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Abstract

This paper investigates models of event impli-
cations. Specifically, how well models pre-
dict entity state-changes, by targeting their un-
derstanding of physical attributes. Nominally,
Large Language models (LLM) have been ex-
posed to procedural knowledge about how ob-
jects interact, yet our benchmarking shows they
fail to reason about the world. Conversely, we
also demonstrate that existing approaches often
misrepresent the surprising abilities of LLMs
via improper task encodings and that proper
model prompting can dramatically improve per-
formance of reported baseline results across
multiple tasks. In particular, our results indi-
cate that our prompting technique is especially
useful for unseen attributes (out-of-domain) or
when only limited data is available.

1 Introduction

Modeling the effect of actions on entities (event
implications) is a fundamental problem in Al span-
ning computer vision, cognitive science and natural
language understanding. Most commonly referred
to as the Frame Problem (McCarthy and Hayes,
1981), early solutions relied on a set of handcrafted
rules and logical statements to model event impli-
cations. However, such methods require substantial
manual effort and fail to generalize. More recently,
modeling event implications has reemerged under
the guise of common sense reasoning within NLP
(Sap et al., 2019b; Bisk et al., 2020b; Talmor et al.,
2019) and action anticipation in Computer Vision
(Damen et al., 2018; Bakhtin et al., 2019).
Predicting event implications is a particularly
difficult problem due to the complex nature of lan-
guage and implicit knowledge required to answer
such questions. For example, if we are given the
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Context:

Pick up the yogurt, bananas, and sorbet.
Place the ingredients in a blender.

Blend the mixture until it's smooth in
texture.

Context:

The robot holds a laptop.

The robot forcefully throws the
laptop.

Entity: Laptop | ‘ Entities: blender, mixture

What attributes changed:

The cleanness, weight, volume and

fullness of the blender changed.

2. The texture and appearance of the
mixture changed.

What attributes changed:
Laptop is broken, picked-up and 1.
its location is different.

Figure 1: We use the PIGLET and OpenPI datasets
to probe if LLMs contain the necessary grounded and
world knowledge to reason about event implications.

sentence the mug fell on the floor and we want to
determine whether the mug is broken, we need to
know of several facts such as the material of the
mug, the fragility of ceramics, the hardness of the
floor, etc. and also how to combine these facts to-
gether to reason whether the mug will break or
not. None of this knowledge is explicitly stated, in-
stead being classified as common sense knowledge,
and is traditionally acquired from observations or
interactions with objects and the environment.

Core to this line of work is the assumption that
events can be learned via language, not depending
on other forms of perception. To explore the utility
of other modalities and interaction, Zellers et al.
(2021) train a language model to predict physical
changes in a virtual environment. While intuitively
necessary (Bisk et al., 2020a), in this work we
show that the purported limitations of language-
only models are not always well founded. Key to
their success (or failure) are (1) How we use the
language models, and (2) The difficulty of the task
domain and dataset.

We find that the difficulty of the task is often a
stand-in for whether reasoning is required. Others
have also noted that despite the tremendous gains
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in NLU made possible by Large Language mod-
els (LLM), they still stumble when reasoning is
required (Brown et al., 2020). If reasoning can be
codified as patterns, we are presented with two new
challenges: (1) Can we test pattern acquisition via
benchmarking generalization, and (2) How can new
patterns or context be provided to the model? The
nascent field of “prompting" (Liu et al., 2021; Wei
et al., 2021; Ouyang et al., 2022) hints at a possible
approach for humans to encode novel reasoning
patterns for models, however the best structure and
the amount of information to convey via a prompt
for a given task still remain open questions.

This work makes three contributions to the lit-
erature of event implications. First, we show that
language by itself provides enough information
to predict event implications in current datasets,
without the need of a physical interaction model.
Second, we establish the difficulty of the problem
and limitations of current models by showing ex-
treme differences in performance across different
datasets: PIGLET (Zellers et al., 2021), based on
a virtual environment, and OpenPI (Tandon et al.,
2020), based on procedural text from WikiHow.
Third, we explore how different prompting tech-
niques affect model performance in terms of their
information content and model nature. Finally, we
discuss the generalization properties of our mod-
els to unseen attributes (out-of-domain) and how
this shows their ability to extract implicit reasoning
mechanisms.

2 Related Work

Related work in commonsense follows two direc-
tions: (1) predict event implications or track en-
tity changes, and (2) use commonsense knowledge
about events and their implications as necessary
intermediate steps in reasoning.

Research that directly studies event implications
mostly explores causality between social events
and emotional states, based on social norm expec-
tations (Rashkin et al., 2018; Sap et al., 2019b;
Forbes et al., 2020; Emelin et al., 2020; Hwang
et al., 2020). Jiang et al. (2021) study specific
linguistic phenomena such as contradiction and
negation, while Sap et al. (2019a) study the role of
social biases and predicting implications of social
events. Although this line of research highlights the
difficulty of predicting cause-effect relations, so-
cial scenarios are typically ambiguous and require
knowledge of event chains. For example, in order

to answer whether X gives a gift to Y implies that X
hugs Y, we must be aware of the relation between
X and Y, their personalities, and the social context.
On the other hand, event implications as physical
changes of state of entities are, mostly, objective
and depend on simple relations that a model could
know a priori (e.g., the material of a mug), allowing
us to isolate and study the reasoning abilities of a
model.

