
Proceedings of the 29th International Conference on Computational Linguistics, pages 5857–5869
October 12–17, 2022.

5857

A-TIP: Attribute-aware Text Infilling via Pre-trained Language Model

Dongyuan Li, Jingyi You, Kotaro Funakoshi, Manabu Okumura
Tokyo Institute of Technology

{lidy,youjy,funakoshi,oku}@lr.pi.titech.ac.jp

Abstract

Text infilling aims to restore incomplete texts
by filling in blanks, which has attracted more at-
tention recently because of its wide application
in ancient text restoration and text rewriting.
However, attribute-aware text infilling is yet
to be explored, and existing methods seldom
focus on the infilling length of each blank or
the number/location of blanks. In this paper,
we propose an Attribute-aware Text Infilling
method via a Pre-trained language model (A-
TIP), which contains a text infilling component
and a plug-and-play discriminator. Specifically,
we first design a unified text infilling compo-
nent with modified attention mechanisms and
intra- and inter-blank positional encoding to
better perceive the number of blanks and the
infilling length for each blank. Then, we pro-
pose a plug-and-play discriminator to guide
generation towards the direction of improving
attribute relevance without decreasing text flu-
ency. Finally, automatic and human evaluations
on three open-source datasets indicate that A-
TIP achieves state-of-the-art performance com-
pared with all baselines.

1 Introduction

Originating from Cloze tests (Taylor, 1953), text
infilling aims to fill in missing blanks in a sentence
or paragraph by making use of the preceding and
subsequent texts. For example, given two infilling
tasks E1 and E2 in Fig.1, text infilling models are
supposed to provide fine-grained control over the
location of any number of blanks and infill a vari-
able number of missing tokens for each blank. Text
infilling has been gaining increasing attention in
a number of prevailing research fields, including
ancient text restoration (Lazar et al., 2021), text
editing and rewriting (Su et al., 2021), and conver-
sation generation (Ou et al., 2021).

However, current text infilling methods are based
only on bidirectional semantic constraints (Ou
et al., 2021), and other abundant attribute-based

E1: Sentiment Infilling

SST-5 Dataset Watching these [Mask] is both [Mask] and [Mask].
Roberta
BLK

Watching these kids is both funny and heartbreaking too.
Watching these teams is both inspiring and the action.

A-TIP with Positive Relevance Infilling. Attribute set: c = {Positive}
Watching these performances is both inspiring and artfully mesmerizing.
A-TIP with Negative Relevance Infilling. Attribute set: c = {Negative}
Watching these shows is both boring and disgusting me much.

E2: Expert Knowledge Infilling

Abstract Dataset [Mask] of [Mask] and [Mask] of their [Mask].
TIGS Systems of and control and capability of their distance.
BERT One of her friends and one of their friends.
A-TIP with Computer Science Relevance Infilling. Attribute set: c = {CS}
Analysis of data sources and functions of their programs.
A-TIP with Math Relevance Infilling. Attribute set: c = {Math}
Introduction of randomness matrices and decomposition of their method.

Figure 1: A-TIP can generate more fluent, diverse and
attribute relevant infilling content in two examples.

constraints, e.g., sentiment and topics, remain to
be studied. In reality, infilling attribute-aware con-
tent can better satisfy human needs and introduce
more diversity. For instance, as shown in Fig.1,
A-TIP can fill in blanks under the guidance of an
attribute to satisfy sentiment or expert knowledge
infilling, while current text infilling models mainly
focus on fluency, which leads to meaningless and
monotonous infilling contents (Sun et al., 2021).

