-grained candidate sentence selector
[h1

s, ...hR
s], we first compute the query representa-

tion of the coarse-grained candidate sentence se-
lector hq and the coarse-grained selection scores
{sc1, ...scR}. Then we feed top-K candidate sen-
tences into the fine-grained relevance model to
compute fine-grained selection scores {sf1 , ...sfK}.
The sentence with the maximum score is the start
sentence of the snippet sk.

3039

Methods
English Multi-lingual

P@1 P@3 P@5 P@1 P@3 P@5
CTS 39.65±0.00 64.57±0.00 88.15±0.00 34.64±0.00 59.83±0.00 71.16±0.00

QUITE 39.49±0.00 63.69±0.00 74.78±0.00 33.71±0.00 57.24±0.00 68.96±0.00
QMSUM 54.22±0.27 74.61±0.20 82.17±0.24 46.26±0.27 67.19±0.18 75.87±0.17
QBSUM 60.69±0.51 77.18±0.26 81.12±0.38 59.61±0.77 71.80±0.99 74.84±0.67
BM25 33.91±0.00 60.50±0.00 73.15±0.00 27.75±0.00 51.99±0.00 65.48±0.00
DSSM 40.24±0.50 59.98±0.59 69.12±0.54 36.88±0.30 54.33±0.34 63.29±0.29

C-DSSM 55.46±0.31 72.73±0.23 79.39±0.26 49.49±0.41 66.32±0.37 73.80±0.30
MatchPyramid 55.49±0.40 78.04±0.40 85.78±0.26 50.74±0.35 73.58±0.30 82.05±0.39
Poly-Encoder 64.45±0.11 82.19±0.08 88.02±0.11 64.41±0.13 82.14±0.10 88.00±0.07

Birch 72.45±0.08 88.24±0.10 92.73±0.08 72.62±0.11 88.44±0.14 92.88±0.06
PARADE 73.19±0.16 88.65±0.12 92.99±0.14 72.94±0.20 88.47±0.13 92.89±0.13

DeepQSE* 77.05±0.29 92.43±0.33 95.94±0.14 77.23±0.18 93.30±0.09 96.77±0.08
Efficient-DeepQSE* 77.03±0.27 91.98±0.19 95.34±0.13 75.13±0.27 91.40±0.22 95.15±0.14

Table 2: Performance of different methods on query-aware webpage snippet extraction.

4 Experiments

4.1 Dataset and Experimental Settings
Since there is no off-the-shelf dataset for query-
aware snippet extraction, we first manually labeled
two small English and Multi-lingual datasets, of
which the task is to select the more proper snippet
given a pair of candidate sentences. The Multi-
lingual dataset includes 10 languages, i.e., Ger-
man, French, Spanish, Italian, Japanese, Korean,
Portuguese, Russian and Chinese. Then we semi-
automatically build two large English and Multi-
lingual snippet extraction datasets with part of the
manually-labeled datasets, of which task is to select
the snippet from the sentences in the body. Due
to the space limitation, the detailed dataset con-
struction steps are described in Appendix 6. 10%
samples of the snippet extraction dataset are ran-
domly sampled for testing, and the rest for training.
We randomly sample 10% samples of the training
dataset for validation. We also the rest manually
labeled dataset as another test dataset, which is
not used to construct the large snippet extraction
dataset. The detailed statistics of the datasets are
shown in Table 1. We use precision@k (k=1,3,5)
as the evaluation metrics for performance on the
snippet extraction test dataset, accuracy (ACC) as
the evaluation metric for performance on the man-
ually labeled test dataset, floating-point operations
(FLOPs) and million seconds (ms) as the evaluation
metrics for efficiency.

4.2 Experimental Settings
In our experiments, we apply BERT-base (De-
vlin et al., 2018) for English dataset and a dis-
tilled XML-RoBERTa (Chi et al., 2021) for Multi-

Lingual dataset to initialize the pre-trained lan-
guage model. We use Adam (Kingma and Ba,
2015) to optimize model training for both Deep-
QSE and Efficient-DeepQSE. We set the learning
rate as 0.0001 and batch size as 64. The maxi-
mum query length is 16. The maximum title length
is 32. The maximum sentence length is 64. The
maximum number of sentences R in a body is 160.
The number of candidate sentences selected by
the coarse-grained sentence selector K is 20. All
hyper-parameters are selected according to the per-
formance on the validation dataset. We repeat each
experiment 5 times and report the average results
and the standard deviations.

