
Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL), pages 384 - 404
December 7-8, 2022 ©2022 Association for Computational Linguistics

Enhancing the Transformer Decoder with Transition-based Syntax

Leshem Choshen
Department of Computer Science
Hebrew University of Jerusalem
leshem.choshen@mail.huji.ac.il

Omri Abend
Department of Computer Science
Hebrew University of Jerusalem
omri.abend@mail.huji.ac.il

Abstract

Notwithstanding recent advances, syntactic
generalization remains a challenge for text de-
coders. While some studies showed gains
from incorporating source-side symbolic syn-
tactic and semantic structure into text genera-
tion Transformers, very little work addressed
the decoding of such structure. We propose
a general approach for tree decoding using
a transition-based approach. Examining the
challenging test case of incorporating Univer-
sal Dependencies syntax into machine trans-
lation, we present substantial improvements
on test sets that focus on syntactic generaliza-
tion, while presenting improved or compara-
ble performance on standard MT benchmarks.
Further qualitative analysis addresses cases
where syntactic generalization in the vanilla
Transformer decoder is inadequate and demon-
strates the advantages afforded by integrating
syntactic information.1

1 Introduction

In parallel to the impressive achievements of large
neural networks in a variety of NLP fields, more
and more work emphasizes the importance of the
inductive biases models possess and the types of
generalizations they make (Welleck et al., 2021;
Csordás et al., 2021; Ontanón et al., 2021). Syntac-
tic generalization has been repeatedly identified as
a problem in text generation (Linzen and Baroni,
2020; Hu et al., 2020), an issue that we address
here. Importantly, language models may fail, some-
times unexpectedly, on constructions that can be
reliably parsed using standard syntactic parsers. In
this work, we propose a method for incorporating
syntax into the decoder to assist in mitigating these
challenges, focusing on NMT as a test case.

The use of (mostly syntactic) structure in ma-
chine translation dates back to the early days of
the field (Lopez, 2008). While focus has shifted

1Code supplied in github.com/borgr/nematus

to string-to-string methods since the introduction
of neural methods, considerable work has shown
gains from integrating linguistic structure into
NMT and text generation technologies. We briefly
survey such methods in §7.

Incorporating target-side syntax has been less
frequently addressed than source-side syntax, pos-
sibly due to the additional conceptual and technical
complexity it entails, as it requires to jointly gen-
erate the translation and its syntactic structure. In
addition to linearizing the structure into a string,
that allows to easily incorporate source and target
structure (Aharoni and Goldberg, 2017b; Nadejde
et al., 2017), several works generated the nodes
of the syntactic tree using RNNs (Gū et al., 2018;
Wang et al., 2018; Wu et al., 2017). Others have
shown gains from multi-task training of a decoder
with a syntactic parser (Eriguchi et al., 2016). How-
ever, we are not aware of any Transformer-based
architecture to support the integration of target-side
structure in the form of a tree or a graph. Address-
ing this gap, we propose a flexible architecture for
integrating graphs into a Transformer decoder.

Our approach is based on predicting the output
tree as a sequence of transitions (§3), following the
transition-based tradition in parsing (Nivre, 2003,
and much subsequent work). The method (pre-
sented in §4) is based on generating the structure
incrementally, as a sequence of transitions, as is
customary in transition-based parsers. However,
unlike standard linearization approaches, our pro-
posed decoder re-encodes the intermediate graph
(and not only the generated tokens), thus allow-
ing the decoder to take advantage of the hitherto
produced structure in its further predictions.

In §2, we discuss the possibilities offered by
such decoders, that do not only auto-regress on
their previous outputs, but also on (symbolic) struc-
tures defined by those outputs. Indeed, a decoder
thus built can condition both on information it did
not predict (e.g., external knowledge bases) and

384

github.com/borgr/nematus

information predicted later on. We introduce bidi-
rectional attention into the decoder, that allows to-
ken representations to encode the following tokens
that were predicted. This is similar to the bidirec-
tional attention in the encoder, where any token can
attend to any token, and not only to preceding ones.

Our architecture is flexible, supporting decoding
not only into trees, but into any graph structure for
which a transition system exists. We test two archi-
tectures for incorporating the syntactic graph. One
inputs the graph into a Graph Convolutional Net-
work (GCN; Kipf and Welling, 2016), and another
dedicates an attention head to point at the syntac-
tic parent of each token, which does not yield any
increase in the number of parameters.

We assess in §6 the impact of the proposed ar-
chitecture on syntactically challenging translation
cases (Choshen and Abend, 2019) and in general.
We experiment with a 4 layered model in three tar-
get languages, and a 6 layered on En-De. Due to
the high computational cost, we experiment with
the model on a single language pair only. We
find that on the syntactic challenge sets proposed
by Choshen and Abend (2019), the proposed de-
coder achieves substantial improvements over the
vanilla decoder, which do not diminish (and even
slightly improve) when increasing the size of the
model. In addition, evaluating on the standard MT
benchmarks, we find that the syntactic decoders
outperform the vanilla Transformer for the smaller
model size on all examined language pairs: on
the English-German (En-De) and German-English
(De-En) challenge sets and on En-De, De-En and
English-Russian (En-Ru) test sets, and obtain com-
parable results to the vanilla when experimenting
with a larger model on En-De. Finally, we analyse
the different modifications in isolation, finding that
the ablated versions’ performance resides between
the full model and the vanilla decoder.

2 Decoding Approach

Jo@@ hn put the coals out

root

nsubj det
obj

compound:prt

Example 1: Target-side structure reduces the ambigu-
ity of “put”. De source: “John löschte die Kohlen” (lit.
John put-out the coals).

Disambiguating and connecting distant words is
a known challenge in NMT (Avramidis et al., 2020).

In Example 1 to disambiguate “put” as not having
the sense “lay” but “extinguish”, “out” must be
considered. To achieve this from the autoregressed
output, the decoder’s representation may need to be
re-computed after predicting “out”. We note that
while source-side information can potentially be
used to disambiguate “put”, it may still be bene-
ficial to enhance the auto-regressive decoder with
disambiguating information.

Current implementations impose an architectural
bias, namely, a decoded token’s representation may
not attend to future tokens. Transformer models
mask attention in the following manner (we did not
find any alternative methods): Token embeddings
attend only to previously generated tokens, even
when the following tokens are already known. This
practice “ensures that the predictions for position i
can depend only on the known outputs at positions
less than i” (Vaswani et al., 2017).

We propose to allow attending to any known
token (Fig. 1), as done on the encoder side. Due to
its conceptual resemblance to Bidirectional RNN,
we name this Bidirectional Transformer or biTran.

Formally, let o1 . . . on be a hitherto predicted
sequence and d max sentence length. Attention is
softmax (L+M) where L ∈ Rd×d are the logits
and M ∈ Rd×d is a mask. Hence, M(i, j) = −∞
masks a token j from representation i.

Mv(i, j) =

{
0 j < i

−∞ o.s.

while Bidirectional attention mask is

Mbi(i, j) =

{
0 n < j

−∞ o.s.

This change does not introduce any new param-
eters or hyperparameters, but still increases the
expressivity of the model. We note, however, that
this modification does prevent some commonly im-
plemented speed-ups relying on unidirectionality
(e.g., in NEMATUS; Sennrich et al., 2017).

Apart from the technical contribution, we em-
phasize that this and the following approaches take
advantage of attention-based models being state-
less. Transformers can, therefore, be viewed as
conditional language models, namely as models for
producing a distribution for the next word, given
the generated prefix and source sentence. View-
ing them as such opens possibilities that were
not native to RNNs, such as predicting only par-
tial outputs and conditioning on per-token or non-
autoregressed context (see App. A).

385

Figure 1: Illustration of the information fed into the decoder with each method. Left: Vanilla. Center: Bidirectional
Decoder Right: Structural Decoder. At a given step Bidirectional Decoder attends to all predicted words and
Syntactic Transformer predicts edges and receives both edges and words as input.

3 Transition-based Structure Generation

We turn to describe how we represent structure
within the proposed decoder.