Designing a simple but efficient attribute-aware
text infilling model is a challenging task. First,
to achieve attribute awareness, simply modify-
ing a text infilling model architecture or fine-
tuning with attribute-specific data will destroy the
model’s ability to infill blanks or require a signifi-
cant cost for re-training (Dathathri et al., 2020).
Second, if the model infills blanks towards the
direction of improving text attributes, avoiding
ill-formedness between infilling content and its
bidirectional context becomes a challenge. For
instance, “The movie interesting and perfect us”
with _ as blanks. Finally, current methods lack
fine-grained control over automatic determination
of the number/location of blanks or the infilling
length for each blank. For example, Markov
assumption-based models (Liu et al., 2019; Zaidi

5858

et al., 2020) hardly adapt to variable infilling
lengths, while masked language model (MLM)-
based methods (Devlin et al., 2019; Liu et al., 2020)
are incapable of generating more than one word
per blank, and generative LM-based methods (Don-
ahue et al., 2020) cannot guarantee the output will
match the number of missing blanks in the input.

To circumvent the above dilemma, in this pa-
per, we propose an Attribute-aware Text Infilling
method based on a Pre-trained LM (A-TIP), in
which a plug-and-play discriminator provides fine-
grained control over bidirectional well-formed flu-
ency and attribute relevance.1 Specifically, 1) we
first propose a general text filling framework that
fine-tunes a standard LM with many artificially-
masked examples in an auto-regressive manner.
Moreover, to ensure that the number of infilling
contents equals the number of blanks, we design a
new attention mechanism, where unmasked tokens
can attend to each other but masked tokens can at-
tend only to the preceding context (Fig.2 (A)). We
also adopt two-level positional encoding to com-
bine inter- and intra-blank positional information
to automatically learn the length of blanks. 2) To
achieve attribute-aware generation without modify-
ing LM’s architecture or re-training, we propose a
plug-and-play discriminator that shifts the output
distribution of the text infilling model towards the
semantic space of given guide attributes. We also
design two additional strategies to ensure the in-
filling content is well-formed with its bidirectional
context without decreasing attribute relevance. The
main contributions are summarized as follows:
•We propose a unified text infilling model that

adopts a new attention mechanism and two-level
positional encoding to enable our model to learn
the number/location of blanks and infilling length
for each blank automatically.
• To the best of our knowledge, A-TIP is the first

attribute-aware text infilling model that does not re-
quire any modification of the language model’s
architecture or re-training on specific attributed
datasets. Further, our plug-and-play discrimina-
tor can provide fine-grained control over fluency
and attribute relevance, and can be applied to any
transformer decoder-based text infilling model.
• The experimental results on three open datasets

show that A-TIP achieves state-of-the-art perfor-
mance compared with all baselines.

1Sentences with higher accuracy of attribute-based classi-
fication are said to have higher attribute relevance (Dathathri
et al., 2020).

2 Related Work

In this section, we briefly review the most rele-
vant studies to our work on pre-trained LMs, text
infilling, and constrained text generation.

2.1 Pre-trained Language Models

Pre-trained LMs have made significant improve-
ments in many natural language processing tasks
by adopting self-supervised learning with abun-
dant web texts (Chay-intr et al., 2021; You et al.,
2022). They can be classified into three types. The
first uses an auto-encoding model. For example,
BERT (Devlin et al., 2019) and its variations are
pre-trained as masked LMs to obtain bidirectional
contextualized word representations. The second
adopts an encoder-decoder architecture, which is
pre-trained for seq2seq tasks, such as MASS (Song
et al., 2019) and T5 (Raffel et al., 2020). The third
adopts an auto-regressive model, which follows a
left-to-right manner for text generation, such as
GPT-2 (Radford et al., 2019) and XLNet (Yang
et al., 2019). While we adopt GPT-2 as the LM in
this paper, our method can be easily migrated to
any type of pre-trained LMs.

2.2 Text Infilling Approaches

Current text infilling algorithms can be classified
into four categories. Generative adversarial net-
works (GAN)-based methods train GANs to ensure
that the generator can generate highly reliable in-
filling content to fool the discriminator (Guo et al.,
2018; Fedus et al., 2018). Intricate inference-based
methods adopt dynamic programming or gradient
search to find infilling content that has a high like-
lihood within its surrounding context (Liu et al.,
2019; Zaidi et al., 2020). Masked LM-based meth-
ods generate infilling content on the basis of its
bidirectional contextual word embedding (Devlin
et al., 2019; Shen et al., 2020). LM-based methods
fine-tune off-the-shelf LMs in an auto-regressive
manner, and a number of methods change the in-
put format by putting an infilling answer after the
masked input (Donahue et al., 2020), while others
do not change the input format (Zhu et al., 2019).
Unlike the aforementioned methods, we solve a
more complex task: attribute-aware text infilling.