Closer to our task is the prediction of physical
implications of events. This problem often takes
the form of entity changes in procedural text, such
as in cooking recipes (Bosselut et al., 2017) or
WikiHow articles (Tandon et al., 2020). However,
most datasets primarily focus on changes in loca-
tion compared to other attributes, such as ProPara
(Mishra et al., 2018) and bAbI (Weston et al., 2015).
Modeling approaches in both areas of common-
sense explore the generation of explanations in a
multi-task setting (Dalvi et al., 2019), the use of ex-
ternal knowledge graph (Tandon et al., 2018), and
automatic knowledge base construction to keep a
representation of the state of the world and gener-
ate novel knowledge (Bosselut et al., 2019; Henaff
et al., 2016; Hwang et al., 2020).

The second type of commonsense reasoning in-
cludes question answering tasks that assume knowl-
edge of commonsense relations and their implica-
tions on the context. This line of work includes
short questions, such as OpenBookQA (Mihaylov
et al., 2018), CommonSenseQA (Talmor et al.,
2019), SWAG (Zellers et al., 2018) and COPA
(Roemmele et al., 2011), or questions based on a
provided document (Huang et al., 2019) or knowl-
edge base (Clark et al., 2018).

3 Task and Datasets

The problem of predicting event implications can
be formulated in several ways, with varying levels
of difficulty. For example, Tandon et al. (2020)
generate triplets of entity, attribute, post-state given
some context, while Zellers et al. (2021) are given
an entity, attribute, pre-state, and context, to only
predict the post-state of the entity.

Our task follows a similar formulation to
PiGLET, where the model is given a context (i.e., a
small paragraph followed by an action-sentence),
an entity of interest and a list of attributes. Then,
the model needs to determine whether a change-
of-state occurred for the entity with respect to the
given list of attributes (see Figure 1). However,
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unlike Zellers et al. (2021), we do not use the pre-
state encoding of the entity, instead we assume that
the relevant information is better conveyed through
the natural language description of the context.

3.1 PiGLET

PiGLET (Zellers et al., 2021) consists of encodings
of the pre- and post-state of entities as a result of
an action. Each instance is accompanied by the
context: a natural language description of the pre-
state of the entities, followed by a description of
the action. PIGLET is a small dataset (5k training
examples), which studies entity change-of-state
with respect to 14 attributes, caused by 8 distinct
events.

PiGLET is a semi-artificial dataset, where the
entity, pre-state, post-state, action tuple was gener-
ated by exploring the virtual environment AI2 Thor
(Kolve et al., 2017). A natural language context
was constructed by human annotators, who were
provided with the tuples generated by the virtual
environment. This results in simpler concise state-
ments compared to the ambiguous language that
humans naturally use to communicate.

3.2 OpenPI

Open PI (Tandon et al., 2020) also studies the
change-of-state of entities with respect to physi-
cal attributes. However, unlike PIGLET, Open PI is
based on articles from WikiHow, containing realis-
tic descriptions of physical changes. The context in
this dataset is the entire WikiHow article preceding
the action sentence from the article.

Open PI is a substantially larger dataset, con-
taining an initial set of 51 pre-defined attributes
from WordNet (Fellbaum, 2010), then augmented
by human annotators. Although the total number
reaches ~800 unique attributes, the initial 51 at-
tributes cover more than 80% of instances. Further-
more, the vast majority of the newly introduced
attributes appear only once and many of them con-
tain typos or abbreviations. All our models are
trained in the initial set of 51 attributes.

4 Methodology

Next, we introduce our prompting techniques,
which vary with respect to per-instance informa-
tion content. Each technique is tested with different
LLMs and fine-tuning methods. The goal of each
prompting mechanism is to show how model perfor-
mance and generalization vary based on the infor-

mation conveyed in our queries. Our study focuses
on four prompting methods depicted in Figure 2:
zero-prompt, single-attribute, multi-attribute, and a
variant of the latter, the k-attribute prompt.

Our approach builds on literature demonstrating
benefits in using prompting to distinguish differ-
ent tasks, when a model is trained in a multi-task
setting (Raffel et al., 2020; Wei et al., 2021). In
our study, however, we explore how to use prompts
as a medium to convey the task-specific informa-
tion that a model must know in order to solve the
task, similar to how one would ask a human. To
the best of our knowledge, we are the first ones to
demonstrate advantages and disadvantages of dif-
ferent ways to codify intermediate steps required
for reasoning via prompting and use them to study
LLMs’ understanding of event implications.

4.1 Large Language Models

We explore three transformer-based language
models: an autoregressive, an autoencoder, and
a seq-to-seq model. We include models with
different architectures to investigate the effect of
our prompting strategies across model families.
Our goal is to use each model in combination with
prompts that enhance their individual strengths,
based on their pretraining schemes.

RoBERTa (Liu et al., 2019): is an autoencoder
model widely used in classification tasks.

TS5 (Raffel et al., 2019): is a seq-to-seq model that
has shown excellent performance in multi-tasking
by using the task description as a prompt. TS5 is
used for both text classification and generation.

GPT-3 (Brown et al., 2020): is an autoregressive
model and is primarily used in zero and few-shot
settings due to its substantially larger size. GPT-3
is used in language generation and classification,
and has shown excellent performance in few-shot
settings when queried with appropriate prompts.

These backbone models are used with one of the
three prompting techniques, as described in the
following paragraphs and shown in Figure 2.

4.2 Multi-label Classifier: Zero-prompt

Our baseline model is a multi-label classifier with
no explicit information about the nature of the task
or the attributes themselves. The model takes the
context and the prompt Now what happens next to
the [entity]? as inputs, and predicts a binary vector,
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Context: The robot throws the mug to the ground. What happens next to the mug?
Query:
Zero-prompt Target: n-dim binary vector, n = #attributes
Query each attribute in candidate list
A Query1: s the location of the mug different?
Slngle-attr. Target: The location of the mug is different.
rom
Brompt Query2: Is the temperature of the mug different?
Target: The temperature of the mug is unchanged.
Multi-attr. | Query: Consider the attributes: location, temperature, shape ...
prompt: Target: The location, composition and shape of the mug
all-attribute | changed.
Split attributes to subsets
Multi-attr. | Query1: Consider the attributes: location, shape.
prompt: Target: The location and shape of the mug changed.
k-attribute Query2: Consider the attributes: temperature, composition.
Target: The composition of the mug changed.