We generate the target-side structure with a
transition-based approach, motivated by the prac-
tical strength of such methods, as well as their
sequential nature, which fits neural decoders well.
We therefore augment the vocabulary with transi-
tions. Our work is inspired by RNNG (Dyer et al.,
2016), a conceptually similar architecture that was
developed for RNNs. At each step, the input to the
decoder includes the tokens and the parse graph
that was generated thus far. As edges and their
tokens are not generated simultaneously (but rather
by different transitions; see below), we rely on bidi-
rectional attention to update the past embeddings
when a new edge connects previously generated
tokens. In this section, we present the syntactic
transitions and in the next (§4), the ways we incor-
porate it back into the model.

In this work, we represent syntax through Univer-
sal Dependencies (UD; Nivre et al., 2016), but note
that other syntactic and semantic formalisms that
have transition-based parsers (Hershcovich et al.,
2018; Stanojević and Steedman, 2020; Oepen et al.,
2020) fit the framework as well. We select UD due
to its support for over 100 languages and its status
as the de facto standard for syntactic representation.

We base our transition system on arc-standard
(Nivre, 2003), which can produce any projective
tree. Both contain a transition connecting two
words by a labeled edge. However, we replace
SHIFT that reads the next word by SUBWORDt gen-
erating a new sub-word t. Sub-words are generated
successively until a full word is formed. To avoid
suboptimal representation of transition tokens, we
add the edges going through them to the graph (e.g.,

the edge LEFT-ARC:det det−→ the).
We denote with f the transition functions updat-

ing a word stack Σ and the labeled graph G. If a, b
are the top and second words in Σ respectively, and
x a transition, then f(x; Σ) is defined as:

x (token) Σ Edges Added
Subwordt t,a,b ∅
LEFT-ARC:l a a

l−→ b, x l−→ b, a l−→ x

RIGHT-ARC:l b b
l−→ a, x l−→ a, b l−→ x

For brevity, we denote an edge from/to every
subword of a as an edge from/to a. Overall, the
translation sequence to create the graph in Ex-
ample 1 is: Jo@@ hn put LEFT-ARC:nsubj the
coals LEFT-ARC:det RIGHT-ARC:obj out RIGHT-
ARC:compound:prt (more details in App. B)

4 Regressing on Generated Structure

As discussed in §2, the state-less nature of the
Transformer allows re-encoding not only the pre-
vious predictions, but any information that can be
computed based on them. So far, we proposed to
autoregress on the syntactic structure, token by to-
ken. However, as f is deterministic, learning to
emulate it, is pointless. Instead, we can autoregress
on the generated graph itself, G = f (o1 . . . on), as
well as the encoder output, o1 . . . on.

Our approach is modular and works with any
graph encoding method. We experiment with two
prominent methods for source-side graph encoding.

GCN Encoder. Graph Convolutional Networks
(GCN; Kipf and Welling, 2016) are a type of graph
neural network. GCNs were used successfully by
previous work to encode source-side syntactic and
semantic structure for NMT (Bastings et al., 2017;
Marcheggiani et al., 2018). The GCN layers are
stacked immediately above the embedding layer.

386

The GCN contains weights per edge type and label
as well as gates, that allow placing less emphasis on
the syntactic cue if the network so chooses. Gating
is assumed to help against noisy structure, which
machine output is expected to be. See ablation
experiments to assess the impact of gating in §6.3.

Following Kipf and Welling (2016), we intro-
duce 3 edge types. Self from a token to itself, Left
to the parent tokens and Right from the parents.

A GCN layer over input layer h, a node v and a
graph G containing nodes of size d, with activation
ρ, edge directions dir, labels lab, and a function N
from a node in G to its neighbors is

gcn(h, v,G) = ρ

(∑

u∈N (v)

gu,v · fu,v
)

where fu,v are graph weighted embedding:
fu,v =

(
Wdir(u,v) hu + blab(u,v)

)

and gu,v is the applied gate:
gu,v = σ

(
hu · ŵdir(u,v) + b̂lab(u,v)

)

where σ is the logistic sigmoid function and
ŵdir(u,v) ∈ Rd, W ∈ Rd×d, b̂lab(u,v) ∈ R, b ∈ Rd

are the learned parameters for the GCN.

Attending to Parent Token. The second re-
encoding method we test, PARENT, dedicates an
attention head only to the parent(s) of the given to-
ken. Commonly, the parent is given by an external
parser (Hao et al., 2019) or learned locally in each
layer, to focus the attention (Strubell et al., 2018).
Unlike such approaches, we define the parents by
the self-generated graph. To allow ignoring it when
preferable or when no parent was generated, we
also allow attending to the current token. To recap,
for a token oi, we mask all but oi and its parents.

PARENT differs from GCN considerably. On
the one hand, PARENT requires minimal architec-
tural changes and no additional hyperparameters. It
also affects different network parts, some attention
heads, rather than an additional embedding. On the
other hand, only GCN represents the labels and the
whole graph, specifically children. By considering
both architectures, we show that graph methods for
the encoder (Bastings et al., 2017) may be easily
adapted to the decoder, demonstrating the flexibil-
ity of the proposed framework.

5 Experimental Setup

Metrics. We report BLEU (Papineni et al., 2002)
and chrF+ (Popovic, 2017) and note that chrF+ has
been deemed more reliable (Ma et al., 2019).

Model. Medium (large) models are trained with
batch size 128, embedding size 256 (512), 4 (6) de-
coder and encoder blocks, 8 attention heads (PAR-
ENT replaces one). We train for 90K (150K) steps,
where empirically some saturation is reached, al-
lowing a fair system comparison (Popel and Bojar,
2018). The GCN architecture includes 2 layers
with residual connections. Parses are extracted by
UDPipe (Straka, 2018), UD2.0 for English and
German and UD2.5 syntagrus for Russian.

Unable to identify a preexisting implementation,
we implemented labeled sparse GCNs with gat-
ing in Tensorflow. Implementation mostly focused
on memory considerations, and was optimized for
runtime when possible. More on implementation
details, filtering and preprocessing in App. B.

Language Pairs. We experiment on 3 language
pairs with 3 target languages: English (De-En),
German (En-De) and Russian (En-Ru). We use the
WMT16 data (Bojar et al., 2016) for En-De, and
either the clean News commentary or the full noisy
WMT20 data (Barrault et al., 2020) for En-Ru.

Test sets. Newstest 2012 served as a develop-
ment set. To measure the overall system perfor-
mance we used newstest 2013-15.

To test syntactic generalization, we used the chal-
lenge sets by Choshen and Abend (2019). Those
are sub-sets of the books and newstest corpora
in En↔De, automatically filtered by a syntac-
tic parser to contain lexical long-distance depen-
dencies. i.e., sentences where two or more non-
consecutive words correspond to a single word.
E.g., “put ... out” in Example 1 corresponds to the
German “löschte” (see also Example 2). Previous
work has shown such phenomena to be challenging
for present-day NMT systems.

Improving the automatic measures on one such
challenge set indicates better performance on a
specific phenomenon, while better overall chal-
lenge set performance implies better handling of
lexical long-distance dependencies. The various
challenge set settings are represented as a triplets
(dir, p, dom), corresponding to the direction, in-
spected phenomenon and domain. Direction can be
either “source” or “target”, indicating whether the
long distance dependency is in the source or the tar-
get reference. Representing the target-side syntax
more effectively should improve target challenges
and potentially also the source side’s, by increasing
the model’s “awareness” to syntactic structure. By

387

Source der gruppe, an die sich der Plan richtet
Gloss the group to which himself the plan aims
Ref. the group to whom the plan is aimed

PARENT the group to which the plan is aimed
Vanilla the group aimed at the plan

Example 2: A part of a sentence with a long-distance
German reflexive verb from the challenge set.

phenomenon, we refer to the syntactic phenomenon
in question. There are three test cases for English
phenomena and two for German. By domain we
refer to the origin of the examples, which can be
either the sizable books corpus (Tiedemann, 2012),
or a smaller news corpus (Barrault et al., 2020).

6 Results

We compare the syntactic generalization abilities
of the different decoders in §6.1, and continue by
examining their overall performance (§6.2). We
then assess the contribution of the components of
the system through ablation experiments (§6.3) and
evaluate the effects of noisy training data (§6.4).

6.1 Syntactic Generalization

We evaluate the syntactic generalization abilities
of the models using the syntactic challenge sets.
Results (Table 1) show that the medium PARENT

(GCN) improves over the Vanilla in 18 (20) of 20
target challenge settings and 19 (19) of 20 in the
source challenges. The large model improves in
18/20 of the challenges and gains seem similar or
even larger. The latter results suggest that simply
using larger models is unlikely to address these
gaps in syntactic generalization. See also E.

