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Abstract

Conversational understanding is an integral part
of modern intelligent devices. In a large frac-
tion of the global traffic from people using
smart digital assistants, frictions in dialogues
may be attributed to incorrect understanding
of the entities in a user’s query due to factors
including ambiguous mentions, mispronunci-
ation, background noise and faulty on-device
signal processing. Such errors are compounded
by two common deficiencies from intelligent
devices namely, (1) the device not being tai-
lored to individual users, and (2) the device
responses being unaware of the context in the
conversation session . Viewing this problem via
the lens of retrieval-based search engines, we
build and evaluate a scalable entity correction
system, PENTATRON. The system leverages a
parametric transformer-based language model
to learn patterns from in-session user-device
interactions coupled with a non-parametric per-
sonalized entity index to compute the correct
query, which aids downstream components in
reasoning about the best response. In addition
to establishing baselines and demonstrating the
value of personalized and context-aware sys-
tems, we use multitasking to learn the domain
of the correct entity. We also investigate the
utility of language model prompts. Through
extensive experiments, we show a significant
upward movement of the key metric (Exact
Match) by up to 500.97% (relative to the base-
line).

1 Introduction

Intelligent devices are ubiquitous in the modern
computing. The scientific modules that drive these
devices involve conversational understanding, am-
bient computing, natural language reasoning and
self-learning (Thoppilan et al., 2022; Sarikaya,
2022; Pinhanez et al., 2021; Liu et al., 2021). A
user’s interaction with a device, however, is suscep-
tible to errors arising from a myriad of sources
including wrong pronunciation, inaccuracies in

∗∗Equal contribution.

the subject mentions in a sentence, environmen-
tal noise, hardware and software error (Kim et al.,
2020). Correct interpretations of user queries, espe-
cially entities, is central to delivering the best user
experience. Two important factors that contribute
strongly to high-precision entity recognition are
(1) personalization, ie, learning users’ unique pat-
terns, and (2) contextualization, ie, deriving cues
from the information in a user-device interaction
session. In this paper, we design and evaluate an
entity correction system, PENTATRON, with both
personalization and contextualization baked into
its architecture.

Figure 1: (Above) One multi-turn dialogue session with
defective source query which contains one erroneous
entity ‘wallace’ and its successful rephrase with correct
entity ‘wallows’. (Below) Concatenation of queries and
responses using special tokens to form a single sequence
as encoder input.
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1.1 Motivation

In Figure 1, we illustrate a real-world case as to
why personalization and contextualization are very
important, especially due to the specificity in highly
entity-centric domains such as music. In this case,
masking the very last device response, we observe
that there is valuable information scattered across
the user’s requests in the session yet, the device de-
livers sub-par experience by responding defectively
multiple times before finally getting the user’s in-
tent right.

1.2 Notation and Preliminaries

Definition 1. Let integer γ satisfy 1 ≤ γ < ∞.
A natural language (NL) hypothesis is a mapping,
h : Q → D × I × [E]γ , where Q refers to the
query space, D refers to the domain space, I refers
to the intent space and E refers to the entity space.
The entity space, E := ET × EV , may further be
decomposed into the entity type space ET and the
entity value space EV . All spaces are defined over
Unicode strings.

As an example, given a query string q =“play the
real slim shady”, the corresponding NL hypothesis
is h(q) =(Music, PlayMusicIntent, [(SongName,
the real slim shady)]) where the domain is Music,
the intent is PlayMusicIntent, and the entity value
is the real slim shady with SongName entity type.

Definition 2. Building on Definition 1, our system,
PENTATRON, may be formalized as Φ : (C,Q) →
EV where C is the user space (anonymized using
a hash function, for privacy, in practice).

In a nutshell, given an input query q (with or
without dialogue context), our system essentially
solves the optimization problem,

min
θ

E(c,q,e)∼D [ℓ (Φθ(c, q), e)] (1)

where D is supported on C ×Q× EV .

1.3 Our Contributions and Preview of Results

On the system design front, we build a retrieval-
based pipeline. Our model backbone is inspired by
attention-based (Vaswani et al., 2017) transformer
encoders (Devlin et al., 2018). We achieve per-
sonalization via a non-parametric index which is
essentially a key-value pair look-up table with the
keys representing users and values representing
the entity lists derived from historical data aggre-
gation. With respect to experimental results, we

Figure 2: Preview of the system performance which
shows consistent significant improvement in going from
a purely personalized system (N) to a fully contextual
personalized system (CC). Further details are available
in Table 1.

conduct extensive studies on seven different ver-
sions of PENTATRON, involving ablations with
prompts, multi-tasking and non-contextual train-
ing data, and show consistent improvements in Ex-
act Match (EM) of up to 500.97% (relative to the
baseline) as captured by the preview of results in
Figure 2.