2.3 Constrained Text Generation

Traditional controlled generation models involve ei-
ther fine-tuning existing models (He, 2021) or train-
ing conditional generative models (Keskar et al.,

5859

2019). Dathathri et al. (2020) proposed a plug-
and-play controlled generation model (PPLM),
which does not modify or re-train the parameters
of the original LM but can achieve comparable
performance to fine-tuning methods. For example,
PPCM (Madotto et al., 2020) updates the hidden
state towards the direction of attribute enhancement
to generate attribute-aware conversations. Pascual
et al. (2021) designed a complex plug-and-play
architecture to ensure that the generated content
contains specific keywords. While GeDi (Krause
et al., 2021) and its extension (Lin and Riedl, 2021)
can accelerate the decoding process of PPLM, they
assume the model is trained by large-scale labeled
datasets, which is unrealizable for text infilling.
Unlike the previous work, we should also consider
the generated infilling content is well-formed with
its corresponding bidirectional context, ensuring
PPLM is suitable for text infilling.

3 Preliminaries

To clarify our method, we first introduce some es-
sential background knowledge and then define the
task of attribute-aware text infilling.

Language Models reveal the degree of how
much a sentence (a sequence of words) is likely
to be a realistic sequence of a human language.
Formally, letW be the vocabulary set and w1:n =
{w1, . . . , wn} is a sentence with n words, where
wi ∈ W . An LM measures the joint probability by
decomposing the sequence one by one:

p(w1:n) =

n∏
i=1

p(wi|w<i), (1)

where w<i = {w1, . . . , wi−1}.
Constrained Text Generation: Given k explicit

constraints c = {c1, . . . , ck}, our goal is to gener-
ate a sentence w that maximizes the conditional
probability p(w|c):

p(w|c) =
n∏

i=1

p(wi|w<i, c). (2)

Task Definition: Attribute-aware text infilling
is to take incomplete text w̃, containing one or
more missing blanks, and return completed text
w under the constraints of c. As in Fig.1, several
attributes are listed in c. Specifically, let [Mask]
be a placeholder for a contiguous sequence of one
or more missing tokens. Then, w̃ is a sequence
of tokens in which a number of them are [Mask].

To map w̃ to w, constrained with attribute c, an
infilling strategy must specify both how many and
which tokens to generate for each [Mask]. Note
that there may be many logical w for a given w̃.
Hence, we are interested in learning a distribution
p(w|w̃, c). Specifically, in accordance with Bayes’
theorem, we formulate the probability of predicting
the token wi for its corresponding [Mask] as:

p(wi|w<i, c) ∝ p(wi|w<i) · p(c|w1:i), (3)

where p(wi|w<i, c) can be decomposed into two
parts that deal with the LM for p(wi|w<i) and
the discriminator for p(c|w1:i). In Section 4, we
introduce these two parts in detail. We assume that
any two constraints are independent: p(c|w1:i) =∏k

j=1 p(cj |w1:i).

4 Methodology

The overall framework of A-TIP is shown in Fig.2.
A-TIP contains two components: a text infilling
model and a plug-and-play attribute-aware con-
troller.

4.1 Text Infilling Model
Given a corpus consisting of complete text exam-
ples, we first create infilling examples and then
train the GPT-2 with these examples. Specifically,
given an input example w1:n with n tokens, we
first randomly replace m non-overlapping word
spans S = {s1, . . . , sm} in w with [Mask] to-
kens to form a corrupted text w̃. We also as-
sume each span si contains ni consecutive tokens
[s(i,1), . . . , s(i,ni)]. Then, we concatenate the spans
S separated by [Answer] tokens to form a training
target S̃ = {[Answer], s(1,1), . . . , s(1,n1), [Answer],
. . . , [Answer], s(m,1), . . . , s(m,nm) }. Finally, we
construct a complete infilling example by concate-
nating w̃ and S̃ (see Token Embedding in Fig.2).