6.2 Overall Performance

Table 2 presents the test performance for all models.
For medium-sized models, the UD-based decoders
(GCN and PARENT rows) outperform the vanilla
decoder in all settings, with 0.7-1.1 average BLEU
improvements and 1-2.4 chrF+. We see a slight
advantage to the GCN decoder on De-En, and an
advantage to PARENT on En-De and En-Ru. We
apply a sign test on all medium size test sets and
separately on challenge sets. GCN and PARENT are
significantly (p < 0.01) better than BiTran, which
is significantly better than Vanilla Transformer.

With the large models, PARENT performs compa-
rably to the vanilla (Table 2b), despite the superior
results it obtains on syntactic generalization.

6.3 Ablation Experiments

To better understand the contribution of different
parts of the architecture, we consider ablated ver-
sions (See Table 2 and App. E). Differences are
small but consistent. In one, Linearized, we train
the vanilla Transformer over the transitions, lin-
earized to a string, without encoding the graph
through GCN or attention. This is reminiscent of
the approaches taken by Aharoni and Goldberg
(2017b); Nadejde et al. (2017), albeit with a dif-
ferent form of linearization. Results place Lin-
earized in a clear place: consistently better than the
structure-unaware models but not as good as the
structure-aware ones.

We turn to experiment with ablated versions of
the GCN decoder. Unlabeled ignores the labels and
relies only on the graph structure, while Ungated,
also removes the gate g. Gating was hypothesized
to be important to avoid over-reliance on the er-
roneous edges (Bastings et al., 2017; Hao et al.,
2019). As our graphs are generated by the network,
rather than fed into it by an external parser, this is
a good place to test this hypothesis.

Comparing GCN with and without labels, we
find their contribution to be limited. Despite some
improvement in overall BLEU, as often as not, Un-
labeled is better on the challenges. We advise cau-
tion, however, in interpreting these results, as they
may not necessarily indicate that syntactic labels
are redundant. There are two technical points to
consider. First, the labels’ role in GCNs is small,
they contribute many hyperparameters, while only
affecting a bias term. Presumably, this is an ineffi-
cient use that should be addressed in future work.
Second, the labels are incorporated also through
the transitions, and hence have token embeddings.
These could compensate for the disregard of labels.

Unlike labels, gating appears to be crucial. The
Ungated scores are lower than the Unlabeled vari-
ant in 34/40 challenges. This might indirectly sup-
port the hypothesis that gating aids with erroneous
parses. It also hints introducing similar mecha-
nisms to PARENT may also be beneficial.

Even BiTran provides a small (up to .28
BLEU,.42 chrF+) but consistent improvement. In-
deed, it outperforms the vanilla on average and in
10/12 scores in each pair. We observe a similar
trend in the challenge sets (Table 1): BiTran im-
proves scores in 26/40 syntactic challenge sets. In
conclusion, bidirectionality in itself is somewhat
beneficial, both in general and specifically for ag-

388

Preposition Stranding Particle Reflexive
Books News Books News Books News

BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+
Vanilla – – – – 4.14 20.72 20.31 49.04 8.08 32.38 20.65 49.09
PARENT – – – – 8.37 33.78 20.54 49.99 8.60 33.49 21.39 50.01

(a) Target challenge sets for En-De, large models (Preposition Stranding is omitted as it is not present in German)
Vanilla 8.70 33.58 13.82 43.41 8.59 32.66 15.28 44.28 8.54 32.85 18.90 45.82
PARENT 9.03 34.83 11.53 45.12 8.59 33.71 14.99 45.90 9.05 34.11 20.79 46.73

(b) Source challenge sets for En-De, large models
Vanilla 5.95 25.88 9.96 36.96 5.37 24.69 9.39 39.19 5.32 24.71 16.48 42.04
PARENT 6.21 28.12 11.17 41.13 5.47 25.74 11.93 41.24 5.71 26.22 15.56 42.76
GCN 6.21 27.27 11.31 40.48 5.51 25.53 10.35 39.83 5.46 25.70 16.45 43.03

(c) Source challenge sets for En-De, medium models
Vanilla 6.38 27.30 9.18 38.22 6.53 25.70 10.54 38.28 6.15 25.94 17.20 43.12
PARENT 7.59 27.87 10.81 39.22 7.07 26.50 9.72 39.57 6.82 26.58 17.56 44.00
GCN 6.33 26.60 10.14 41.00 6.69 26.16 10.60 39.81 6.33 25.83 20.16 44.19

(d) Target challenge sets for De-En, medium models

Table 1: Results on the syntactic challenge sets, both on the larger sets from books and the smaller ones from news.
Models include Vanilla and the GCN and PARENT UD-based decoders. Models can be large or medium in size
and trained on En-De or De-En. Challenges are either in the source or target translation. See also App. E.

2013 2014 2015
BLEU chrF+ BLEU chrF+ BLEU chrF+

Vanilla 17.61 45.54 18.23 47.29 19.57 47.50
PARENT 18.11 46.75 18.6 48.46 20.55 49.20
GCN 18.03 46.43 18.86 48.46 20.32 48.90
BiTran 17.64 45.66 18.34 47.53 19.33 47.61
Linearized 17.71 46.07 18.39 47.69 19.81 48.36
- Gates 17.81 46.12 18.43 48.08 20.06 48.62
- Labels 17.98 46.40 18.77 48.29 19.96 48.73

(a) Overall performance for En-De, medium models
Vanilla 23.64 53.44 21.94 53.13 21.60 50.84
PARENT 23.56 54.08 22.11 53.77 20.69 49.16

(b) Overall performance for En-De translation, large models
Vanilla 21.51 48.20 21.4 48.46 21.44 48.13
PARENT 22.46 49.24 21.75 49.41 22.14 49.31
GCN 22.33 49.27 21.76 49.71 22.43 49.73
BiTran 21.63 48.48 21.42 48.86 21.38 48.54
Linearized 21.95 49.27 21.83 49.79 22.2 49.70
- Gates 22.28 49.33 21.89 49.68 22.04 49.39
- Labels 22.21 49.46 21.75 49.73 22.26 49.57

(c) Overall performance for De-En translation, medium models
Vanilla 13.2 38.72 17.17 43.69 14.19 40.87
PARENT 13.61 40.67 18.53 46.44 15.75 43.57
GCN 13.25 40.31 17.86 46.09 15.38 43.09

(d) Overall performance for En-Ru

Table 2: Overall performance in different settings. Ablated models (where applicable), appear in the bottom part
of the table and include the Bidirectional Transformer (BiTran), with linearized syntax (Linearized), GCN without
labels or gating (-Gates) and GCN without labels (-Labels). The syntactic variants consistently outperform the
vanilla and ablated variants in the medium size setting and are comparable to it in the large one. The Bidirectional
Transformer (BiTran) slightly outperforms Vanilla Transformer.

gregating the syntactically correct context tokens.

As a next step, we compare GCN ablations to
PARENT. Like unlabeled GCNs, PARENT does not
rely on the labels and successfully provides a dif-
ferent way to incorporate the graph structure. We

note that while labels are not incorporated, they
appear as transition inputs and can be attended to.
Comparing the two architectures, PARENT shows
significant gains over Unlabeled GCN. Despite be-
ing easier to implement and being much lighter

389

in terms of memory, time and hyperparameters,
PARENT generally outperforms Unlabeled GCN in
both performance and specific challenges. PARENT

is slightly better than unablated? GCN on En-De
and slightly worse on De-En. It is better on 3 of
5 De-En phenomena and one of the En-De, when
compared to the GCN variant.

6.4 Noise Robustness

Preliminary experiments indicate that syntactic ar-
chitectures may be more sensitive to noisy training
data than the vanilla Transformer, possibly ampli-
fying parser errors. To test this, we trained on the
full WMT data for En-Ru, which is mostly crawled
data. Results show that the improvement in chrF+
is smaller, 1 point instead of 1.5-2.5 in other set-
tings, and BLEU scores are somewhat worse (see
App. §E.1). It seems then that overall, the inclusion
of noisy data diminishes the relative improvement.