2 Background and Related Work

2.1 Query Rewriting
Query Rewriting (QR) in dialogue systems aims
to reduce frictions by reformulating the automatic
speech recognition component’s interpretation of
users’ queries. Initial efforts (Dehghani et al., 2017;
Su et al., 2019) treat QR as a text generation prob-
lem.

Some recent studies (Chen et al., 2020; Yuan
et al., 2021; Fan et al., 2021; Cho et al., 2021) are
based on neural retrieval systems. In the retrieval-
based systems, the rewrite candidate pool is aggre-
gated from users’ habitual or historical queries so
that the rewrite quality can be tightly controlled.
Compared to generation-based systems, retrieval-
based systems may sacrifice flexibility and diver-
sity of the rewrites, but in the meanwhile provide
more stability which is more important in a runtime
production setup.

Personalization and Contextualization are two
popular directions for QR systems. A personalized
system such as Cho et al., 2021 tends to incorpo-
rate diverse affinities and personal preferences to
provide individually tailored user experience in a
single unified system. Contextualization attempts
to utilize multi-turn queries rather than only lever-
aging single-turn information. Some previous stud-



92

ies (Wang et al., 2021) have shown the benefits
by leveraging the dialogue context and user-device
interaction signals.

Entities have been shown to be a strong indicator
of text semantics. Since queries in our dialogue
system are typically short sentences, entities are
even more important in this scenario. Most existing
QR approaches mentioned above rephrase query
utterances entirely. Although some existing works
focus on specific categories like coreference resolu-
tion or entity omission (Su et al., 2019; Tseng et al.,
2021), none of them has a particular emphasis on
the correction of erroneous entities.

2.2 Entity Linking
Another related thread towards our task is entity
linking. Entity linking task aims to link mentioned
entities with their corresponding entities in a knowl-
edge base. In a retrieval-based QR system which
focuses on entity correction, we could adopt similar
methods in entity linking area. BLINK(Wu et al.,
2019) designs a two-stage retrive-rerank framework
based on pre-trained deep transformers. The fol-
lowing work ELQ (Li et al., 2020) uses a biencoder
to jointly perform mention detection and linking
in one pass and also shows good improvement in
latency metrics which is quite important in a pro-
duction settings. Our task is more challenging than
entity linking because the input utterance is noisy
with incorrect entities and the lack of textual de-
scriptions of each entity.

3 Problem Setup and Solution Design

The overall architecture of the PENTATRON sys-
tem is described in Figure 3.

Figure 3: For a given user, the input request string from
the PENTATRON orchestrator is processed by a trans-
former model and also by a named entity recognition
model, both trained on historical user requests, to en-
code the request and extract mentions, respectively. A
semantic search is applied on the request embeddings
and the precomputed entity embeddings of the user to
find the best match following which, post-processing is
applied to feed the result into downstream components.

3.1 Entity Correction in Query Rewriting
We consider a dataset of M multi-turn dialogue
sessions: {St}Tt=1. S is a set of T turns in chrono-
logical order: S = {(qt, rt)}Tt=1. Here t is the in-
dex of turn and each turn consists of a pair (qt, rt),
where qt denotes the user’s query utterance and rt
denotes the device’s response utterance. The ses-
sions are selected so that the source query qT−1

contains one erroneous entity and qT , which has
the correct form of entity e, is the rephrase of the
previous turn. More details about the data selection
is described in Section 4.1. Our prediction goal is
formulated as:

ê = argmax
e

P(e | {St}T−2
t=1 , qT−1) (2)

q̂T = g(qT−1, ê) (3)

We flatten the previous dialogue turns {St}T−2
1

and the source query qT−1 into a single sequence to
feed into the encoder, as shown in Figure 1. Since
the only difference between qT−1 and qT is whether
we have the correct form of e, the final rewrite is
generated based on source query qT−1 and entity
prediction ê through a simple replacement function
g.