There are two advantages of designing such an
input format. First, we add only 2m additional
tokens (one [Mask] and one [Answer] per blank as
shown in Fig.2 “Token Embedding” add 4 tokens
for two spans). Although memory usage for GPT-2
grows quadratically with sequence length, as m
is small, additional training time complexity will
be minimal. Second, we can apply two different
attention strategies for the corrupted text w̃ and
training target text S̃. As shown in Fig.2 (A), while
tokens in the corrupted text have attentions on all
other tokens in w̃, tokens in the training target can
have attentions only on its previous tokens. By

5860

Transform
er

Block L

Unperturbed
Distribution𝒙𝟏

𝒙𝟔

𝒙𝟐

[𝐌]
𝒙𝟑
𝒙𝟒
[𝐌]

[𝐀]

[𝐀]

𝒙𝟓

+𝟏

𝟓

𝟐
𝟑
𝟒
𝟓

𝟐

𝟓

𝟎

𝟑

𝟎
𝟎
𝟎
𝟎

𝟏

𝟐

𝟐
𝟓

𝟐
𝟏

+
+
+
+

+
+
+
+
+

+

+
+
+
+

+
+
+

+
+

Randomly
 Masked

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟒

𝒙𝟓

𝒙𝟔

Inter
Position

 Intra
 Position

Token
Embedding

Input Transform
er Block 1

Transform
er Block 2

Transform
er Block L-1

Language
Model

𝑯𝒕

𝑝(𝑥)

∆𝐻
!

Hidden
continuous space

Search direction to maximize 𝒑(𝒄|𝒙)

Discriminator

Transform
er

Block L

𝑝%(𝑥)

 Perturbed
 Distribution

Min KL

Unmodified
Word

Modified
Word

𝑯𝒕+∆𝑯𝒕

Hidden State

Gain from
Attribute

𝒙𝟔

𝒙𝟐
[𝑬]

[𝑬]

𝒙𝟓

Threshold Layer
𝒙𝟏
[𝐌]
𝒙𝟑
𝒙𝟒
[𝐌]

𝒙𝟐
[𝐀]

[𝐀]
𝒙𝟓
𝒙𝟔

𝒙𝟏 [𝐌]𝒙𝟑 𝒙𝟒[𝐌][𝐀] 𝒙𝟐 [𝐀]𝒙𝟓 𝒙𝟔

Self-Attention Mechanism

(A)

(B)

[M] = [Mask] [A] = [Answer]

Figure 2: Model overview. We first fine-tune an off-the-shelf GPT-2 by adopting a new attention mechanism and
two-level positional encoding to infill blanks. Then, we design a plug-and-play discriminator to guide generation
in the direction of improving attribute relevance. We also adopt KL divergence and a threshold-based strategy to
provide fine-grained control over fluency and attribute relevance.

adopting such an attention mechanism, when A-
TIP infills the i-th blank si, it will focus on the
bidirectional context of the i-th blank, which can
ensure the well-formedness and rationality of the
whole sentence.

Current methods hardly perceive the num-
ber/location and infilling length for each blank. We
design two-level positional encoding, which can
provide fine-grained control over them. Specifi-
cally, each token is encoded with two position IDs.
The first position ID represents the inter-position
in the corrupted text w̃ and the second position ID
represents the intra-position in each span.

Finally, A-TIP trains the GPT-2 with the infill-
ing examples in an auto-regressive manner. When
predicting missing tokens in each blank, A-TIP
has access to the corrupted text w̃ and the previ-
ously predicted blanks. Formally, the probability
of generating the i-th blank si is

pθ(si|w̃, s<i) =

ni∏
j=1

p(si,j |w̃, s<i, si,<j), (4)

where θ are parameters for the GPT-2, ni represents
the number of tokens in si, si,j represents the j-
th token in the span si, s<i represents previously
predicted blanks, and si,<j = {si,1, · · · , si,j−1}.