Figure 2: Prompting techniques used in our models.
Multi-attribute prompt improves performance by learn-
ing dependencies among attributes.

where entries correspond to changes in specific
attributes. We test this mechanism with RoOBERTa,
as it performs well in classification tasks.

With this model we test the traditional “finetun-
ing assumption” that, given enough data, the model
can learn the correspondence between attributes
and dimensions in the output vector and correctly
predict their changes. This model serves as a base-
line of how a LLM performs when fine-tuned to a
specific task. Crucially, it does not have the ability
to generalize to new attributes as the output vector
is of fixed size.

4.3 LM as Classifier: Single-attribute Prompt

Our second prompting technique provides informa-
tion about individual attributes. Via this technique
we evaluate whether a model benefits from the ver-
balization of each attribute, as a means to retain
useful information from the context. Unlike the
zero-prompt model, this model can be used out-of-
domain, with unseen attributes.

In this setup, we query the model about each
individual attribute separately, for every context-
entity pair, as shown in Figure 2. This mechanism
was tested with all three models: RoBERTa (fine-
tuned and zero-shot), T5 (fine-tuned) and GPT-3
(few-shot).

By querying each attribute individually, the
model is able to focus only on information related
to that specific attribute. This can both benefit and
hurt performance, as we show in section 5. On
one hand, the model pays more attention to the
sentence semantics related to the queried attribute.
By using the attribute as a bottleneck, the model
learns which aspect of meaning is important in that

instance. This is particularly beneficial in limited-
data scenarios where generalization is necessary.
On the other hand, by querying only a single at-
tribute per instance, the model does not learn corre-
lations across attributes. This weakness becomes
more apparent in scenarios with many correlated
attributes.

4.4 LM as Generator: Multi-attribute Prompt

Our final prompting technique focuses on retrieving
information about a set of attributes, by querying
multiple attributes together. This technique com-
bines strengths of the zero-prompt and the single-
attribute prompt models, as it is able to both ver-
balize the attributes and capture correlations across
them. Unlike other mechanisms, this method al-
lows us to control the information content per in-
stance, by varying the set of queried attributes.
As we show in sections 5 and 6.2, varying the at-
tribute queries across training instances is crucial
to achieve generalization.

For this technique, the prompt lists the attributes
that the model should consider. This list is dataset
specific and can vary between training and test-
ing (i.e., out-of-domain) or even across training
instances. The model is trained to generate the at-
tributes that changed, as shown in Figure 2. This
technique works with text generation models and
was tested on both T5 (fine-tuned) and GPT-3 (few-
shot).

The first version of this model, the all-attribute
prompt, queries all attributes that could change in
the same instance. However, the risk with this
approach is that, because the prompt is fixed, the
model learns to pay little attention to the specific
attributes that appear in it. We therefore propose a
variant of this method, the k-attribute prompt, aim-
ing to achieve high performance in both in-domain
and out-of-domain scenarios. The objective is to
learn about attribute dependencies but also force
the model to pay attention to the specific attributes
being prompted. To achieve this, we prompt the
model with k£ random attributes and train it to pre-
dict changes only among these k attributes. More
specifically, for each training example, we partition
the 51 attributes into ¢ random groups where ¢ is
a random integer between 1 and 5. k refers to the
number of attributes in each partition. This method
ensures that the model is queried with k£ random at-
tributes and that all 51 attributes are always queried
for each example.
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All attributes

Per-attribute F1

Model Pr Re Fl Dist Size Mass Temp isBroken
Physical Interaction, (PiGLET) 974 91.6 944 93.6 79.2 983 99.6 92.8
n-gram LogReg (baseline) 87.8 88.0 879 78.8 7477 97.8 94.0 79.4
RoBERTa-base, zero-prompt 952 92.6 939 90.6 827 100.0 953 94.7
T5-base, all-attribute prompt 93.0 954 94.1 91.7 83.5 100.0 95.8 90.3

Table 1: Micro-Precision, Recall and F1 scores across all 14 attributes in PIGLET. Per-attribute F1 scores for
challenging attributes, as in (Zellers et al., 2021). Language-only models perform competitively with PiGLET.

S Experiments & Results

Our task is a multi-label classification where, given
some context and an entity of interest, we need to
identify which attributes change. Due to the signifi-
cant label imbalance, in our experiments we report
micro- Precision, Recall, and F1 for the positive in-
stances, across labels. In addition to these metrics,
we measure per-attribute Precision, Recall and F1
for both datasets (details in subsection A.4).

5.1 PiGLET

Baselines: The strongest baseline is the PiIGLET
model, which is a combination of physical interac-
tion and language model, based on GPT-2 (Radford
et al., 2019). It was proposed in the paper intro-
ducing the dataset and is currently state-of-the-art.
Unlike the other models, it learns by interacting
with a simulator and has access to the pre-state of
each entity. We also use a simple n-gram Logistic
Regression baseline to both establish the overall
difficulty of the dataset and measure benefits due
to the pre-training of LLMs.