3.2 Personalized Entity Index
We build an personalized entity index for each user
to leverage individual interaction history by aggre-
gating users’ frequent entities in past 30 days1. The
entities include song names or artists that users fre-
quently listened to, nicknames of users’ intelligent
devices and so on.

This index serves as the retrieval candidate pool
during inference time. The candidate embeddings
are cached. We implement a two-stage in-memory
index that has a map of users to their specific enti-
ties along with the embeddings corresponding to
the union of entities across all users. This is done
for memory efficiency reasons so that we avoid the
overhead caused by the redundancy of duplicate
entities across different users.

3.3 Modeling
We use a bi-encoder architecture based on
MiniLM (Wang et al., 2020) for jointly encoding
the queries and the entities (Humeau et al., 2019).
The weights are shared for memory footprint sav-
ings and serving cost reduction. Note, we also try
asymmetric query and candidate entity encoders;

1All user information is in a de-identified format.
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however, we observe only a marginal performance
improvement of less than 1%. We use a batch size
of 128 and train it on p3.2x-large GPU instances
acquired on AWS cloud. AdamW (Loshchilov and
Hutter, 2017) is our optimizer of choice.

For detecting mentions in the input query, we
use a Spacy named entity recognition model trained
on historical user queries containing entity strings
from different domains.

3.4 Optimization Objectives

A combination of both hard negatives (Gillick et al.,
2019) and in-batch random negatives improve the
performance of large-scale natural language reason-
ing systems. We use the multiple negatives rank-
ing loss (Henderson et al., 2017) for the primary
task. We take a metric learning approach (Hadsell
et al., 2006) to the auxiliary task, ie, we use the
contrastive loss here.

Inference: The semantic search function which
is used in primary retrieval task computes si =
cos(f(q), f(ei)) for i ∈ [k] where ei ∈ EV are
the top-k entities retrieved from the personalized
index (sorted by the relevance score in descending
order) and q refers to the query (with or without
context). We configure our system to be activated
on the threshold conditions, s1 > τ1 and s2 < τ2,
to make sure the top-2 entities are sufficiently far
apart to avoid any ambiguous predictions.

Training: The encoder model of the PENTA-
TRON system is trained with the primary task of
entity prediction, which we maximize the similar-
ity score between the user query (with or without
context) and the target correct entity. Consider a
batch of N samples. The loss of the primary task
is given by:

LE = − 1

N

N∑
i=1

log
exp(si)∑N
j=1 exp(sj)

(4)

In the above formula, we only take in-batch random
negatives into consideration. We will also discuss
the utilization of hard negatives later in this paper.

We adopt an auxiliary task during training to
have an implicit clustering effect of the query em-
beddings based on target domain. For this task,
we want to push source queries targeting to the
same domain close to each other and source queries
targeting to the different domain away from each
other.

For N randomly selected pairs of queries (in-
dexed by i and j) from a batch, the loss of the
auxiliary task is the contrastive loss given by:

LD =
1

N

∑
(i,j)

1{hD(qi) = hD(qj)}.

∥f(qi)− f(qj)∥2

+
1

N

∑
(i,j)

1{hD(qi) ̸= hD(qj)}.

max(0, λ− ∥f(qi)− f(qj)∥2) (5)

The margin parameter λ is set as 0.75. Here, hD de-
notes the domain extracted from the NL hypothesis
of the target (final) dialogue turn.

Multi-task Formulation: The final loss is com-
puted as µLE + (1 − µ)LD where µ ∈ (0, 1].
Specifically, we build different versions of PENTA-
TRON by setting µ = 1 and µ = 0.5.

We train two single-task models which are used
as the non-contextual and contextual baselines re-
spectively. The non-contextual baseline model uses
the source query as input and the rewrite entity as
output. The contextual baseline model uses the full
context (truncated to maximum allowable length of
256) as input and the rewrite entity as output.

Furthermore, we train another five versions PEN-
TATRON with multi-task settings. We also inves-
tigate the usage of task markers similar to the ap-
proach in Maillard et al., 2021. The (hard) prompts
are added as special tokens [REWRITE] and [DO-
MAIN] before the corresponding input during train-
ing. More details are presented in Table 1

Hard Negatives Mining: First, we use bm25
(Robertson et al., 2009) to mine hard negatives
from the candidate pool, which shows minor im-
provement. Hence, we adopt a two-pass method to
compute hard negatives. In the first pass, we use a
model trained with random negatives to perform in-
ference on a disjoint “second” training set to obtain
entity predictions. In the second pass, we continue
training the previous baseline model checkpoint
and take into account the wrong predictions as hard
negatives.