4.2 Plug-and-play Attribute-aware Controller
To clarify our approach, we follow the nota-
tion of Dathathri et al. (2020) and define the
GPT-2 decoding process (Eq.(4)) in a recur-
sive manner. Specifically, we first define Ht,
that contains all historical key-value pairs, i.e.,
Ht = [(K

(1)
t ,V

(1)
t), . . . , (K

(l)
t ,V

(l)
t)], where

(K
(l)
t ,V

(l)
t) stores all key-value pairs of t tokens in

the l-th layer. Then, we formally define the recur-
rent decoding process to generate the i-th token as:

oi,Hi = GPT-2(w<i,Hi−1), (5)

where oi is the hidden state of the input at i-th
time-step. Then, we sample the i-th generated
token from the following distribution by beam
search (Hokamp and Liu, 2017):

wi ∼ pi = Softmax(Woi), (6)

where W is a parameter matrix that maps the hid-
den state oi to a vector of the vocabulary size.

In accordance with Bayes’ theorem in Eq.(3),
we have p(wi|w<i, c) ∝ p(wi|w<i) · p(c|w1:i).
To achieve attribute-aware text infilling, when we
infill the i-th blank, we shift history matrix Hi−1 to-
wards the direction of the sum of two gradients: 1)
To maximize the log-likelihood of the attribute c un-
der the conditional attribute model p(c|w1:i) and 2)
To ensure high fluency of text infilling p(wt|w<i).
We update only Hi−1 and fix other model parame-
ters unchanged since next-token prediction depends
only on the past key-value pairs via Hi−1. Thus,
we propose to gradually update Hi−1 to guide fu-
ture generation in the desired direction.

Let ∆Hi−1 be the update to Hi−1 to shift the
generation infilling content towards the desired at-
tribute direction c. At the beginning of the gen-
eration, ∆Hi−1 is initialized to zero, and we can
obtain the unmodified distribution as pi. Then, we
update ∆Hi−1 with gradients from the attribute
model that measures the extent to which the gener-
ated text possesses the desired attribute. Following
Dathathri et al. (2020), we rewrite p(c|w1:i) as Pb
= p(c|Hi−1 +∆Hi−1) and define the gradient up-

5861

date for ∆Hi−1 as

∆Hi−1 ← ∆Hi−1 + α
∇∆Hi−1Pb

∥∇∆Hi−1Pb∥γ
, (7)

where α is the learning rate and γ is the scaling
coefficient for the normalization term to control the
relevance of the attribute. We repeat Eq.(7) less
than 10 times to generate attribute-aware tokens.
Subsequently, the new H̃i−1 = Hi−1 + ∆Hi−1

is computed, and a new token is generated using
õi,Hi = GPT-2(w<i, H̃i−1). The described opti-
mization process is repeated for every token in the
generated sequence. Compared with the uncondi-
tional LM-based text generation task, this process
will not take much time (see detail in experiments).

Although we can generate attribute-aware infill-
ing content, we can easily generate low-quality,
repetitive, and low-fluency text. Thus, we add two
additional components to ensure the fluency and
quality of generated infilling content with its bidi-
rectional context. First, we minimize the KL diver-
gence between the unmodified distribution pi and
modified distribution p̃i for the i-th token:

min DKL(p̃i || pi). (8)

Our objective function can be reformulated as

Loss = p(c|H̃i−1) + λDKL(p̃i || pi), (9)

where λ is a parameter to balance the fluency and
attribute relevance. Then, we update ∆Hi−1 as:

∆Hi−1 ← ∆Hi−1 + α
∂∆Hi−1Loss

∥∂∆Hi−1Loss∥γ
. (10)

Intuitively, we can generally find many words
that have different levels of correlations with the
specific attribute (Mohammad, 2018). For example,
{perfect, good, bad, like} can mainly determine the
sentiment of a sentence. Thus, we define Gain
from the attribute to determine whether to change a
generated word. As shown in Fig.2, two candidate
words are sampled from the unmodified distribu-
tion (before back propagation) and modified distri-
bution (after back propagation), respectively. Gain
between two candidate words in the conditional
model can be formulated as

Gain = p(c|w<i, w̃i)− p(c|w<i, wi), (11)

where w̃i and wi are samples from the modified
and unmodified distributions, respectively.