An alternative explanation to these results may
be that our methods contribute less in the presence
of more training data. Our positive results on En-
De and De-En, that use relatively large amounts
of data (4.5M sentence pairs), show that if this is
indeed the case, saturation is slow.

6.5 Qualitative Analysis

To complement the automatic challenges, we com-
pile a set of 99 simple subject-verb-object sen-
tences where the German object and subject can
swap locations without affecting the meaning. We
created three sets of sentences, where the case
marking for the subject and object may or may
not be ambiguous. For example, Das Pferd bringt
der Vater and Der Vater bringt das Pferd both trans-
late to the father brings the horse. Such examples
are of particular interest to us here, as the case of
the first noun phrase is ambiguous (“Das Pferd”
could be either a subject or an object) and is only
disambiguated by the case marking of the second
one. These cases require some understanding of
the syntax to translate correctly. See App. §C.

A native-speaking German annotator, fluent in
English, evaluated the medium-size PARENT and
Vanilla outputs on these sentences. The ambigu-
ous examples were challenging for both systems,
especially the ambiguous case markings. However,
overall, PARENT is more robust to the changes in
order. Interestingly, both models (PARENT more
consistently) translate some sentences to passive
voice, keeping both (changed) order and meaning.

7 Related Work

While there are indications that Transformers im-
plicitly learn some syntactic structure when trained
as language models or as NMT (e.g., Jawahar et al.,
2019; Manning et al., 2020; Don-Yehiya et al.,
2022), it is not at all clear whether such informa-
tion replaces the utility of incorporating syntactic
structure. Indeed, a considerable body of work
suggests the contrary. Much previous work tested
RNN-based and attention-based systems for their
ability to make structural generalizations (Welleck
et al., 2021; Csordás et al., 2021; Ontanón et al.,
2021). Syntactic generalizations seem to pose a par-
ticularly difficult challenge (Ravfogel et al., 2019;
McCoy et al., 2019). Moreover, while NMT often
succeeds in translating inter-dependent linearly dis-
tant words, their performance is unstable: the same
systems may well fail on other “obvious” cases of
the same phenomena (Belinkov and Bisk, 2017;
Choshen and Abend, 2019). This evidence pro-
vides motivation for efforts such as ours, to incor-
porate linguistic knowledge into the architecture.

Syntactic structure was used to improve vari-
ous tasks, including code generation (Chakraborty
et al., 2018), question answering (Bogin et al.,
2020), automatic proof generation (Gontier et al.,
2020) language modelling (Wilcox et al., 2020) and
grammatical error correction (Harer et al., 2019).
Such approaches, however, are task specific. E.g.,
the latter makes strong conditional independence
assumptions, and is less suitable for MT where the
source and target syntax may diverge considerably.

In NMT, some works used structural cues by
reinforcement learning (Wieting et al., 2019; Yehu-
dai et al., 2022), but the gain from such methods
seems to be limited (Choshen et al., 2020). Aharoni
and Goldberg (2017a) and Nadejde et al. (2017)
proposed to replace the source and target tokens
with a linearized constituency graph or CCG parses.
Eriguchi et al. (2016) proposed an RNN to encode
the source syntax. Some works suggested modi-
fying RNNs to encode source-side syntax (Chen
et al., 2017, 2018; Li et al., 2017). Song et al.
(2019) used a graph RNN to encode source-side
AMR structures. Few works suggested changes in
the Transformer to incorporate source-side syntax:
Nguyen et al. (2020) and Bugliarello and Okazaki
(2020) proposed a tree-based attention mechanism
to encode syntax; Zhang et al. (2019) incorporated
the first layers of a parser in addition to the to-
ken embeddings. Relatedly, previous work showed

390

gains from using syntactic information for prepro-
cessing (Ponti et al., 2018; Zhou et al., 2019a).

Much fewer works focused on structure-based
decoding. Eriguchi et al. (2017), building on Dyer
et al. (2016), train a decoder in a multi-task setting
of translation and parsing. Notably, unlike in the
method we propose, their generated translation is
not constrained by the parse during the decoding.
Few works proposed alternating between two con-
nected RNNs one translating and one creating a
linearized graph using a tree-based RNN (Wang
et al., 2018) or transition-based parsing (Wu et al.,
2017). Gū et al. (2018) both parse and generate,
using a recursive RNN representation.

Other work changed RNNs (Tai et al., 2015) or
Transformers to include structural inductive biases,
but without explicit syntactic information. Wang
et al. (2019) suggested an unsupervised way to train
Transformers that learn tree-like structures follow-
ing the intuition that such representations are more
similar to syntax. Shiv and Quirk (2019) encoded
tree-structured data in the positional embeddings.

8 Discussion

The work we presented is motivated from several
angles. First, we note that Transformers are trained
in the same way that former sequence to sequence
models are trained (e.g., RNNs) and to many, they
are just a better architecture for the same task. In-
stead, our work emphasizes the possibility of condi-
tional training using Transformers; namely, Trans-
formers should be able to predict the third token
given the first two, even without previously pre-
dicting them. Although generally not implemented
this way, Transformers are already conditional net-
works, and allow for flexibility not found in RNNs.

The finding that MT quality changes between
beginnings and ends of predicted sentences both in
RNNs and in Transformers (Liu et al., 2016; Zhou
et al., 2019b), further motivates conditional transla-
tion. This is often explained by lack of context and
disregard for the future tokens. Such future context
is used by humans (Xia et al., 2017) and can po-
tentially improve NMT (Tu et al., 2016; Mi et al.,
2016). Moreover, as the encoded input is constant
throughout the prediction, the varying performance
is likely due to the decoder. Attending to all predic-
tions from lower layers, as we propose here, aims
to provide more of this required information.2

2Admittedly, for the very first generated tokens, bidirec-
tionality will not help, as there is nothing to attend to.

Finally, previous work investigated the reasons
why incorporating source syntax helps RNNs (Shi
et al., 2018) and Transformers (Pham et al., 2019;
Sachan et al., 2020). These works show evidence
that similar gains can be obtained when incorporat-
ing either syntactic trees or non-syntactic, syntacti-
cally uninformative, ones. A hypothesis followed,
that graph-like architectures are helpful, but that
syntactic information is redundant. While GCN
creates such an architecture, linearized syntax, ar-
guably PARENT and to some extent the labels GCN
component, do not. Still, they allow gains over the
vanilla decoder, which challenges this hypothesis.

9 Conclusion

We presented a flexible method for constructing
decoders capable of outputting trees and graphs.
We show that the improved decoder achieves no-
table gains in syntactic generalization, and in some
settings improves overall performance as well. Our
proposal is based on two main modifications to
the standard Transformer decoder: (1) autoregres-
sion on structure; (2) bidirectional attention in the
decoder, which allows recomputing token embed-
dings in light of newly decoded tokens. Testing
on two variants for the decoder, we find that they
both show superior syntactic generalization abili-
ties over the vanilla Transformer, and that the gap
does not diminish with model size. The method
is flexible enough to allow decoding into a wide
variety of graph and tree structures.

Our work opens many avenues for future work.
One direction would be to focus on conditional
networks, training with (intentionally) noisy pre-
fixes, randomly masking “predicted” spans during
training (as done in masked language models, De-
vlin et al., 2019), and data augmentation through
hard words or phrases rather than full sentences.
Another direction might enhance bidirectionality
by allowing “regretting” and changing past pre-
dictions. Finally, the work opens possibilities for
better incorporating structure into language gen-
erators, of incorporating semantic structure and
of enforcing meaning preservation (thus targeting
hallucinations, Wang and Sennrich, 2020), by in-
corporating source and target structure together.

10 Acknowledgements

We thank Daniel Lehmann for help the analysis.
The work was supported by the Israel Science Foun-
dation (grant no. 929/17) and the Kamin project.

391

References
Roee Aharoni and Yoav Goldberg. 2017a. Morpholog-

ical inflection generation with hard monotonic atten-
tion. In Proc. of ACL, pages 2004–2015.

Roee Aharoni and Yoav Goldberg. 2017b. Towards
string-to-tree neural machine translation. In ACL.

Eleftherios Avramidis, Vivien Macketanz, Ursula
Strohriegel, Aljoscha Burchardt, and Sebastian
Möller. 2020. Fine-grained linguistic evaluation
for state-of-the-art machine translation. In Proceed-
ings of the Fifth Conference on Machine Translation,
pages 346–356.