4 Experiments

4.1 Training and Test Data
Our data is derived from the logs of a commercial
voice assistant and we process the data with strict
privacy standards so that users are not identifiable.
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Model Primary Task Auxiliary Task Exact Match (Relative)
DPR-EC Non-contextual None 0.0 [Baseline]

PENTATRON-N Non-contextual None +432.11%
PENTATRON-NN Non-contextual Non-contextual +438.86%
PENTATRON-NC Non-contextual Contextual +442.76%
PENTATRON-NNP Non-contextual Non-contextual with prompt +453.82%
PENTATRON-NCP Non-contextual Contextual with prompt +454.47%
PENTATRON-C Contextual None +484.14%
PENTATRON-CC Contextual Contextual +500.97%

Table 1: List of all model settings and their performance numbers (relative, with respect to the baseline, DPR-EC).
The primary task is entity prediction using the multiple negative ranking loss with a batch size of 128 and the
auxiliary task uses the online contrastive loss with a margin of 0.75. We apply the state-of-the-art retrieval model,
DPR (Karpukhin et al., 2020), to train a dual BERT architecture, DPR-EC, for entity correction as the baseline, i.e.,
without utilizing personal and contextual information.

We sample multi-turn dialogue sessions between
English-speaking users and devices in a time pe-
riod of one month, in May-June 2022, from all over
the United States. A defect detection model similar
to (Gupta et al., 2021) and rule-based filters are
applied to find dialogue sessions whose last two
turns of user query are rephrase pairs. Rule-based
filters are using edit-distance and time gap between
utterance pairs similar to (Cho et al., 2021). Since
our work has a particular emphasis on the correc-
tion of erroneous entities, we also utilize the NL
hypothesis of the rephrase pairs to get such cases.
For simplicity, we consider data with only a single
erroneous entity as the target to be predicted. It
is straightforward to generalize our system to the
multiple entities case.

We sample the test set and keep only sessions
wherein a retrieval-based system such as (Cho et al.,
2021), which rephrases query utterances entirely,
couldn’t solve. For training, a sample of two mil-
lion utterances was extracted. Also, some (com-
pletely generic) example dialogs extracted from
critical data are reported in the paper (Table 2).

Figures 4 and 5 summarize the keys data statis-
tics on the training and test sets. This gives us an
insight into how transformer models stand to bene-
fit from longer sequences in our application since
they are parameterized by and compute second-
order statistics.

4.2 Evaluation Metrics

We utilize the harshest metric to evaluate our sys-
tem namely, the Exact Match (EM). This score is 1
if the predicted rewrite exactly matches the labeled
rephrase, and is 0 otherwise. We use the same

Figure 4: Query length statistics of contextual training
and test data.

Figure 5: Query length statistics of non-contextual train-
ing and test data.

threshold τ1 and τ2 for all the proposed PENTA-
TRON models. The threshold is experimentally set
up to keep the balance between opportunities and
potential risks in real production.

4.3 Observations and Case-studies
Table 1 shows the main results of our different ver-
sions of systems. The experimental result is consis-
tent with our intuition. Since the pipeline has also
actually been run on live traffic, through an A/B ex-
periment (section 4.4), the baselines were created
for the purpose of this paper. All the PENTATRON
models benefit from a personalization settings and
outperform a global-wise retrieval model DPR-EC
by a large margin. Among different settings of
PENTATRON, it’s obvious that both contextualiza-
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Dialogue Context

[USER] Turn on ben’s light.
[DEVICE] I’m sorry I couldn’t find the device.
[USER] Turn on benny’s light.
[DEVICE] Okay.

[USER] Play calen playlist.
[DEVICE] I could not find that on Amazon Music.
[USER] Play scars.
[DEVICE] Here’s Scars , by James Bay , on Amazon Music.

User Query Turn ben’s light on pink Play playlist karen
Rewrite Label Turn benny’s light on pink Play playlist callen
DPR-EC Turn brecken’s light on pink ✗ Play playlist cameron ✗
PENTATRON-N Turn britney’s light on pink ✗ Play playlist carrie ✗
PENTATRON-C Turn benny’s light on pink ✔ Play playlist carrie ✗
PENTATRON-CC Turn benny’s light on pink ✔ Play playlist callen ✔

Table 2: Two examples to showcase the importance of full contextualization and personalization.