To better control the relevance of the attribute,
we define a threshold δ to determine whether to
generate a word from the modified distribution.
Specifically, Gain >δ represents that the word gen-
erated from the modified distribution can have a rel-
atively remarkable effect on attributes. Otherwise,
if the discriminator does not guide well at certain
steps (Gain <δ), we select the word generated from
the unmodified distribution to maintain the fluency
to be the same as the original unconditional text
infilling model to the greatest extent.

Discriminator Construction: As shown in
Fig.2 (B), for simplicity, we train a linear classifier
f as a discriminator with annotated datasets, indi-
cating a sentence and label pair as (w,y). Specifi-
cally, for each sentence w of length t, we compute
the set of hidden states o = {o1, . . . , ot} from the
GPT-2. Then, we compute the mean of o as ō and
train f using the cross-entropy between the true
label distribution y and predicted label distribu-
tion f(ō). The number of parameters in this layer
is (embedding dimension × number of attributes
+ number of attributes), which is negligible com-
pared with the number of parameters in the text
infilling model itself.

5 Experimentation

As shown in Table 1, we evaluated the proposed
methods on three tasks to demonstrate that our
framework is not custom tailored to a single do-
main: sentiment-aware, domain knowledge-aware,
and topic-aware text infilling. We also show a case
study for these tasks. We determined whether A-
TIP can generate infilling text that satisfies the de-
sired attribute and whether it can infill high-quality
text in blanks by using both automated methods
and human annotators.

Dataset Examples Words Attributes

SST-5 11,855 215,154 5
Abstracts 200K 30M 8

ROCStories 100K 5M 13

Table 1: Descriptive statistics of three datasets.

5.1 Experimental Settings

Datasets In addition to using the datasets in Ta-
ble 1 to train our text infilling model, we also
adopted sentiment labels in SST-5 (Pang and Lee,
2005) for sentiment-aware text infilling, research

5862

P
er

p
le

x
it

y

A
cc

u
ra

cy

10

20

30

40

50

60

70

0.20

0.25

0.30

0.35

0.40

0.45

10% 20% 30% 40% 50% 60% 70% 10% 20% 30% 40% 50% 60% 70%

Mask Rate Mask Rate

(A) (B) (C)

(D) (E)

Figure 3: Based on the validation data of SST-5, we evaluated the parameter effect for Perplexity (A), Dist1 (B), and
Accuracy (C). We draw the effect of mask rate on performance of text infilling for Perplexity (D) and Accuracy (E).

area labels in Abstracts (Donahue et al., 2020) for
domain knowledge-aware text infilling, and topic
labels in ROCStories (Mostafazadeh et al., 2016)
for topic-aware text infilling. For the datasets with
attribute labels like SST-5 and Abstracts, we can di-
rectly use their labels to train our plug-and-play
discriminator. However, considering that most
datasets do not have attribute labels, we adopted
COMBINETM (Bianchi et al., 2021) to detect at-
tributes for them (details in Appendix A). For ex-
ample, for ROCStories, we can detect thirteen at-
tributes and prove that A-TIP can generate a rele-
vant topic in human evaluation (Table 3).

We split the datasets into 80%/10%/10% as
training/validation/test data, respectively. Follow-
ing TIGS (Liu et al., 2019) and BLM (Shen et al.,
2020), we randomly masked r% tokens in each
document. To ensure that all experiments are per-
formed on the same data, we removed infilling
examples that exceed our training sequence length
of 256 tokens.