Loïc Barrault, Magdalena Biesialska, Ondrej Bojar,
Marta R. Costa-jussà, C. Federmann, Yvette Gra-
ham, Roman Grundkiewicz, B. Haddow, Matthias
Huck, E. Joanis, Tom Kocmi, Philipp Koehn, Chi
kiu Lo, Nikola Ljubesic, Christof Monz, Makoto
Morishita, M. Nagata, T. Nakazawa, Santanu Pal,
Matt Post, and Marcos Zampieri. 2020. Find-
ings of the 2020 conference on machine translation
(wmt20). In WMT.

Jasmijn Bastings, Ivan Titov, Wilker Aziz, Diego
Marcheggiani, and Khalil Simaán. 2017. Graph
convolutional encoders for syntax-aware neural ma-
chine translation. In Proc. of EMNLP.

Yonatan Belinkov and Yonatan Bisk. 2017. Synthetic
and natural noise both break neural machine transla-
tion. ICLR, abs/1711.02173.

Arianna Bisazza, A. Ustun, and Stephan Sportel. 2021.
On the difficulty of translating free-order case-
marking languages. ArXiv, abs/2107.06055.

Ben Bogin, Sanjay Subramanian, Matt Gardner, and
Jonathan Berant. 2020. Latent compositional rep-
resentations improve systematic generalization in
grounded question answering. arXiv preprint
arXiv:2007.00266.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck, An-
tonio Jimeno Yepes, Philipp Koehn, Varvara Lo-
gacheva, Christof Monz, et al. 2016. Findings of
the 2016 conference on machine translation. In Pro-
ceedings of the First Conference on Machine Trans-
lation: Volume 2, Shared Task Papers, pages 131–
198.

Emanuele Bugliarello and N. Okazaki. 2020. Enhanc-
ing machine translation with dependency-aware self-
attention. In ACL.

Saikat Chakraborty, Miltiadis Allamanis, and
Baishakhi Ray. 2018. Tree2tree neural transla-
tion model for learning source code changes. ArXiv,
abs/1810.00314.

Kehai Chen, Rui Wang, Masao Utiyama, Lemao Liu,
Akihiro Tamura, Eiichiro Sumita, and Tiejun Zhao.
2017. Neural machine translation with source de-
pendency representation. In Proc. of EMNLP.

Kehai Chen, Rui Wang, Masao Utiyama, Eiichiro
Sumita, and Tiejun Zhao. 2018. Syntax-directed at-
tention for neural machine translation. In Proc. of
AAAI.

Leshem Choshen and Omri Abend. 2019. Automat-
ically extracting challenge sets for non-local phe-
nomena in neural machine translation. In Proceed-
ings of the 23rd Conference on Computational Nat-
ural Language Learning (CoNLL), pages 291–303,
Hong Kong, China. Association for Computational
Linguistics.

Leshem Choshen, Lior Fox, Zohar Aizenbud, and Omri
Abend. 2020. On the weaknesses of reinforce-
ment learning for neural machine translation. ArXiv,
abs/1907.01752.

Róbert Csordás, Kazuki Irie, and Jürgen Schmidhu-
ber. 2021. The devil is in the detail: Simple tricks
improve systematic generalization of transformers.
ArXiv, abs/2108.12284.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Shuoyang Ding, Adithya Renduchintala, and Kevin
Duh. 2019. A call for prudent choice of subword
merge operations in neural machine translation. In
Proceedings of Machine Translation Summit XVII
Volume 1: Research Track, pages 204–213, Dublin,
Ireland. European Association for Machine Transla-
tion.

Shachar Don-Yehiya, Leshem Choshen, and Omri
Abend. 2022. Prequel: Quality estimation of ma-
chine translation outputs in advance. arXiv preprint
arXiv:2205.09178.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameteriza-
tion of ibm model 2. In HLT-NAACL.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. In HLT-NAACL.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa
Tsuruoka. 2016. Tree-to-sequence attentional neu-
ral machine translation. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
823–833, Berlin, Germany. Association for Compu-
tational Linguistics.

Akiko Eriguchi, Yoshimasa Tsuruoka, and Kyunghyun
Cho. 2017. Learning to parse and translate improves
neural machine translation. ArXiv, abs/1702.03525.

392

https://doi.org/10.18653/v1/K19-1028
https://doi.org/10.18653/v1/K19-1028
https://doi.org/10.18653/v1/K19-1028
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/W19-6620
https://www.aclweb.org/anthology/W19-6620
https://doi.org/10.18653/v1/P16-1078
https://doi.org/10.18653/v1/P16-1078

Daniel Fernández-González and Carlos Gómez-
Rodríguez. 2018. Non-projective dependency
parsing with non-local transitions. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short
Papers), pages 693–700, New Orleans, Louisiana.
Association for Computational Linguistics.

Nicolas Gontier, Koustuv Sinha, Siva Reddy, and
Christopher Pal. 2020. Measuring systematic gener-
alization in neural proof generation with transform-
ers. arXiv preprint arXiv:2009.14786.

Jetic Gū, Hassan S. Shavarani, and Anoop Sarkar. 2018.
Top-down tree structured decoding with syntactic
connections for neural machine translation and pars-
ing. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 401–413, Brussels, Belgium. Association for
Computational Linguistics.

Jie Hao, Xing Wang, Shuming Shi, Jinfeng Zhang,
and Zhaopeng Tu. 2019. Multi-granularity self-
attention for neural machine translation. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 887–897, Hong
Kong, China. Association for Computational Lin-
guistics.

Jacob Harer, C. Reale, and P. Chin. 2019. Tree-
transformer: A transformer-based method for correc-
tion of tree-structured data. ArXiv, abs/1908.00449.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2018. Multitask parsing across semantic representa-
tions. In Proc. of ACL, pages 373–385.

Jennifer Hu, Jon Gauthier, Peng Qian, Ethan Wilcox,
and Roger Levy. 2020. A systematic assessment
of syntactic generalization in neural language mod-
els. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 1725–1744.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure
of language? In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3651–3657, Florence, Italy. Associa-
tion for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Thomas N. Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. CoRR, abs/1609.02907.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, M. Federico, N. Bertoldi, B. Cowan,
Wade Shen, C. Moran, R. Zens, Chris Dyer, Ondrej
Bojar, A. Constantin, and E. Herbst. 2007. Moses:

Open source toolkit for statistical machine transla-
tion. In ACL.

Junhui Li, Deyi Xiong, Zhaopeng Tu, Muhua Zhu, Min
Zhang, and Guodong Zhou. 2017. Modeling source
syntax for neural machine translation. In Proc. of
ACL.

Tal Linzen and Marco Baroni. 2020. Syntactic struc-
ture from deep learning. Annual Review of Linguis-
tics, 7.

L. Liu, M. Utiyama, A. Finch, and Eiichiro Sumita.
2016. Agreement on target-bidirectional neural ma-
chine translation. In HLT-NAACL.

Adam Lopez. 2008. Statistical machine translation.
ACM Computing Surveys (CSUR), 40:8.

Marco Lui and Timothy Baldwin. 2012. langid. py:
An off-the-shelf language identification tool. In Pro-
ceedings of the ACL 2012 system demonstrations,
pages 25–30.

Qingsong Ma, Johnny Wei, Ondřej Bojar, and Yvette
Graham. 2019. Results of the WMT19 metrics
shared task: Segment-level and strong MT sys-
tems pose big challenges. In Proceedings of the
Fourth Conference on Machine Translation (Volume
2: Shared Task Papers, Day 1), pages 62–90, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Christopher D. Manning, Kevin Clark, John Hewitt,
Urvashi Khandelwal, and Omer Levy. 2020. Emer-
gent linguistic structure in artificial neural networks
trained by self-supervision. PNAS.

Diego Marcheggiani, Jasmijn Bastings, and Ivan Titov.
2018. Exploiting semantics in neural machine trans-
lation with graph convolutional networks. In Proc.
of NAACL.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019.
Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3428–3448.

Haitao Mi, B. Sankaran, Z. Wang, and Abe Ittycheriah.
2016. Coverage embedding models for neural ma-
chine translation. In EMNLP.

Maria Nadejde, Siva Reddy, Rico Sennrich, Tomasz
Dwojak, Marcin Junczys-Dowmunt, P. Koehn, and
Alexandra Birch. 2017. Predicting target language
ccg supertags improves neural machine translation.
In WMT.