Figure 6: In this figure, we illustrate the importance of
contextual information and training with hard negatives
in boosting the performance of our system.

Figure 7: Performance of different versions of PEN-
TATRON with respect to different system activation
thresholds τ1 and τ2.

tion and multi-tasking bring further improvement.
There is also some gain by adding task markers in
the multi-task settings.

Figure 6 presents an ablation that shows the bene-
fits of hard negative sampling. To further stress test
our system, we also swept over different thresh-
olds, summarized in Figure 7. We could notice
that the general trend is consistent using different
thresholds.

In sweeping across thresholds in our empirical
studies (Figure 8), we observe interesting trends.
In particular, that when τ1 = τ2, the personalized
model that does not utilize contextual information
suffers from noisy predictions when the thresholds

are equal since the top-2 retrieved entities are se-
mantically very similar and the model finds it diffi-
cult to disambiguate. However, with the contextual
information, we see consistent improvements in
accuracy as we tighten thresholds.

Figure 8: Demonstrating the value of contextual infor-
mation with appropriate multitasking design.

We illustrate the benefits of our approach on
a generic dialog in Table 3. In the left example
from HomeAutomation domain, the device name in
the source query is incorrect which will make this
task-oriented dialogue system fail. PENTATRON-
C and PENTATRON-CC could generate the cor-
rect rewrite by leveraging dialogue context and
user’s personalized index which contains user’s
registered device name. A similar trend can be ob-
served in the right example from Music domain.
Besides, the right example also illustrates the bene-
fits from multi-task learning by comparing the pre-
diction from PENTATRON-C and PENTATRON-
CC. Both the video name ‘carrie’ and playlist
name ‘callen’ exist in user’s personalized index.
With the help of contrastive representation learn-
ing, PENTATRON-CC could learn to retrieve a
Music domain entity which is the correct one here.

Visualization: We analyze the benefits of our
design using t-SNE (Van der Maaten and Hinton,
2008). The results are presented in Figures 9 and
10. We clearly observe that multi-tasking enables
domain disambiguation via implicitly clustering the
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queries by domains, thus contributing positively to
entity prediction accuracy and, in turn, improving
the query rewrite quality. In particular, we observe
that Music, Video and Knowledge domains im-
mensely benefit from multi-tasking.

Figure 9: In the absence of the auxiliary task, queries
across domains are interspersed which leads to lower
accuracy due ambiguity in the rewrite domain. Here,
the blue cluster denotes Knowledge domain queries, the
orange cluster denotes Music domain queries and the
green cluster denotes Video domain queries.

Figure 10: Multi-tasking to predict the rewrite domain,
in addition to predicting the correct entity, leads to
higher accuracy due to domain disambiguation arising
from the implicit clustering effect.

4.4 Online Performance

A/B Experimentation: At the time of writing
this, we deployed a static (request, rewrite) look-
up table computed using PENTATRON-N to serve
real users. With a p-value < 0.05, we observe
a significant improvement, of 47.5%, in the user
experience measured using the model-based (Gupta
et al., 2021) assessment used for dataset selection in
Section 4.1 on the treatment group as compared to
the control group. Moreover, other friction metrics
such as the turn error rate have improved over 40%

throughout the A/B duration. Successive version
upgrade deployments are ongoing.

Latency: To investigate the deployment in a real-
time inference service, we performed extensive
load tests implemented with a Flask endpoint. We
store all objects in the main memory. On a c5.9x-
large instance on AWS cloud, at 120 queries per
second hitting the PENTATRON system, we ob-
served a P90 latency of less than 30ms for the end-
to-end execution.

5 Conclusions and Future Directions

In this work, we build a system called PENTA-
TRON which significantly improves user experi-
ence in intelligent devices by operating on entities
and reducing friction in multi-turn dialogues. There
are several future directions we plan to work on,
including operationalizing large-scale unbiased per-
sonalized and context-aware systems, and design-
ing self-learning (Ponnusamy et al., 2020; Roshan-
Ghias et al., 2020) using techniques such as rein-
forcement learning. We also plan to investigate
the utility of a multi-level index to improve entity
coverage and mitigate the cold-start problem for
new customers. Dynamic index building and de-
ployment in low-latency applications is an ongoing
direction.