Results: As shown in Table 1, all models per-
form relatively well on the PIGLET dataset. The
extremely small margin in performance between
Physical Interaction and the proposed models
(RoBERTa zero-prompt and TS5 all-attribute) indi-
cates that language models can learn about physical
attributes even without the need of physically inter-
acting with the environment. However, we should
highlight that this conclusion holds for datasets
similar to PIGLET and the importance of physical
interactions remains an open question that must be
tested in more realistic and challenging datasets.
Despite the high performance of our proposed
models, previously reported baselines on PIGLET
show significantly lower performance than the
Physical Interaction model. Notably, their baseline
using T5-base achieves only 53.9% in hard accu-
racy, compared to 81.1% of the Physical Interaction

model (Zellers et al., 2021). Unfortunately we can-
not directly compare these results to our proposed
models due to their choice of metric (hard accuracy)
and different problem formulation, where the input
and output is the encoding of the pre- and post-state
of the entity. Despite the use of different metrics,
we observe a minimal performance difference be-
tween language-only models and PiGLET. This
highlights the importance of using proper prompt-
ing techniques and task formulation to take full
advantage of LLMs and draw valid conclusions.

Our final observation is that there is a larger gap
between the n-gram LogReg model and the rest of
the models. This shows that, although language is
very useful to predict physical event implications,
pre-trained language models still have an advan-
tage due to the information they have previously
seen. This raises the question of how can we better
exploit the relations that pre-trained language mod-
els already know, which we explore via the next set
of experiments.

5.2 OpenPI

Since our results in PIGLET show that it is not a
challenging dataset, we use Open PI to compare the
proposed prompting techniques. With the excep-
tion of the GPT-3 models, all models have relatively
similar sizes, ranging from 123M (RoBERTa-base)
to 354M (RoBERTa-large) parameters.

Few-shot: For each instance in the test set, we
pick 10 examples from the training set to be in-
cluded in the prompt - there are marginal improve-
ments beyond four (Min et al., 2022). Performance
in complex tasks like QA is sensitive to prompt
selection (Liu et al., 2022). Following previous
work, we pick the relevant examples based on se-
mantic similarity (Reimers and Gurevych, 2019).
In the single-attribute prompt setting, we include
examples querying the same attribute, and balance
both positives and negatives.

In-domain vs out-domain: All our models are
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In-domain Out-domain
Training Model Pr Re Fl Pr Re Fl
Zero-shot ~ RoBERTa-large, single-attribute prompt 3.1 633 5.9 24 68.8 4.6
Few-shot GPT-3-Babbage, single-attribute prompt 3.7 824 7.1 - - -
GPT-3-DaVinci, all-attribute prompt 37.6 245 297 283 129 177
GPT-2 (baseline in Open PI) 498 11.8 19.1 - - -
Fine-tuned RoBERTa-large, zero prompt 65.1 40.1 49.6 - - -
RoBERTa-base, single-attribute prompt ~ 40.3  55.1 46.6 213 262 235
T5-base, single-attribute prompt 346 533 42.0 159 215 182
T5-base, all-attribute prompt 475 560 514 250 12 22
T5-base, k-attribute prompt 52.8 50.0 514 16.8 227 19.3

Table 2: Micro-Precision, Recall and F1 scores for Open PI. In-domain attributes refers to the 51 originally curated
attributes, while out-domain to the 41 attributes introduced by human annotators.

trained on the initial 51 attributes (subsection 3.2).
For in-domain experiments, the models are tested
on the same set of attributes, while for out-of-
domain on the new attributes introduced by hu-
man annotators. After removal of rare attributes
and merging of synonyms, the out-of-domain set
consists of 41 unique attributes.

Results: As shown in Table 2, the best per-
forming models in-domain are the multi-attribute
prompt models. The performance difference be-
tween the multi-attribute models and the zero-
prompt baseline shows that the verbalization of
attributes has a positive impact on performance,
which is further supported by our findings in sub-
section 6.1. Furthermore, our models beat the GPT-
2 model, proposed by Tandon et al. (2020) along
with the Open PI dataset. This model generates
sentences describing entity state changes but, un-
like our models, does not verbalize the attributes.
Finally, we observe a drop in performance for both
T5 and RoBERTa single-attribute prompt, which
confirms that attribute dependencies are important
in our task.

Despite its good performance in previously seen
attributes, the zero-prompt model cannot classify
out-of-domain attributes because its output is a
fixed-dimension binary vector. The best out-of-
domain performance is achieved by RoBERTa
single-attribute, followed by TS k-attribute prompt.

We observe that, despite the very low out-
of-domain performance of the TS5 all-attribute
prompt model, the other two variants of the same
prompting technique (GPT-3 all-attribute and TS k-
attribute) perform competitively. This confirms our
hypothesis that fine-tuning with a fixed query hurts

the generalization properties of the model, some-
thing that can be avoided with few-shot learning
or by shifting focus to different attributes during
training (i.e., single-attribute or k-attribute).

6 Discussion

We further study the models’ behavior with respect
to the type of attributes they see and their general-
ization properties. This analysis serves to uncover
advantages and disadvantages of each technique
and suggest promising methods for future work to
enhance both model performance and robustness.

For all our experiments we use Open PI. Due to
its greater diversity of attributes and larger size, it
is a better candidate than PiGLET to analyze the
limitations of the models.

6.1 Reasoning with Rare Attributes

Since some attributes are significantly more fre-
quent than others, fine-tuned models have been
exposed to more data about them, which influences
performance. For example, performance across all
fine-tuned models for the most frequent attribute
location is substantially higher compared to other
attributes (F1 = 0.65-0.75). Although most mod-
els are expected to perform well on such high fre-
quency attributes, our analysis provides useful in-
sights on the models’ ability to learn reasoning
patterns in limited-data scenarios.