4.3 Performance Comparison

We compare our method with multiple baselines,
including conventional snippet extraction methods:
(1) CTS (Turpin et al., 2007), extracting snippets
based on the number of overlapping words be-
tween queries and sentences; (2) QUITE (Zou et al.,
2021), selecting snippets with the summation of
importance scores of overlapping words between
queries and sentences; PLM-empowered snippet
extraction methods: (3) QMSUM (Zhong et al.,
2021), the locator of QMSUM for meeting sum-
marization which applies a fixed PLM and CNN
to encode sentence and query, and a Transformer
to model interactions between sentences. (4) QB-
SUM (Zhao et al., 2021), input the concatenation
of query and body into a PLM, and apply multi-
ple predictors to compute relevance scores; some
text matching methods: (5) BM25 (Robertson and
Zaragoza, 2009), applying the BM25 algorithm
to compute similarity scores; (6) DSSM (Huang

3040

Methods
ACC

English Multi-lingual
CTS 29.20±0.00 29.84±0.00

QUITE 24.82±0.00 25.73±0.00
QMSUM 38.05±0.16 39.61±0.21
QBSUM 21.73±0.86 26.26±0.65

BM25 33.10±0.00 33.11±0.00
DSSM 36.67±0.46 37.16±0.18

C-DSSM 36.97±0.26 37.77±0.21
MatchPyramid 35.54±0.16 38.28±0.16
Poly-Encoder 37.51±0.23 39.82±0.22

Birch 38.17±0.28 39.83±0.21
PARADE 36.68±0.17 38.59±0.13

DeepQSE* 40.10±0.58 41.99±0.20
Efficient-DeepQSE* 40.57±0.34 41.99±0.26

Table 3: Performance of different methods on manually
labeled datasets.

et al., 2013), a deep structured semantic matching
method; (7) C-DSSM (Wan et al., 2016), a deep
semantic matching structure with convolution net-
work; (8) MatchPyramid (Pang et al., 2016), apply-
ing 2D convolution and max-pooling network on
the similarity matrix of query and sentence; several
PLM-empowered text matching methods: (9) Poly-
Encoder (Humeau et al., 2020), which adds a final
attention mechanism to model the interactions be-
tween the cacheable multiple sentence representa-
tions and the query representation. (10) Birch (Yil-
maz et al., 2019), inputting the concatenation of
queries and sentences into BERT for document re-
trieval; (11) PARADE (Li et al., 2020), using a
PLM to model similarity between sentences and
queries, and an aggregator to model interactions
between candidate sentences.

The performance of all methods on snippet ex-
traction test datasets is shown in Table 2. The
performance of the methods on manually labeled
test datasets is shown in Table 3. CTS, QUITE
and BM25 are deterministic methods, of which
standard deviations are zero. We have several ob-
servations from Table 2. First, our DeepQSE and
Efficient-DeepQSE outperform conventional snip-
pet extraction methods (CTS and QUITE). This
is because these methods are based on the count-
ing features of overlapping words between queries
and sentences. Compared with our methods which
utilize PLMs, they cannot capture the deep seman-
tic relation between query and sentences. Second,
our methods outperform PLM-based snippet ex-
traction methods (QMSUM and QBSUM). This
is because the simple body-query concatenation

Methods
English Multi-lingual

FLOPs ms FLOPS ms
CTS - 1.10 - 1.51

QUITE - 0.13 - 0.10
QBSUM 45.75G 7.97 11.40G 4.02
QMSUM 1.74G 0.41 0.43G 0.17

BM25 - 0.80 - 0.95
DSSM 0.30M 0.18 0.30M 0.09

C-DSSM 17.42M 0.17 17.42M 0.09
MatchPyramid 0.28G 0.37 0.28G 0.38
Poly-Encoder 1.55G 0.19 0.43G 0.08

Birch 1087.44G 21.72 271.86G 10.51
PARADE 1088.71G 22.35 272.17G 11.16

DeepQSE* 1540.08G 31.91 271.86G 16.70
Efficient-DeepQSE* 132.45G 3.09 33.44G 1.67

Table 4: Efficiency of different methods.