Evaluation Metrics In automated evaluation,
perplexity is a measure for fluency in open-domain
text generation.2 We measured it using GPT-2. The
diversity of text was measured using the number

2Overlap-based metrics such as BLEU scores (Papineni
et al., 2002) are not appropriate for evaluating infilling as there
are many realistic infills that have no word-level overlap with
the original.

of distinct n-grams (normalized by text length) as
in Li et al. (2016). We reported Dist1, Dist2, and
Dist3 scores for the distinct 1, 2, 3-grams. Follow-
ing Dathathri et al. (2020), we used an external
classifier to evaluate Accuracy (macro-average F-
score) for sentence attribute labels. We evaluated
the attribute control for sentiment (SST-5) with
an external sentiment classifier with XLNet (Yang
et al., 2019), which was trained with the IMDB
dataset. We chose a BERT-based classifier (Lopes
et al., 2021) for the Abstracts dataset. The t-test
was used to evaluate the significant performance
difference between two approaches (Yang and Liu,
1999) for both automated and human evaluations.

Baselines We compared A-TIP with six baselines
that can be classified in four classes (Section 2.2):
1) Inference-based: We trained TIGS (Liu et al.,
2019), an RNN-based seq2seq model. At infer-
ence time, we iteratively searched tokens in con-
tinuous space and projected their vectors to real
words. 2) GAN-based: We trained the gener-
ator of MaskGan (Fedus et al., 2018) on PLM
with a seq2seq architecture. The discriminator can
make word distributions of the generator closer to
those of the real word distribution. 3) Masked
LM-based: We used representations of blanks
as seeds to fine-tune BERT (Devlin et al., 2019)
and Roberta (Liu et al., 2020). At inference time,

5863

Datasets SST-5 Abstracts ROCStories

Metrics PPL Dist1 Dist2 Dist3 ACC PPL Dist1 Dist2 Dist3 ACC PPL Dist1 Dist2 Dist3

TIGS 73.23 0.475 0.424 0.425 0.237 49.70 0.659 0.657 0.644 0.453 63.30 0.672 0.675 0.691
MaskGan 68.83 0.385 0.758 0.728 0.288 48.82 0.652 0.662 0.642 0.494 63.32 0.677 0.671 0.701

BERT 51.76 0.773 0.732 0.732 0.302 28.86 0.683 0.656 0.624 0.508 64.16 0.673 0.636 0.560
Roberta 56.34 0.392 0.745 0.745 0.291 26.22 0.710 0.710 0.700 0.528 42.96 0.666 0.659 0.540
BLM 58.90 0.548 0.329 0.345 0.257 50.34 0.512 0.431 0.356 0.568 45.69 0.591 0.594 0.614
ILM 48.14 0.805 0.792 0.801 0.305 21.30 0.710 0.710 0.706 0.634 37.53 0.678 0.692 0.709

A-TIP/Dis 40.26 0.789 0.765 0.742 0.301 18.82 0.708 0.708 0.698 0.614 30.35 0.662 0.653 0.688
A-TIP/KL 51.22 0.797 0.788 0.782 0.421 28.97 0.711 0.711 0.706 0.752 47.35 0.685 0.693 0.718

A-TIP 42.21† 0.805† 0.807† 0.808† 0.386† 20.36† 0.711† 0.711† 0.707† 0.694† 32.13† 0.685† 0.693† 0.721†

Table 2: Overall performance comparison. PPL is perplexity, Dist scores measure divergence, and ACC is
classification accuracy. † shows our results significantly surpass all baselines using t-test with p <0.005. Underlines
mean our ablation algorithm can achieve better results than A-TIP for a metric.

blanks are infilled one after another and are con-
ditioned on the previous generation. We trained
BLM (Shen et al., 2020) with a seq2seq architec-
ture, where the encoder module is a transformer
(base) and the decoder process adopts beam search.
4) LM-based: We trained ILM (Donahue et al.,
2020) by fine-tuning GPT-2 to output a full docu-
ment from a masked input. Note that it may have
invalid outputs that do not match the input format.

