Label Sleuth: From Unlabeled Text to a Classifier in a Few Hours
Eyal Shnarch, Alon Halfon, Ariel Gera, Marina Danilevsky, Yannis Katsis, Leshem Choshen, Martin Santillan Cooper, Dina Epelboim, Zheng Zhang, Dakuo Wang, Lucy Yip, Liat Ein-Dor, Lena Dankin, Ilya Shnayderman, Ranit Aharonov, Yunyao Li, Naftali Liberman, Philip Levin Slesarev, Gwilym Newton, Shila Ofek-Koifman, Noam Slonim, Yoav Katz
Abstract
Label Sleuth is an open source platform for building text classifiers which does not require coding skills nor machine learning knowledge.- Project website: [https://www.label-sleuth.org/](https://www.label-sleuth.org/)- Link to screencast video: [https://vimeo.com/735675461](https://vimeo.com/735675461)### AbstractText classification can be useful in many real-world scenarios, saving a lot of time for end users. However, building a classifier generally requires coding skills and ML knowledge, which poses a significant barrier for many potential users. To lift this barrier we introduce *Label Sleuth*, a free open source system for labeling and creating text classifiers. This system is unique for: - being a no-code system, making NLP accessible for non-experts. - guiding its users throughout the entire labeling process until they obtain their desired classifier, making the process efficient - from cold start to a classifier in a few hours. - being open for configuration and extension by developers. By open sourcing Label Sleuth we hope to build a community of users and developers that will widen the utilization of NLP models.- Anthology ID:
- 2022.emnlp-demos.16
- Volume:
- Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
- Month:
- December
- Year:
- 2022
- Address:
- Abu Dhabi, UAE
- Editors:
- Wanxiang Che, Ekaterina Shutova
- Venue:
- EMNLP
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 159–168
- Language:
- URL:
- https://preview.aclanthology.org/moar-dois/2022.emnlp-demos.16/
- DOI:
- 10.18653/v1/2022.emnlp-demos.16
- Cite (ACL):
- Eyal Shnarch, Alon Halfon, Ariel Gera, Marina Danilevsky, Yannis Katsis, Leshem Choshen, Martin Santillan Cooper, Dina Epelboim, Zheng Zhang, Dakuo Wang, Lucy Yip, Liat Ein-Dor, Lena Dankin, Ilya Shnayderman, Ranit Aharonov, Yunyao Li, Naftali Liberman, Philip Levin Slesarev, Gwilym Newton, Shila Ofek-Koifman, Noam Slonim, and Yoav Katz. 2022. Label Sleuth: From Unlabeled Text to a Classifier in a Few Hours. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 159–168, Abu Dhabi, UAE. Association for Computational Linguistics.
- Cite (Informal):
- Label Sleuth: From Unlabeled Text to a Classifier in a Few Hours (Shnarch et al., EMNLP 2022)
- PDF:
- https://preview.aclanthology.org/moar-dois/2022.emnlp-demos.16.pdf