Xuan-Phi Nguyen, Shafiq R. Joty, S. Hoi, and
R. Socher. 2020. Tree-structured attention with hi-
erarchical accumulation. ArXiv, abs/2002.08046.

Joakim Nivre. 2003. An efficient algorithm for projec-
tive dependency parsing. In IWPT.

393

https://doi.org/10.18653/v1/N18-2109
https://doi.org/10.18653/v1/N18-2109
https://doi.org/10.18653/v1/D18-1037
https://doi.org/10.18653/v1/D18-1037
https://doi.org/10.18653/v1/D18-1037
https://doi.org/10.18653/v1/D19-1082
https://doi.org/10.18653/v1/D19-1082
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://doi.org/10.18653/v1/W19-5302
https://doi.org/10.18653/v1/W19-5302
https://doi.org/10.18653/v1/W19-5302
https://doi.org/10.1073/pnas.1907367117
https://doi.org/10.1073/pnas.1907367117
https://doi.org/10.1073/pnas.1907367117

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal dependencies v1: A multilingual
treebank collection. In Proc. of LREC, pages 1659–
1666.

Stephan Oepen, Omri Abend, Lasha Abzianidze, Jo-
han Bos, Jan Hajic, Daniel Hershcovich, Bin Li,
Tim O’Gorman, Nianwen Xue, and Daniel Zeman.
2020. MRP 2020: The second shared task on
cross-framework and cross-lingual meaning repre-
sentation parsing. In Proceedings of the CoNLL
2020 Shared Task: Cross-Framework Meaning Rep-
resentation Parsing, pages 1–22, Online. Associa-
tion for Computational Linguistics.

Santiago Ontanón, Joshua Ainslie, V. Cvicek,
and Zachary Kenneth Fisher. 2021. Making
transformers solve compositional tasks. ArXiv,
abs/2108.04378.

Kishore Papineni, S. Roukos, T. Ward, and Wei-Jing
Zhu. 2002. Bleu: a method for automatic evaluation
of machine translation. In ACL.

Thuong-Hai Pham, Dominik Machácek, and Ondrej
Bojar. 2019. Promoting the knowledge of source
syntax in transformer nmt is not needed. Com-
putación y Sistemas, 23.

Edoardo Maria Ponti, Roi Reichart, Anna Korhonen,
and Ivan Vulić. 2018. Isomorphic transfer of syntac-
tic structures in cross-lingual nlp. In Proc. of ACL,
volume 1.

Martin Popel and Ondřej Bojar. 2018. Training tips
for the transformer model. The Prague Bulletin of
Mathematical Linguistics, 110(1):43–70.

Maja Popovic. 2017. chrf++: words helping character
n-grams. In WMT.

Shauli Ravfogel, Y. Goldberg, and Tal Linzen. 2019.
Studying the inductive biases of rnns with syn-
thetic variations of natural languages. ArXiv,
abs/1903.06400.

D. Sachan, Yuhao Zhang, Peng Qi, and W. Hamilton.
2020. Do syntax trees help pre-trained transformers
extract information? ArXiv, abs/2008.09084.

Rico Sennrich, Orhan Firat, K. Cho, Alexandra
Birch, B. Haddow, Julian Hitschler, Marcin Junczys-
Dowmunt, Samuel Läubli, A. Barone, Jozef Mokry,
and Maria Nadejde. 2017. Nematus: a toolkit for
neural machine translation. In EACL.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Haoyue Shi, Hao Zhou, J. Chen, and Lei Li. 2018. On
tree-based neural sentence modeling. In EMNLP.

Vighnesh Leonardo Shiv and Chris Quirk. 2019. Novel
positional encodings to enable tree-based transform-
ers. In NeurIPS.

Linfeng Song, Daniel Gildea, Yue Zhang, Zhiguo
Wang, and Jinsong Su. 2019. Semantic neural ma-
chine translation using AMR. TACL, 7.

Miloš Stanojević and Mark Steedman. 2020. Max-
margin incremental CCG parsing. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4111–4122, On-
line. Association for Computational Linguistics.

Milan Straka. 2018. Udpipe 2.0 prototype at conll 2018
ud shared task. In Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies, pages 197–207.

Emma Strubell, Patrick Verga, Daniel Andor,
David Weiss, and Andrew McCallum. 2018.
Linguistically-informed self-attention for semantic
role labeling. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 5027–5038, Brussels, Belgium.
Association for Computational Linguistics.

Kai Sheng Tai, R. Socher, and Christopher D. Manning.
2015. Improved semantic representations from tree-
structured long short-term memory networks. In
ACL.

J. Tiedemann. 2012. Parallel data, tools and interfaces
in opus. In LREC.

Zhaopeng Tu, Z. Lu, Y. Liu, X. Liu, and Hang Li. 2016.
Modeling coverage for neural machine translation.
arXiv: Computation and Language.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Chaojun Wang and Rico Sennrich. 2020. On exposure
bias, hallucination and domain shift in neural ma-
chine translation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3544–3552, Online. Association for
Computational Linguistics.

Xinyi Wang, Hieu Pham, Pengcheng Yin, and Graham
Neubig. 2018. A tree-based decoder for neural ma-
chine translation. arXiv preprint arXiv:1808.09374.

Yau-Shian Wang, Hung yi Lee, and Yun-Nung Chen.
2019. Tree transformer: Integrating tree structures
into self-attention. In EMNLP/IJCNLP.

Sean Welleck, Peter West, Jize Cao, and Yejin Choi.
2021. Symbolic brittleness in sequence models: on
systematic generalization in symbolic mathematics.
arXiv preprint arXiv:2109.13986.

394

https://doi.org/10.18653/v1/2020.conll-shared.1
https://doi.org/10.18653/v1/2020.conll-shared.1
https://doi.org/10.18653/v1/2020.conll-shared.1
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/2020.acl-main.378
https://doi.org/10.18653/v1/2020.acl-main.378
https://doi.org/10.18653/v1/D18-1548
https://doi.org/10.18653/v1/D18-1548
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/2020.acl-main.326

J. Wieting, Taylor Berg-Kirkpatrick, Kevin Gimpel,
and Graham Neubig. 2019. Beyond bleu: Training
neural machine translation with semantic similarity.
In ACL.

Ethan Wilcox, Peng Qian, Richard Futrell, Ryosuke
Kohita, Roger Levy, and Miguel Ballesteros. 2020.
Structural supervision improves few-shot learning
and syntactic generalization in neural language mod-
els. arXiv preprint arXiv:2010.05725.

Shuangzhi Wu, Dongdong Zhang, Nan Yang, Mu Li,
and Ming Zhou. 2017. Sequence-to-dependency
neural machine translation. In Proc. of ACL.

Yingce Xia, Fei Tian, Lijun Wu, Jianxin Lin, T. Qin,
N. Yu, and T. Liu. 2017. Deliberation networks:
Sequence generation beyond one-pass decoding. In
NIPS.

Asaf Yehudai, Leshem Choshen, Lior Fox, and Omri
Abend. 2022. Reinforcement learning with large ac-
tion spaces for neural machine translation. In COL-
ING.

Meishan Zhang, Zhenghua Li, Guohong Fu, and Min
Zhang. 2019. Syntax-enhanced neural machine
translation with syntax-aware word representations.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages
1151–1161, Minneapolis, Minnesota. Association
for Computational Linguistics.

Xiangwen Zhang, Jinsong Su, Yue Qin, Y. Liu, R. Ji,
and Hongji Wang. 2018. Asynchronous bidi-
rectional decoding for neural machine translation.
ArXiv, abs/1801.05122.

Chunting Zhou, Xuezhe Ma, Junjie Hu, and Gra-
ham Neubig. 2019a. Handling syntactic divergence
in low-resource machine translation. In Proc. of
EMNLP-IJCNLP, pages 1388–1394.

Long Zhou, Jiajun Zhang, and Chengqing Zong. 2019b.
Synchronous bidirectional neural machine transla-
tion. Transactions of the Association for Computa-
tional Linguistics, 7:91–105.