We study per-attribute model performance based
on each attribute’s frequency in training data for
the three prompting techniques: RoBERTa zero-
prompt, RoBERTa single-attribute, and T5 all-
attribute. After clustering each attribute with re-
spect to its frequency and its F1 score, we ob-
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Figure 3: Performance per attribute frequency in train-
ing data. Each bar shows the weighted-F1 score across
all attributes in the same frequency category.

RoBERTa, RoBERTa, TS,
zero-prompt  single-attribute  all-attribute
Spearman
. = U. 2 =Vu. = V. ]
correlation p=038 p=0.80 p=03

Table 3: Spearman correlation between attribute fre-
quency and F1 score. High correlation means the model
learns primarily high-frequency attributes. All results
have p-value < 0.001.

serve four distinct clusters: low (<100 instances),
medium-low (100-400), medium-high (400-1000)
and high (>1000) frequency. In Figure 3 we plot
the weighted-F1 score per cluster for the three mod-
els. Our first observation is that performance across
all models increases for attributes with higher fre-
quency. This conclusion is also supported by the
per-attribute Spearman correlation between perfor-
mance and frequency, shown in Table 3. This con-
firms our hypothesis from PiGLET that LLMs can
learn physical interactions and achieve higher per-
formance when there is sufficient labeled data to
fine-tune on.

Our second observation is that, although perfor-
mance in high-frequency attributes is similar across
all models, it significantly drops for RoBERTa zero-
prompt when frequency decreases. This shows
that the model struggles to learn with fewer ex-
amples. This difference is most striking in the
low-frequency cluster, where the model learns
nothing (F1 = 0.0). On the other hand, both
RoBERTa single-attribute and TS5 all-attribute have
relatively high performance in low-frequency at-
tributes, where some attributes are easier to learn
than others. This supports one of our main hypoth-
esis in this paper that, by verbalizing and querying
specific attributes, models pay attention to each

60

o F1 Precision Recall

55 <

50 [’f

40 t t t t

Figure 4: F1, Precision, and Recall scores as a function
of the number of attributes used in the prompt during
evaluation for the k-attribute model

attribute and learn reasoning patterns, a crucial
step in limited-data scenarios.

6.2 Prompt Diversification via the k-attribute
Prompt Model

Through manual inspection we find that the all-
attribute models have an inherent bias towards gen-
erating attributes that appeared in the training data,
even when prompted with new ones. Their perfor-
mance is in fact poor in the out-of-domain setting
(2.2 F1, Table 2). Now the question is whether
this is a limitation of the reasoning abilities of the
multi-attribute models or a bias introduced by its
training scheme.

We propose the k-attribute model to alleviate
training biases by randomizing the queried at-
tributes. Notably, this model still maintains the
core assumptions behind the multi-attribute prompt
model of querying multiple attributes at once. We
observe that this simple technique results in the
same in-domain F1 score as the all-attribute prompt
model, while significantly improving its out-of-
domain performance. This shows that the observed
limitations with the all-attribute prompt model are
due to training biases that prevent the model from
generalizing to unseen attributes.

Once trained, the k-attribute prompt model can
be queried with varying number of attributes. In
Figure 4, we plot the performance of the model
as a function of the number of attributes used in
the query during evaluation. We observe a drop in
performance when the model is queried with a sin-
gle attribute (similar to the single-attribute prompt
models). The performance is highest around 10
attributes and drops slightly beyond that. We also
observe that by varying k, we can modulate pre-
cision and recall, suggesting that there are both
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lower and upper bounds on the optimal number of
attributes that LLMs can consider at once.

We also experimented by grouping attributes in
a prompt based on their semantic similarity, but
this did not yield any significant changes in perfor-
mance. We leave it to future work to investigate
further how to optimally choose the groups to use
in a prompt during training and inference.

6.3 Semantic Similarity and Generalization

A major obstacle for NLP models is to apply the
reasoning patterns they have learned to unseen at-
tributes. Although the overall performance is lower
in out-of-domain (best F1 = 23.5) compared to in-
domain experiments (best F1 = 51.4), we observe
that it varies significantly across different attributes.
In this part of our analysis, we investigate the mod-
els’ generalization abilities to out-of-domain at-
tributes, based on their relation to in-domain at-
tributes.

Essentially we identify two types of out-of-
domain attributes: (1) these that are semantically
similar to some in-domain attribute(s), and (2)
these that have no similarity to any in-domain at-
tribute. These two groups of attributes also evaluate
the degree of the model’s generalization abilities, as
it is easier to generalize to different verbalizations
of a previously seen attribute than to a completely
new concept. For this part of the analysis we use
the RoBERTa single-attribute prompt model, as it
has the best out-of-domain performance.

To identify related attributes, we firstly use co-
sine similarity distance on top of an encoder trained
for semantic similarity (Reimers and Gurevych,
2019). After manual curation, we identify 21 out-
of-domain attributes that are closely related to in-
domain attributes (Group Matched), as we see in
Table 7. The 20 remaining out-of-domain attributes
are more dissimilar and do not have matching in-
domain attributes (Group Dissimilar).

For each of the two groups (Group Matched and
Group Dissimilar), we estimate the weighted-F1
score. We observe that Group Matched reaches
F1 = 29.4, while Group Dissimilar F1 = 13.6. For
Group Matched, we also verify that the model’s
performance on closely related attributes is similar
by measuring their Pearson correlation, which is
r = 0.67 (p-value < 0.05). Both results indicate
that the model understands the semantics of the
attributes despite different verbalizations, however,
it struggles with more complex reasoning mecha-
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Figure 5: F1 scores per attribute semantic type.

nisms, such as applying the acquired patterns to
entirely new attributes.