in QBSUM may fluctuate the information of the
short query. Due to the length limitation of PLM
some candidate sentences may be cut off. QM-
SUM is a bi-encoder which fails to encoder the
word-level interactions between the query and sen-
tences. Third, compared with several text matching
methods (BM25, DSSM, C-DSSM, MatchPyramid,
Poly-Encoder, Birch, QBSUM), our methods have
better performance. This is because in our meth-
ods we apply webpage title and document-aware
relevance encoder to select snippets in the con-
text of the whole webpage, which can choose sen-
tences better summarizing the webpage in the con-
text of input query. Forth, PLM-based snippet ex-
traction methods outperform conventional snippet
extraction methods, and PLM-based text-matching
methods outperform shallow-model-based text-
matching methods. This is because the pre-trained
language model can help better understand the se-
mantic information in queries, titles and sentences.
Finally, cross-encoder-based text matching meth-
ods outperform bi-encoder-based text matching
methods. For example, MatchPyramid outperforms
CDSSM and DSSM, and Birch, PARADE and
DeepQSE outperform Poly-Encoder and QBSUM.
This is because bi-encoders only model sentence-
level similarity between queries and sentences, but
cross-encoders can model word-level similarity
between queries and sentences in a fine-grained
manner. However, bi-encoders can cache sentence
representations, which have faster online serving
speed than cross-encoders.

4.4 Efficiency Comparison

In this subsection, we compare the efficiency of
DeepQSE and Efficient-DeepQSE with baseline
methods. The results are summarized in Table 4.

3041

Since CTS, QUITE and BM25 are not based on
matrix multiplication and addition, we do not give
their FLOPs results. We have several observa-
tions from Table 4. First, conventional snippet
extraction methods (CTS and QUITE) have rela-
tively low computation costs. This is because they
are based on simple hand-crafted features, which
can be calculated quickly. Second, cross-encoder-
based methods are more time-consuming than bi-
encoder-based methods. For example, DSSM and
CDSSM are more efficient than MatchPyramid,
and Poly-Encoder and QMSUM are more effi-
cient than Birch, PARADE, QBSUM and Deep-
QSE. This is because the sentence representations
in bi-encoder-based methods can be cached for
quick inference. Third, PLM-based methods (Poly-
Encoder, Birch, PARADE, QMSUM, QBSUM,
DeepQSE and Efficient-DeepQSE) have higher
computation costs than other methods. This is be-
cause pre-trained language models have large size
of parameters, of which the computation cost is
high (Sanh et al., 2019; Beltagy et al., 2020; Jiao
et al., 2020; Sun et al., 2020). Finally, considering
both efficiency and the previous performance analy-
sis in Section 4.3, our Efficient-DeepQSE achieves
a great trade-off between performance and effi-
ciency. This is because our Efficient-DeepQSE ap-
plies two-stage model, in which the coarse-grained
selector can quickly select candidates for the fine-
grained relevance encoder. In addition, we de-
sign the Cross Transformer which avoids repeti-
tively computing contextual word representations
of the same query for different candidate sentences.
Therefore, our Efficient-DeepQSE has a lower com-
putation cost while keeping its performance.

4.5 Efficiency Analysis

In this subsection, we analyze how the Efficient-
DeepQSE reduces the computation overhead of
DeepQSE with a minor performance drop. Com-
pared with DeepQSE, the core improvement of
Efficient-DeepQSE is the Cross Transformer, the
coarse-grained candidate sentence selector and the
fine-grained relevance model. We remove these
modules separately and show their performance
and efficiency in Figure 5, Figure 6 and Figure 7.
We have several observations from the results.
First, Efficient-DeepQSE has lower performance
and lower computation overhead without the fine-
grained relevance model. This is because the fine-
grained relevance model captures the deep seman-

English Multi-lingual
60

64

68

72

76

P
@

1

68.2

75.7

77.6
77.0 77.1

60

64

68

72

76

P
@

1

69.5

75.4

77.4

75.1

77.2

w/o fine

w/o Cross TRF

w/o coarse

Efficeint-DeepQSE

DeepQSE

Figure 5: The impact of two-stage model and Cross
Transformer on accuracy.