395

https://doi.org/10.18653/v1/N19-1118
https://doi.org/10.18653/v1/N19-1118

A From sequence-to-sequence to
conditional

Attention-based models are characterized by being
state-less. They can, therefore, be viewed as con-
ditional language models, namely as models for
producing a distribution for the next word, given
the generated prefix and source sentence It is possi-
ble to re-encode other information (not only the de-
coded output) into the decoder at each step, or pre-
dict only tokens of interest, rather than the complete
sequence. It is also possible to change the source
sentence partially or completely (e.g., adding noise
to increase robustness), condition on additional in-
formation (§4) and adjust this information during
prediction (e.g. force predicted word characteris-
tics). Nevertheless, the standard practice is to only
re-encode past predictions.3

Unlike RNNs, attention-based models do not in-
herently rely on past predictions in terms of inputs,
weights and gradients. The only connection to past
predictions is mediated through their re-encoding
back into the decoder.

RNNs receive past states as inputs. Backprop-
agation through time sees the current network as
connected to the previous networks supplying the
state input. Thus, the gradients take into account
past predictions as well.

In contrast, Transformers have gradients over
representation of past words only if they are fed
into the network. Unlike backpropagation through
time, the preceding tokens can be changed, or even
omitted (e.g., in a limited window size scenario).
Specifically, in our case, preceding tokens may
have different representations at each generation
step.

To sum, the representation is updated to provide
good representation for the current step, but it is not
calculated over the actual network of the previous
step. It is often the case, though, that the previ-
ous decoded words are auto-regressed and hence
updated.

This architecture, therefore, allows more flex-
ibility than RNNs. Still, Transformers are of-
ten thought about as an extension to RNNs, i.e.,
sequnce-to-sequence models. For that reason it is
rare to find changes to the training schedule that
incorporate more knowledge, change "past" infor-
mation or translate only parts of a sentence with
a network. With such methods, for example, one

3This is true even in cases of bidirectional generation (e.g.,
Zhang et al., 2018).

can dynamically force features of the next predic-
tion (by a changing input) or augment learning by
teaching the network only over hard cases. Such
an approach may choose augmented data in a reg-
ular way, but stop the prediction at the part in the
sentence one wishes the network to learn, or even
teach it several alternatives with the same prefix.

B Experimental Setup

The code is adapted from the NEMATUS code
repository (Sennrich et al., 2017) and will be re-
leased upon publication. All hyperparameters are
either taken from the original suggestions or opti-
mized for the vanilla Transformer and used as is
for our suggested models.

Networks are all trained with batch size 128, em-
bedding size 256, 4 decoder and encoder blocks,
8 attention heads (one of which might be a parent
head §4), 90K steps (where empirically some satu-
ration is reached. This is a relatively fair compar-
ison (Popel and Bojar, 2018)), learning rate 1e−4,
4K warm-up steps, Adam (Kingma and Ba, 2015)
optimizer with beta 0.9 and 0.999 for the first and
second moment and epsilon of 1e−8. We use the
standard (structure-unaware) Transformer encoder
in all our experiments. Each model was trained on
4 NVIDIA Tesla M60 or RTX 2080Ti GPUs for
approximately a week (2 for GCN architecture),
large models on RTX6000.

Preprocessing includes truecasing, tokenization
as implemented by Moses (Koehn et al., 2007) and
byte pair encoding (Sennrich et al., 2016) with-
out tying. Empty source or target sentences were
dropped. In training, the maximum target sentence
length is 40 non-transition tokens (BPE).

We used UDPipe English and German over UD
2.0 and Russian with 2.5 with syntagrus version.

In unreported trials, we found that whenever
noisy and crawled data is used, filtering is crucial
for even the baselines to show reasonable results.
On full En-Ru (See §6.2), we filter unexpected lan-
guages by langID (Lui and Baldwin, 2012) and
improbable alignment (p < −180) with FastAlign
(Dyer et al., 2013). Overall, about half the sen-
tences were filtered by those measures or length.

There were 4,066,323 training sentences after
filtering En-De and 4,468,840 before. In En-Ru,
there were 19,557,568 after and 37,948,456 before.
The English challenge sets on books and news sizes
are respectively, 1,188 and 11 reflexive, 3,953 and
17 particle, 191 and 8 prepositions stranding, and

396

the German 2,628 and 261 reflexive and 7,584 and
232 particle. WMT dev and test sets are always of
about 3K sentences in size.

We use chrF++.py with 1 word and beta of 3 to
obtain chrF+ (Popovic, 2017) score as in WMT19
(Ma et al., 2019) and detokenized BLEU (Papineni
et al., 2002) as implemented in Moses. We use two
automatic metrics: BLEU as the standard measure
and chrF+ as it was shown to better correlate with
human judgments, while still being simple and un-
derstandable (Ma et al., 2019). Both metrics rely
on n-gram overlap between the source and refer-
ence, where BLEU focuses on word precision, and
chrF+ balances precision and recall and includes
characters, as well as word n-grams.

Transitions. We made two practical choices
when creating the transition graph. First, we
deleted the root edge, as the root is not a
word in the translation. Second, we train
only on projective parses. This choice re-
duces noise due to the low reliability of current
non-projective parsers (Fernández-González and
Gómez-Rodríguez, 2018), while not losing many
training sentences. We do note, however, that this
choice is not without its risks: it might be less fit-
ting for some languages in which non-projective
sentences are common.

The transitions serve as the NMT vocabulary.
There are 45 labels and two directions of connec-
tions, summing up to 90 new tokens. This hardly
affects the standard vocabulary size, which usually
consists of tens of thousands of tokens(Ding et al.,
2019). We treat both token and transition pre-
dictions in the same way, and do not rescale their
score as done in Stanojević and Steedman (2020).
If anything, the need to memorize more should hurt
performance, and so increased performance should
come despite enlarging the vocabulary and not be-
cause of it. It is possible to split the tokens into
directions and labels (summing to 47). This comes
at the cost of lengthy sentences which increase
training time and memory consumption. We did
not experiment with other methods for encoding
the transitions (e.g., embedding labels and edges
separately).

C Mixup challenge

We follow the results of (Bisazza et al., 2021) that
Transformers are able to learn languages with free
order, given case markings. Given those findings,
we wonder whether indeed Transformers are robust

Vanilla PARENT

Object 6 6
Subject 5 8

Both 10 13

Table 3: Amount of sentences where the rare order
(OVS) in German was still well corrected. In rows,
what had unambiguous casing.

to mixing the order where case marking exists.
To do that, we take lists of nouns and verbs to

create simple sentences from. Then, we create
three types of sentences, validated to be correct
and convey the same meaning in both orders by an
in-house annotator who is a native German speaker.
Ones with both marked such as: den Ball bringt der
Hund (lit. the dog brings the ball), ones with only
the subject marked: das Pfred drängt der Hund
(the dog urges the horse), and ones with only the
object.

The three lists of sentences are:

• Den {Ball, Stein, Tisch, Hamster} {bringt,
wirft, drückt} {das Kind, die Mutter, das Mäd-
chen}

• Das {Pferd, Kind, Mädchen} {drängt, drückt,
zieht} der {Vater, Hund, Student}

• Den {Ball, Stein, Tisch, Hamster} {bringt,
wirft, drückt} der {Vater, Hund, Student}

Then, we switch the object and subject and cal-
culate how often is the translation correct in terms
of places. We disregard other errors such as choice
of verb in English.

Interestingly, as seen in the results section §E,
both networks are quite bad at it (although the syn-
tactic variant is better).

D Results with the Large

We include the full results over the two larger mod-
els PARENT and the Vanilla. While overall results
are comparable, PARENT consistently performs bet-
ter on the challenge sets, often with large margins.

397

Preposition Stranding Particle Reflexive
Books News Books News Books News
BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+

Vanilla 8.70 33.58 13.82 43.41 8.59 32.66 15.28 44.28 8.54 32.85 18.90 45.82
PARENT 9.03 34.83 11.53 45.12 8.59 33.71 14.99 45.90 9.05 34.11 20.79 46.73

Table 4: Source challenge sets for En-De translation of large models. PARENT outperforms the Vanilla.

2013 2014 2015 Average
BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+

Vanilla 23.64 53.44 21.94 53.13 21.60 50.84 22.39 52.47
PARENT 23.56 54.08 22.11 53.77 20.69 49.16 22.12 52.34

Table 5: Test sets for En-De translation of large models.