6.4 Challenging Semantic Types

In this part of our analysis, we explore why some
classes of physical attributes appear to be inher-
ently more difficult for LLMs. More specifically,
we manually design an ontology of attributes into
seven major semantic types and then group each
in-domain and out-of-domain attribute according
to the information it encodes, as seen in subsec-
tion A.6. Via this analysis we aim to identify eval-
uate each semantic type with respect to: (1) in-
domain performance, and (2) generalization to un-
seen attributes. For this analysis we use RoOBERTa
single-attribute prompt, as it has the best out-of-
domain performance.

Figure 5 shows that the model particularly strug-
gles to predict attributes of the Quantifiers and
Temporal semantic types (in-domain). These at-
tributes are known to be challenging for current
LLMs (Ravichander et al., 2019).

We further observe that the Entity-specific and
Material semantic types are equally challenging
for both in-domain and out-of-domain attributes.
These semantic types describe inherent properties
of an entity, such as fullness, that can only change
due to very specific events, such as put X into
Y. On the other hand, the Spatial and Behavioral
types show a large discrepancy between in-domain
and out-of-domain performance. This is surpris-
ing given that these semantic types contain high-
frequency attributes, like location. This highlights
the limitations of current models to predict physical
changes outside of controlled environments.

6.5 Error Analysis

To identify the cause of low out-of-domain perfor-
mance and study the models’ generalization abil-
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ities, we perform a manual error analysis of out-
of-domain outputs from the best performing mod-
els: TS k-attribute and RoBERTa single-attribute
prompt.

We identify four major types of errors indicating
a varying degree of understanding of context and
entities involved. The results of this analysis are
shown in Table 4.

False negatives: correct predictions that are miss-
ing from the annotations. This error type does
not reflect a failure of the models, but rather of
the dataset which was crowd sourced. Since out-
of-domain attributes were introduced by workers
on Amazon Mechanical Turk, each annotator may
introduce attributes that were not considered by
others while annotating different instances. This
is particularly prominent among similar concepts,
such as width and size, which oftentimes change
together. As we see in Table 4, false negatives
are responsible for 41.5% of errors made by T5
k-attribute prompt and 25.4% of those made by
RoBERTa single-attribute. This highlights that the
gap between out-of-domain and in-domain perfor-
mance is narrower than what our automated evalu-
ation showed.

False negative errors can be divided into two
subcategories. The first category accounts for
predicted attributes that are synonyms of the
annotated attributes and could replace them in
the particular instance. The second category
comprises predicted attributes that significantly
differ but complement the annotated attributes,
such as flexibility and size. We found that the first
category of synonyms is responsible for 53% (T5
k-attribute prompt) and 44% (RoBERTa single-
attribute) of the instances with false negative errors.

Wrong context: predictions that could be correct
for the given entity, but incorrect given the context.
This error represents the models’ challenges with
respect to event implications and reasoning.

Wrong entity: wrong attribute change predictions
for the given entity in any context. This is the
most severe error since it shows that the model
is not able to link the attributes to the entity.
While this error is very rare for the TS k-attribute
model (only 2.7%), it is frequent for the ROBERTa
single-attribute model (20.7%).

No prediction: instances with null predictions.
This is the most frequent error type for both

Error Type TS RoBERTa
k-attribute single-attribute

False negatives 41.5% 25.4%

Wrong context 7.6 % 6.5%

Wrong entity 2.7% 20.7%

No prediction 48.2% 47.4 %

Table 4: Error categories and prevalence of each cate-
gory as a percentage of the number of instances. Based
on out-of-domain attributes. Wrong context implies the
prediction could be correct for the given entity but is
incorrect in the given context. Wrong entity means the
attribute change does not apply to the given entity in
any context.

models, accounting for almost half of the errors.
This error occurs when the model decides that
there is no attribute change from the given list of
attributes, which results in a significant drop in
recall. This highlights that both models struggle
to identify which out-of-domain attributes are
relevant to a particular context and entity.

7 Conclusion

Predicting physical changes due to events is a chal-
lenging problem for current models, especially
in out-of-domain or limited-data scenarios. We
show that, by using proper task formulation, LLMs
can learn physical event implications even without
physical interactions. Future work should explore
the question of whether physical interactions are
necessary in more complex and realistic settings,
by (1) providing more challenging datasets that test
the model limitations, and (2) ensure a fair compar-
ison of the language-only baselines.

Furthermore, we show that the performance of
a LLM may significantly vary based on how we
use it, and, overall, LLMs can benefit from: (1)
verbalizing the attributes, (2) varying the prompt
information content across instances, and (3) query-
ing multiple attributes in the same instance. By
following these guidelines, we show significant im-
provements in unseen attributes and attributes of
low-frequency. Last, our error analysis and dis-
cussion sections provide useful insights for future
work, with respect to prompt content and short-
comings of the current datasets that study physical
event implications.
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9 Limitations

Computing resources The different prompting
methods have trade-offs in terms of computational
costs. In particular, the all-attribute and zero-
attribute query all changes at once. With the k-
attribute prompt, we query attributes in smaller
groups requiring on average #attributes/k times
more computations than for the all-attribute model
(in our case five times). The single-attribute model
encodes each attribute separately requiring #at-
tributes times more computations. We were un-
able to test GPT-3 for single-attribute because of
the cost of the larger number of queries it would
have required. The experiments that did not involve
GPT-3 were run on two NVIDIA K-80 GPUs with
12Gb memory.

Dataset limitations Given the complex nature
the event implication task, both datasets have sev-
eral limitations. PIGLET, which is based on a vir-
tual environment, has relatively simple language
that is not representative of naturally occurring text.
Furthermore, because it is a relatively small dataset
with respect to number of attributes and entities,
the training set covers a large subset of the possible
configurations in that virtual environment. This
explains the very high performance of all models.