English Multi-lingual
0

400

800

1200

1600

G
F

L
O

P
s

18

214

888

132

1540

0

80

160

240

320

400

G
F

L
O

P
s

4.8

53.8

221.9

33.5

385.0

w/o fine

w/o Cross TRF

w/o coarse

Efficeint-DeepQSE

DeepQSE

Figure 6: The impact of two-stage model and Cross
Transformer on efficiency (GFLOPs).

tic relevance between queries, titles and sentences,
which can improve the performance. And with-
out the fine-grained relevance model, Efficient-
DeepQSE does not need to perform the second
stage, which lowers the computation overhead. Sec-
ond, Efficient-DeepQSE can achieve higher per-
formance but higher computation overhead with-
out the coarse-grained candidate sentence selec-
tor. This is because the coarse-grained candidate
sentence selector may select candidate sentences
incorrectly, which increases the error rate. How-
ever, it helps decrease the input size of the second
stage. Therefore, the computation overhead gets
higher without the coarse-grained candidate sen-
tence selector. Finally, the computation overhead
is higher without Cross Transformer. This is be-
cause in Cross Transformer we only compute the
query and title representations once, which avoids
the repetitive computation in DeepQSE. Combined
with these components, the Efficient-DeepQSE re-
duces the computation overhead and achieves com-
parable performance with DeepQSE.

3042

English Multi-lingual
0

7

14

21

28

M
ill

io
n

 S
e

c
o

n
d

s

0.55

4.45

20.28

3.09

31.91

0

4

8

12

16

M
ill

io
n

 S
e

c
o

n
d

s

0.55

2.30

10.31

1.67

16.70

w/o fine

w/o Cross TRF

w/o coarse

Efficeint-DeepQSE

DeepQSE

Figure 7: The impact of two-stage model and Cross
Transformer on efficiency (ms).

P@1 P@3
60

64

68

72

76

p
@

1

65.75

72.41
73.43

77.03

80

83

86

89

92

P
@

3

82.68

88.38 88.26

91.98

w/o query

w/o DaRE

w/o title

w both

Figure 8: The impact of title, query and document-aware
relevance encoder (DaRE) on English dataset.

4.6 Ablation Study

In this section, we analyze the impact of adding
titles, queries and the document-aware relevance
encoder. Due to space limitation, we only show
the experimental result on Efficient-DeepQSE. The
same phenomenon can be observed on DeepQSE
as well. The results are shown in Figure 8 and Fig-
ure 9. From the results, we can observe that the
performance of Efficient-DeepQSE gets lower with-
out titles. This is because the titles can be treated
as brief abstracts of webpages, which can help the
model select sentences better summarizing the web-
page content (Wang et al., 2007). It is also observed
that the performance drops without queries. This is
because the selected snippets should not only sum-
marize the webpage content, but also be relevant to
queries. Finally, the document-aware relevance en-
coder (DaRE) benefits snippet extraction. This may
be because the document-aware relevance encoder
can model the query-document relevance in the
context of the whole webpage, which helps select
snippets better summarizing the webpage content.

P@1 P@3
60

64

68

72

76

P
@

1

66.36

72.41
73.85

75.13

80

83

86

89

92

P
@

3

84.49

88.69

89.9

91.4

w/o query

w/o DaRE

w/o title

w both

Figure 9: The impact of title, query and document-aware
relevance encoder (DaRE) on Multi-lingual dataset.

5 Conclusion

In this paper, we propose a query-aware snippet
extraction model for web search named DeepQSE.
DeepQSE first learns a query-aware sentence rep-
resentation by modeling fine-grained interactions
between queries, titles and sentences, then learns
document-aware sentence relevance representa-
tions for snippet extraction. To lower the computa-
tion overhead of DeepQSE, we further design the
Efficient-DeepQSE, where the snippet extraction
is decomposed into two stages, i.e. coarse-grained
candidate sentence selection and fine-grained rele-
vance modeling. The coarse-grained selector can
cache the sentence representations for fast online
serving and parse several candidate sentences to the
fine-grained relevance model. In the fine-grained
relevance model, we further design a Cross Trans-
former, to avoid the repetitive computation of query
and title representations for different sentences. Ex-
tensive experiments validate the effectiveness and
efficiency of our approach.

6 Limitations

Our DeepQSE is a cross-encoder-based snippet
extraction method. It has great performance but
heavy computation overhead, which is not ben-
eficial for online inference. We further propose
Efficient-DeepQSE, an efficient version of Deep-
QSE, which divides the snippet extraction into two
stages. Although the Efficient-DeepQSE keeps the
performance of DeepQSE and has much lower com-
putation overhead than other PLM-based methods,
it still has larger computation overhead than the
conventional shallow-model-based methods. We
plan to further improve the efficiency of the snippet
extraction algorithm in the future.

3043

References
Lorena Leal Bando, Falk Scholer, and Andrew Turpin.

2010. Constructing query-biased summaries: A com-
parison of human and system generated snippets. In
IIiX, page 195–204.

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Haolan Chen, Fred X. Han, Di Niu, Dong Liu, Kunfeng
Lai, Chenglin Wu, and Yu Xu. 2018. Mix: Multi-
channel information crossing for text matching. In
KDD, page 110–119.