Limitations

Our system has the following limitations. Though
personalization offers great benefits, the coverage
of desired entities in our historical index due to
personalization is typically limited. Specifically,
we observe only 20% coverage in our empirical
studies. This can alleviated using a multi-level
index involving clusters of users. We have initial
results on this approach and plan to compile that in
future work.

Next, natural language based prompts should
further improve our system. However, very long
sequence length has concerns with respect latency
and memory on CPU-deployed solutions. A poten-
tial solution to this is to consider low-rank factor-
ization in the attention design.

Finally, in production deployments, large-scale
in-memory index for multiple locales poses cost
challenges. A separate study is warranted to study
hybrid storage mechanisms and high performance
cache design.
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To the best of our knowledge, our work is ethical
and has a positive impact on society and human
well-being. In particular, we take pride in empha-
sizing that we handle customer confidentiality and
privacy with critical care. Its design principles are
unbiased.
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tau Yih, Barlas Oğuz, Veselin Stoyanov, and Gargi
Ghosh. 2021. Multi-task retrieval for knowledge-
intensive tasks. arXiv preprint arXiv:2101.00117.

Claudio Pinhanez, Paulo Cavalin, Victor Hen-
rique Alves Ribeiro, Ana Appel, Heloisa Candello,
Julio Nogima, Mauro Pichiliani, Melina Guerra,
Maira de Bayser, Gabriel Malfatti, et al. 2021. Us-
ing meta-knowledge mined from identifiers to im-
prove intent recognition in conversational systems.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
7014–7027.

Pragaash Ponnusamy, Alireza Roshan Ghias, Chenlei
Guo, and Ruhi Sarikaya. 2020. Feedback-based self-
learning in large-scale conversational ai agents. In
Proceedings of the AAAI conference on artificial in-
telligence, volume 34, pages 13180–13187.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Re-
trieval, 3(4):333–389.

http://dx.doi.org/10.1109/ICASSP40776.2020.9053531
http://dx.doi.org/10.1109/ICASSP40776.2020.9053531


98

Alireza Roshan-Ghias, Clint Solomon Mathialagan, Pra-
gaash Ponnusamy, Lambert Mathias, and Chenlei
Guo. 2020. Personalized query rewriting in conver-
sational ai agents. arXiv preprint arXiv:2011.04748.

Ruhi Sarikaya. 2022. Intelligent conversational agents
for ambient computing. In Proceedings of the 45th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
5–5.

Hui Su, Xiaoyu Shen, Rongzhi Zhang, Fei Sun, Pengwei
Hu, Cheng Niu, and Jie Zhou. 2019. Improving
multi-turn dialogue modelling with utterance rewriter.
arXiv preprint arXiv:1906.07004.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam
Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng,
Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al.
2022. Lamda: Language models for dialog applica-
tions. arXiv preprint arXiv:2201.08239.

Bo-Hsiang Tseng, Shruti Bhargava, Jiarui Lu, Joel
Ruben Antony Moniz, Dhivya Piraviperumal, Lin
Li, and Hong Yu. 2021. Cread: Combined resolution
of ellipses and anaphora in dialogues. arXiv preprint
arXiv:2105.09914.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan
Yang, and Ming Zhou. 2020. Minilm: Deep self-
attention distillation for task-agnostic compression
of pre-trained transformers. Advances in Neural In-
formation Processing Systems, 33:5776–5788.

Zhuoyi Wang, Saurabh Gupta, Jie Hao, Xing Fan,
Dingcheng Li, Alexander Hanbo Li, and Chenlei
Guo. 2021. Contextual rephrase detection for re-
ducing friction in dialogue systems. In Proceedings
of the 2021 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1899–
1905, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian
Riedel, and Luke Zettlemoyer. 2019. Scalable zero-
shot entity linking with dense entity retrieval. arXiv
preprint arXiv:1911.03814.

Siyang Yuan, Saurabh Gupta, Xing Fan, Derek Liu,
Yang Liu, and Chenlei Guo. 2021. Graph enhanced
query rewriting for spoken language understanding
system. ICASSP, IEEE International Conference on
Acoustics, Speech and Signal Processing - Proceed-
ings.

https://doi.org/10.18653/v1/2021.emnlp-main.143
https://doi.org/10.18653/v1/2021.emnlp-main.143
http://dx.doi.org/10.1109/ICASSP39728.2021.9413840
http://dx.doi.org/10.1109/ICASSP39728.2021.9413840
http://dx.doi.org/10.1109/ICASSP39728.2021.9413840