Particle Reflexive
Books News Books News
BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+

Vanilla 4.14 20.72 20.31 49.04 8.08 32.38 20.65 49.09
PARENT 8.37 33.78 20.54 49.99 8.60 33.49 21.39 50.01

Table 6: Target challenge sets for En-De translation of large models. PARENT outperforms the Vanilla.

398

E Additional Results

We include here the full results including ablations
that were omitted in the paper due to space con-
siderations. For ease of comparison we also split
them by challenge direction (source Table 7 and
target Table 8). Note that improvements in the syn-
tactic aspect could also be seen in the ablations
(not reported in the main paper). Moreover, BiTran
improves over the Vanilla even as a standalone ar-
chitecture.

399

Particle Reflexive
Books News Books News

BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+
Vanilla 7.15 27.66 17.79 44.91 6.83 26.84 19.68 45.06
PARENT 7.82 28.43 19.66 46.32 7.49 27.70 20.97 47.07
GCN 7.32 27.67 20.13 46.77 7.11 27.16 20.68 47.15

BiTrans 7.02 27.60 18.58 45.09 6.8 26.90 19.87 45.89
Linearized 7.44 28.05 19.2 46.21 7.27 27.43 20.25 46.92
- Gates 7.62 28.23 19.71 46.36 7.38 27.65 20.74 47.19
- Labels 7.75 28.60 19.01 46.51 7.44 27.90 20.81 47.32

(a) Syntactic source challenge sets for De-En

Preposition Stranding Particle Reflexive
Books News Books News Books News

BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+
Vanilla 5.95 25.88 9.96 36.96 5.37 24.69 9.39 39.19 5.32 24.71 16.48 42.04
PARENT 6.21 28.12 11.17 41.13 5.47 25.74 11.93 41.24 5.71 26.22 15.56 42.76
GCN 6.21 27.27 11.31 40.48 5.51 25.53 10.35 39.83 5.46 25.70 16.45 43.03

BiTrans 5.3 26.38 10.56 38.05 6.07 26.08 10.21 39.48 5.77 26.01 13.91 37.74
Linearized 5.99 26.90 8.86 39.12 5.24 25.42 10.45 39.56 5.48 25.47 14.94 42.15
- Gates 5.29 25.86 11.64 40.51 5.3 25.03 10.01 38.64 5.31 25.41 12.08 37.00
- Labels 5.83 27.05 8.62 38.33 5.41 25.62 11.98 41.79 5.42 25.67 16.55 41.65

(b) Syntactic source challenge sets for En-De

Table 7: Results on the syntactic challenge sets, both on the large challenges from book domain and the smaller
ones from news. Models include Vanilla and Bidirectional Transformer baselines (top) and the GCN and PARENT
syntactic variants (middle). Ablated models (bottom) include Vanilla with linearized syntax (Linearized), GCN
without labels or gating (-Gates) and GCN without labels (-Labels). Among the baselines, BiTrans is better. It is
inconclusive which syntactic method is best, but they are significantly superior to both baselines.

400

Preposition Stranding Particle Reflexive
Books News Books News Books News
BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+

Vanilla 6.38 27.30 9.18 38.22 6.53 25.70 10.54 38.28 6.15 25.94 17.2 43.12
PARENT 7.59 27.87 10.81 39.22 7.07 26.50 9.72 39.57 6.82 26.58 17.56 44.00
GCN 6.33 26.60 10.14 41.00 6.69 26.16 10.6 39.81 6.33 25.83 20.16 44.19

BiTrans 6.75 27.44 8.92 37.76 6.29 25.69 10.77 39.15 6.24 25.93 17.22 43.96
Linearized 6.79 27.46 7.79 39.62 6.55 25.96 12.95 40.78 6.56 26.28 16.38 43.76
- Gates 6.89 27.31 10.46 40.80 6.53 26.26 12.45 40.70 6.62 26.50 15.97 43.10
- Labels 7.05 27.51 9.89 38.24 6.98 26.42 12.83 40.18 6.62 26.65 18.9 46.59

(a) Syntactic target challenge sets for De-En

Particle Reflexive
Books News Books News
BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+

Vanilla 5.4 25.84 16.24 43.22 5.12 24.94 16.47 42.71
PARENT 5.52 26.96 16.19 44.83 5.37 26.31 16.86 44.30
GCN 5.6 26.74 15.57 43.23 5.34 25.91 16.44 43.52

BiTrans 5.81 26.79 15.84 43.25 5.43 25.88 16.33 42.44
+ Linearized 5.32 26.30 15.69 43.77 5.07 25.57 16.19 43.07
- Gates 5.31 26.21 15.49 43.45 5.01 25.30 15.67 43.13
- Labels 5.56 26.55 15.78 43.96 5.24 25.67 16.8 43.65

(b) Syntactic target challenge sets for En-De

Table 8: Results on the syntactic challenge sets, both on the large challenges from book domain and the smaller
ones from news. Models include Vanilla and Bidirectional Transformer baselines (top) and the GCN and PARENT
syntactic variants (middle). Ablated models (bottom) include the Vanilla with linearized syntax (Linearized), GCN
without labels or gating (-Gates) and GCN without labels (-Labels). Among the baselines, BiTrans is better. It is
inconclusive which syntactic method is best, but they are significantly superior to both baselines.

401

2013 2014 2015 Average
BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+

Vanilla 17.61 45.54 18.23 47.29 19.57 47.50 18.47 46.78
BiTrans 17.64 45.66 18.34 47.53 19.33 47.61 18.44 46.93

PARENT 18.11 46.75 18.6 48.46 20.55 49.20 19.09 48.14
GCN 18.03 46.43 18.86 48.46 20.32 48.90 19.07 47.93

Linearized 17.71 46.07 18.39 47.69 19.81 48.36 18.64 47.37
- Gates 17.81 46.12 18.43 48.08 20.06 48.62 18.77 47.61
- Labels 17.98 46.40 18.77 48.29 19.96 48.73 18.90 47.80

(a) Test sets for En-De translation
2013 2014 2015 Average

BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+
Vanilla 21.51 48.20 21.40 48.46 21.44 48.13 21.45 48.26
BiTrans 21.63 48.48 21.42 48.86 21.38 48.54 21.48 48.63

PARENT 22.46 49.24 21.75 49.41 22.14 49.31 22.12 49.32
GCN 22.33 49.27 21.76 49.71 22.43 49.73 22.17 49.57

Linearized 21.95 49.27 21.83 49.79 22.20 49.70 21.99 49.59
- Gates 22.28 49.33 21.89 49.68 22.04 49.39 22.07 49.46
- Labels 22.21 49.46 21.75 49.73 22.26 49.57 22.07 49.59

(b) Test sets for De-En translation

Table 9: En-De and De-En results on newstest 2013-15. Ablated models include the Transformer decoder with
linearized syntax (Linearized), GCN without labels or gating (-Gates) and GCN without labels (-Labels). The syn-
tactic variants consistently outperfom the vanilla and ablated variants, and the Bidirectional Transformer (BiTrans)
slightly outperforms Vanilla Transformer.

402

E.1 Noisy data
Table 10a presents the two tables side by side for
ease of comparison. The one on larger noisy Rus-
sian train set and the cleaner one.

403

2013 2014 2015 Average
BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+

Vanilla 13.20 38.72 17.17 43.69 14.19 40.87 14.85 41.09
BiTran 13.13 39.10 17.63 44.63 14.59 41.52 15.12 41.75
GCN 13.25 40.31 17.86 46.09 15.38 43.09 15.50 43.16
PARENT 13.61 40.67 18.53 46.44 15.75 43.57 15.96 43.56

(a) Test sets for En-Ru translation trained on news data
2013 2014 2015 Average

BLEU chrF+ BLEU chrF+ BLEU chrF+ BLEU chrF+
Vanilla 16.84 44.28 20.12 47.7 14.74 40.92 17.23 44.30
BiTran 16.84 44.46 20.61 48.17 14.79 41.05 17.41 44.56
GCN 17.11 45.55 20.29 48.67 14.6 41.63 17.33 45.28
PARENT 16.8 45.42 20.2 48.95 14.59 41.73 17.20 45.37

(b) Test sets for En-Ru translation trained on noisy data

Table 10: En-Ru results on newstest 2013-15 trained on clean (top) or noisy (bottom) data. Models include Vanilla,
Bidirectional Transformer and syntactic variants. The syntactic ones improve over all datasets and on average.

404