Wei-Fan Chen, Shahbaz Syed, Benno Stein, Matthias
Hagen, and Martin Potthast. 2020. Abstractive snip-
pet generation. In WWW, page 1309–1319.

Zewen Chi, Li Dong, Furu Wei, Nan Yang, Saksham
Singhal, Wenhui Wang, Xia Song, Xian-Ling Mao,
Heyan Huang, and Ming Zhou. 2021. InfoXLM: An
information-theoretic framework for cross-lingual
language model pre-training. In ACL, pages 3576–
3588.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL, pages 4171–4186.

Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce
Croft. 2016. A deep relevance matching model for
ad-hoc retrieval. In CIKM, pages 55–64.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen.
2014. Convolutional neural network architectures for
matching natural language sentences. In NIPS, page
2042–2050.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using
clickthrough data. In CIKM, pages 2333–2338.

Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux,
and Jason Weston. 2020. Poly-encoders: Architec-
tures and pre-training strategies for fast and accurate
multi-sentence scoring. In ICLR.

Tatsuya Ishigaki, Hen-Hsen Huang, Hiroya Takamura,
Hsin-Hsi Chen, and Manabu Okumura. 2020. Neural
query-biased abstractive summarization using copy-
ing mechanism. In ECIR, pages 174–181.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
TinyBERT: Distilling BERT for natural language
understanding. In EMNLP Findings, pages 4163–
4174.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Canjia Li, Andrew Yates, Sean MacAvaney, Ben He, and
Yingfei Sun. 2020. Parade: Passage representation
aggregation for document reranking. arXiv preprint
arXiv:2008.09093.

Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao,
Xiaodong He, Jianshu Chen, Xinying Song, and
R Ward. 2014. Semantic modelling with long-
short-term memory for information retrieval. arXiv
preprint arXiv:1412.6629.

Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengx-
ian Wan, and Xueqi Cheng. 2016. Text matching as
image recognition. In AAAI, page 2793–2799.

Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Jingfang
Xu, and Xueqi Cheng. 2017. Deeprank: A new deep
architecture for relevance ranking in information re-
trieval. In CIKM, page 257–266.

Thomas Penin, Haofen Wang, Thanh Tran, and Yong Yu.
2008. Snippet generation for semantic web search
engines. In The Semantic Web, pages 493–507.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In EMNLP, pages 3982–3992.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Found. Trends Inf. Retr., page 333–389.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. Mobilebert: a
compact task-agnostic bert for resource-limited de-
vices. In ACL, pages 2158––2170.

Yohannes Tsegay, Simon J Puglisi, Andrew Turpin, and
Justin Zobel. 2009. Document compaction for ef-
ficient query biased snippet generation. In ECIR,
pages 509–520. Springer.

Andrew Turpin, Yohannes Tsegay, David Hawking, and
Hugh E. Williams. 2007. Fast generation of result
snippets in web search. In SIGIR, page 127–134.

Jack Urbanek, Angela Fan, Siddharth Karamcheti,
Saachi Jain, Samuel Humeau, Emily Dinan, Tim
Rocktäschel, Douwe Kiela, Arthur Szlam, and Jason
Weston. 2019. Learning to speak and act in a fantasy
text adventure game. In EMNLP, pages 673–683.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS, page 6000–6010.

Shengxian Wan, Yanyan Lan, Jiafeng Guo, Jun Xu,
Liang Pang, and Xueqi Cheng. 2016. A deep ar-
chitecture for semantic matching with multiple po-
sitional sentence representations. In AAAI, page
2835–2841.

3044

Changhu Wang, Feng Jing, Lei Zhang, and Hong-Jiang
Zhang. 2007. Learning query-biased web page sum-
marization. In CIKM, page 555–562.

Yiming Yang, Jaime Carbonell, Ralf Brown, John Laf-
ferty, Thomas Pierce, and Thomas Ault. 2002. Multi-
strategy Learning for Topic Detection and Tracking,
pages 85–114.

Zeynep Akkalyoncu Yilmaz, Wei Yang, Haotian Zhang,
and Jimmy Lin. 2019. Cross-domain modeling of
sentence-level evidence for document retrieval. In
EMNLP, pages 3490–3496.