Although Open PI does not suffer from such
limitations, we discovered several inconsistencies
in the annotations. These inconsistencies mainly
involve: (1) wrong attributes, (2) inconsistent la-
beling, and (3) duplication of attributes. Although
we manually edited several of these problems by
merging and filtering attributes, we could not ad-
dress the inconsistencies in labeling. This resulted
could have influenced model performance.

Automatic Prompt Generation In this work, we
did not explore whether prompts can be automat-
ically generated. There have been several recent
studies aiming at generating either discrete or soft
prompts (Shin et al., 2020; Lester et al., 2021).
In our case, the changes in information content
involved a deeper understanding of the task and re-
quired human involvement. As the field of prompt
generation matures, future work could investigate

automating the process of finding prompts with
variable information content.

Multi-task learning We do not directly explore
benefits from multi-task learning even though Raf-
fel et al. (2020); Wei et al. (2021) show that this can
significantly improve zero-shot and few-shot per-
formance. However, the GPT-3 model that we used
in our experiments is the Instruct GPT-3 model
which is the result of additional prompt-based fine-
tuning.
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A Appendix

Our experiments are built on top of the Hugging-
face library (Wolf et al., 2019).

A.1 Metrics

Our task is a multi-label classification where, given
some context and an entity of interest, we need to
identify which attributes change. For most pairs
context, entity, event implications affect only 1-2
attributes. This results in a few positive instances
(i.e., attributes that change) and a large number
of negative instances (i.e., attributes that do not
change). Furthermore, we observe that the number
of positive instances significantly varies across at-
tributes: for example, in the training set of Open PI,
location has 4505 positive instances, while distance
only 53. Due to the significant label imbalance, in
our experiments we report micro- Precision, Recall,
and F1 for the positive instances, across labels. In
addition to these metrics, we measure per-attribute
Precision, Recall and F1 for both datasets.

A.2 Hyperparameters

We performed hyperparameter search in the follow-
ing way. Based on the model size, we picked the
largest batch size that could fit on our GPUs. Then
we performed hyperparameter search on the dev set
(6 values in range [1073,107°]), label smoothing
(0, 0.1, 0.2) via grid search. We report in Table 5
the hyperparameters we use in each case. We used
the default values in the transformer library for the
rest. For TS5 we also varied the task prefix and its
position based on the relevant pre-training tasks,
without observing significant differences. We use
Adam with betas (0.9,0.999) and ¢ =1e-08 for T5
experiments. The runtime for each hyperparameter
combination in Open PI is: about 2 hours for multi-
attribute, about one hour for zero-prompt, about
two days for single-attribute (TS5 and RoBERTa
have similar runtime).

Data Model
PiGLET RoBERTa,

Epochs Batchsize Learning Rate Label Smoothing

zero-prompt 30 20 4e-05 0.0

T5 all-attr 50 32 3e-05 0.1
Open PI  RoBERTa,

zero-prompt 20 32 le-05 0.0

RoBERTa,

single-attr 6 16 le-05 0.1

TS5 single-attr 8 16 5e-05 0.1

TS all-attr 8 16 5e-05 0.1

T5 k-attr 10 16 5e-05 0.1

Table 5: Hyperparameters

To verify that model size differences do not

impact our results, we also did experiments
with RoBERTa-base zero-prompt, which shows
very similar performance to RoBERTa-large zero-
prompt.

A.3 In-domain Attributes and their

Frequency
Attribute Train Dev Test
location 4505 360 803
cleanness 1255 117 167
wetness 1211 80 215
temperature 1184 91 184
weight 1073 84 124
fullness 694 62 122
volume 676 56 174
composition 662 48 90
shape 538 55 65
texture 515 34 74
knowledge 409 27 119
orientation 330 15 45
color 292 13 33
size 264 26 50
power 245 11 18
organization 242 14 37
motion 242 15 33
ownership 212 6 19
availability 195 30 63
step 171 8 13
speed 151 3 18
pressure 148 4 14
taste 145 8 14
length 122 9 17
electric conductivity 121 9 18
smell 120 7 43
sound 68 6 6
brightness 65 0 7
thickness 64 4 16
strength 64 2 14
hardness 63 5 10
skill 62 3 4
openness 55 2 16
coverage 54 3 7
stability 54 6 14
focus 53 4 5
cost 53 6 9
distance 53 0 11
appearance 44 8 8
complexity 44 1 5
amount 40 3 16

Table 6: Attribute occurrences in training, validation,
and test sets.
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A.4 In-domain performance, per-attribute

In Figure 6 we show the in-domain F1 score per
attribute for RoOBERTa zero-prompt and TS multi-
attribute prompt models in Open PI. The attributes
are sorted according to their frequency (decreas-
ing).

We observe that ROBERTa zero-prompt com-
pletely ignores all attributes with less than 150
instances. Furthermore, the only attributes that
RoBERTa zero-prompt performs better are loca-
tion, cleanness, temperature, size and power. Al-
though for 4/5 of these attributes the difference in
F1 score between the two models is marginal, the
fact that 3/5 belong to the most frequent attributes
(more than 1000 instances) influences the overall
micro-F1.
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Figure 6: F1 score per attribute for ROBERTa zero-
prompt and TS5 multi-attribute prompt models in Open
PIL

A.5 Semantically Similar Attributes

In Table 7 we show for every out-of-domain at-
tribute, the most semantically similar in-domain
attribute. This list contains only out-of-domain at-
tributes that had a synonym from the in-domain
group (Group Matched). This group was formed
after manual inspection of the automatically gener-
ated synonym pairs.