Mingjun Zhao, Shengli Yan, Bang Liu, Xinwang Zhong,
Qian Hao, Haolan Chen, Di Niu, Bowei Long, and
Weidong Guo. 2021. Qbsum: A large-scale query-
based document summarization dataset from real-
world applications. Computer Speech & Language,
66:101166.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia
Mutuma, Rahul Jha, Ahmed Hassan Awadallah, Asli
Celikyilmaz, Yang Liu, Xipeng Qiu, and Dragomir
Radev. 2021. QMSum: A new benchmark for query-
based multi-domain meeting summarization. In
NAACL, pages 5905–5921.

Lixin Zou, Shengqiang Zhang, Hengyi Cai, Dehong Ma,
Suqi Cheng, Shuaiqiang Wang, Daiting Shi, Zhicong
Cheng, and Dawei Yin. 2021. Pre-trained language
model based ranking in baidu search. In KDD, pages
4014–4022.

3045

query title snippet

death park download death park 1 8 0

for android

Death Park is a first-person horror game that turns you into a

young man who's being chased by a dark clown.

Chromatophores in squid chromatophores gilly lab Chromatophores in the skin of squid … each is an elastic
pigment body, spherical at rest, surrounded by a halo of…

1 km to 1 mile 1 mi to km converter And the answer is 0.6213711922 mi in 1 km. … 1.609344 km

in 1 mi.

Figure 10: Some snippets extracted by DeepQSE.
query title snippet

what is the size of the
keyspace AES

encryption key length and
message length in aes …

AES has variable key sizes like 128,192, and 256, therefore,
the keyspace K is 2 128, 2 192, and 2 256…

What are three natural barriers
found in Ancient China?

natural barriers ancient
china

There are a total of eleven natural barriers surrounding China,
these include the Himalayas, Yellow Sea, Mount Everest…

at dead of night at dead of night free
download top pc games

At Dead Of Night is part horror film, part horror game and
part ghost hunt. …

Figure 11: Some snippets extracted by Efficient-DeepQSE.

Appendix

Detailed Data Construction Steps

The detailed data construction steps are as follows:
Collect manually labeled dataset: Given a pair
of candidate snippets extracted from a document,
human evaluators are asked to select the more ap-
propriate one according to the corresponding query.
The manually labeled dataset can be formulated as
{(qi, si1, si2, di, li)|0 ≤ i < M}, where M is the
number of samples in the dataset, qi is the query,
si1 and si2 are candidate snippets, di is the docu-
ment, li ∈ {0, 1} is the label. li equals 0 when si1
is more suitable than si2, otherwise li equals 1. At
least three annotators are assigned for a sample.

Build snippet extraction dataset: Since the
manually labeled dataset is for pair-wise selection
and is small for large PLM-based models, we train
an ensemble model with the dataset to extract snip-
pets for different documents according to corre-
sponding queries. The extracted samples with high
confidence scores are then used as the snippet ex-
traction dataset.

Impact of Candidate Number

In this subsection, we study the impact of the num-
ber of candidate sentences selected by the coarse-
grained selector. The experimental results are
shown in Figure 12(a) and Figure 12(b). We ob-
serve that with larger candidate sentence number,
the performance of Efficient-DeepQSE is higher.
This may be because the probability that the ground
truth sentence is selected in the candidate sen-
tences gets higher. However, the computation over-
head of Efficient-DeepQSE linearly increases with
larger candidate sentence number. How to choose

0 10 20 30 40
K

68

71

74

77

P
@

1

68

75

82

89

P
@

3

P@1

P@3

(a) English

0 10 20 30 40
K

69

72

75

P
@

1

68

75

82

89

P
@

3

P@1

P@3

(b) Multi-Lingual

Figure 12: Impact of candidate number.

a proper candidate sentence number to achieve a
great trade-off between performance and efficiency
is the key point of our method.

Case Study
In this subsection, we show some snippets extracted
by our DeepQSE in Figure 10 and our Efficient-
DeepQSE in Figure 11. In all cases, the snippets
are relevant to the input query. This is because we
model the word-level interactions between query
and sentences in DeepQSE and Efficient-DeepQSE.
Meanwhile, the selected snippets summarize the
webpage content in the context of the input query.
This is because we consider the context of webpage
in the document-aware relevance encoder, which
enables our method to capture the global webpage
information.

Experimental Environments
We conduct experiments with a Linux server with
8 V100 GPUs with 32GB memory. The version of
CUDA is 11.1. We implement both DeepQSE and
Efficient-DeepQSE with pytorch 1.9.1.

3046