Out-of-domain In-domain
attribute synonym/antonym
activity motion
angle orientation
area shape
balance weight
capacity amount
consistency stability
contents composition
direction orientation
flexibility stability
granularity composition
height length
hydration wetness
intensity brightness
quantity amount
safety speed
softness hardness
tenseness pressure
tension pressure
thermal conductivity electric conductivity
tightness pressure
width length

Table 7: The most semantically similar in-domain at-
tribute, each out-of-domain attribute.
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Semantic Cluster

In-domain Attributes

Out-of-domain Attributes

location, volume, shape, orientation,

angle, direction, area, height, width,

Spatial . . . . .
size, length, distance, organization pose, posture, spacial relation
. .. tenseness, tension, tightness,
texture, electric conductivity, . e
. . softness, material, flexibility,
Material thickness, hardness, strength,

pressure

thermal conductivity, density,
granularity

Entity-Specific

cleanness, wetness, fullness,
ownership, openness, cost,
composition, coverage, focus

contents, wholeness, capacity,
hydration, consumption,
documentation, emotional state,
pain, usage

knowledge, speed, motion, stability,

activity, balance, consistency,

Behavioral . . safety, familiarity, exposure,
complexity, skill L .
viability, resistance
Quantifier amount intensity, quantity, magnitude
Temporal availability age, life, existence, time
. R color, taste, temperature, smell, sound,
Sensory Perception  visibility

appearance, weight, brightness

Table 8: Semantic clusters of attributes, both in-domain and out-of-domain.

A.6 Semantic Clusters of Attributes

Table 8 shows the semantic clusters of attributes
which are the result of agglomerative clustering and
manually curation of in-domain and out-of-domain
attributes. These clusters help better understand
our attributes and performance based on their se-
mantics. The clusters were used in Section 6.3.

A.7 OpenPI Real Examples

Examples from out-of-domain with model pre-
dictions from the TS5 k-attribute prompt and the
RoBERTa single-attribute prompt models. In many
instances the predicted attribute is correct, but the
annotations fail to reflect this.

In Table 9, we show some real instances that
we used in our error analysis. Although for
each instance all the out-of-domain attributes were
queried, for brevity we only show attributes that
were identified as changed by either model or by
the annotations. We observe that in many of these
examples the models predict attribute changes that
are correct, despite not being captured by the an-
notations. Such cases are Example 2, Example 4
and Example 5, where the T5 k-attribute prompt
correctly predicts attributes that were not identified
by the annotators. These attributes are not neces-
sarily related to the annotated attribute, such as
width and resistance in Example 2, or hydration
and softness in Example 4. However, some other
instances may have predicted attributes that are
closely related to the annotated attribute, as we see
in Example 1, where posture and angle oftentimes
change together.

Our final observation from Table 9 is that the
models are able to correctly predict attributes that
require some common sense knowledge, which
was not part of the provided context. For exam-
ple, T5 k-attribute prompt predicts in Example 4
that soaking beans implies that softness changes,
something that is not as an obvious conclusion as
the change of hydration. Even more, in Example
5 we observe that the model is able to understand
the intent of the paragraph, which is to change the
softness of lips. These examples show that the TS
k-attribute prompt model is able to perform some
degree of reasoning, even for predictions that were
considered wrong due to missing annotations.
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Example 1

Context: Begin by standing in Mountain Pose. Bend your right leg back and hold
on to the inside of your foot behind you with your right hand.

TS5 k-attribute prompts: Consider the following attributes: flexibility, angle,
hydration, consumption. Which attribute changed for the person?
RoBERTa single-attribute prompts: Is the flexibility of the person different?

Is the viability of the person different?

Entity: person
Annotated Attributes: balance

T5 k-attribute output: posture, flexibility,
angle, pose
RoBERTa single-attribute output: No
Yes

Example 2
Context: Cut off a corner of a yeast packet.

T5 k-attribute prompts: Consider the following attributes: contents, angle,
width, resistance, softness. Which attribute changed for the packet?
RoBERTa single-attribute prompts: Is the width of the packet different?

Is the resistance of the packet different?

Entity: packet
Annotated Attributes: resistance

T5 k-attribute output: contents, width

RoBERTa single-attribute output: Yes
No

Example 3
Context: Drink a glass of hot milk.

T5 k-attribute prompts: Consider the following attributes: contents, hydration,

thermal conductivity. Which attribute changed for the body?

RoBERTa single-attribute prompts: Is the thermal conductivity of the body different?
Is the hydration of the body different?

Entity: body
Annotated Attributes: thermal conductivity

TS5 k-attribute output: thermal conductivity

RoBERTa single-attribute output: No
Yes

Example 4
Context: Soak the dried beans and lentils overnight in a large bowl.

TS5 k-attribute prompts: Consider the following attributes: softness, contents,

granularity, hydration. Which attribute changed for the beans?

RoBERTa single-attribute prompts: Is the hydration of the beans different?
Is the softness of the beans different?

Entity: beans
Annotated Attributes: hydration

T5 k-attribute output: softness

RoBERTza single-attribute output: No
No

Example 5

Context: Take the honey and mix it with the sugar, then add in a little bit of Vaseline or
petroleum jelly. When the mixture is all gritty, apply it on to your lips as you would with
lip balm. Leave on the mixture for about one minute.

TS k-attribute prompts: Consider the following attributes: softness, pain,
granularity. Which attribute changed for the lips?
RoBERTa single-attribute prompts: Is the softness of the lips different?

Is the granularity of the lips different?

Entity: lips
Annotated Attributes: granularity

TS k-attribute output: softness, pain

RoBERTa single-attribute output: No
No

Table 9: Examples from out-of-domain and model predictions for the TS5 k-attribute prompt and the RoBERTa
single-attribute prompt models.
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