Implementation Details In our experiments, we
set the learning rate α = 1e − 4 and the scaling
coefficient γ = 0.5 for Eq. (10). Sequence repre-
sentations were obtained by the GPT-2 module (12
layers, 12 heads, nembd = 768, nctx = 1024, batch
size = 24). We applied the Adam (Kingma and
Ba, 2015) optimizer with an initial learning rate
of 1e-4, and the weight decay and dropout were
turned based on the loss on the validation data. Our
discriminator has a linear layer on the head of GPT-
2. For a fair comparison, we followed the default
parameter settings of the baselines and repeated all
experiments 10 times to report the average accu-
racy. The unpaired t-test was used to evaluate the
significant difference between any two approaches
as multiple comparisons (details in Appendix B) for
both automated and human evaluations. We trained
models with early stopping. Following Dathathri
et al. (2020), we evaluated the attribute control for
sentiment with an external sentiment classifier.

Parameter Sensitivity A-TIP uses two hyper-
parameters. λ dominates the attribute relevance
of generated text and δ can control the fluency of
infilling content. We analyzed the parameter sensi-
tivity on all three validation data and selected the

validation data of SST-5 as an example to deter-
mine the parameter sensitivity of A-TIP. As shown
in Figs.3 (A-C), we observed how λ and δ affect
the performance of A-TIP by varying λ from 0.2
to 0.6 in 0.1 intervals and δ from 0.008 to 0.012 in
0.001 intervals. The results indicated that A-TIP
obtain the best performance when λ ∈ [0.4, 0.5]
and δ ∈ [0.010, 0.011]. The reason why these pa-
rameters can affect the results is that when λ < 0.4,
the attribute relevance becomes stronger and the
fluency gets destroyed. λ > 0.5 weakens both the at-
tribute relevance and text diversity. When δ < 0.01,
A-TIP tends to preserve modified words, which
leads to low fluency. When δ > 0.012, A-TIP
preserves the original unmodified words, which
causes low attribute relevance and diversity of text.
To achieve a balanced performance, we set λ=0.4
and δ=0.01 on all datasets in our experiments.

Considering that the mask rate r is also a hyper-
parameter, we analyzed its effect on the results by
varying it from 10% to 70%. We found the same
trend on all datasets and took SST-5 as an example.
As shown in Fig.3 (D), the fluency decreased when
r varies from 10% to 40% because infilling content
may be well-formed with its bidirectional context.
As r increased from 40% to 70%, the fluency of
text mainly depends on the baselines’ original gen-
eration ability, which is stable. Fig.3 (E) shows
that when r increases, the baselines cannot recover
the attributes of infilling content well. However,
A-TIP can generate attribute-aware text to improve
the classification accuracy. All baselines can obtain
stable fluency and classification accuracy when r =
50%, we fixed r= 50% to show numerical experi-
mental results in the later experiments.

5864

Dataset SST-5 Abstracts ROCStories

Metrics Fluency Attri-Rele Fluency Attri-Rele Fluency Attri-Rele

TIGS 4.076 4.008 4.072 3.920 4.080 3.960
MaskGan 3.982 3.892 3.962 3.921 4.002 3.861

BERT 4.320 4.196 4.180 4.120 4.076 3.988
Roberta 4.168 4.132 4.068 3.892 4.016 4.032
BLM 4.084 3.956 3.856 3.968 4.072 3.992
ILM 4.236 4.076 4.104 3.964 4.048 3.992

A-TIP 4.476† 4.320† 4.396† 4.296† 4.452† 4.348†

Table 3: Human evaluation on three datasets. † indicates the results significantly surpass others.

5.2 Automated Evaluation

We evaluated the performance of A-TIP on
attribute-aware text infilling by measuring PPL,
Dist1, Dist2, Dist3, and ACC on the test data. Ta-
ble 2 shows, A-TIP outperformed other baselines,
indicating that our proposed framework can take
advantage of the bidirectional context and attribute
information. Additionally, ILM can achieve good
results on PPL because it also adopts GPT-2 for
text infilling. However, compared to one-layer
positional encoding and auto-regression attention
mechanism in ILM, A-Tip/Dis (A-Tip without dis-
criminator) achieves better fluency (PPL) because
it adopts the modifies attention mechanism (Fig.2
(A)) to effectively learn the length for each blank,
and focus on the number/location of blanks by two-
level positional encoding (intra- and inter-blank).

A-TIP obtained more accurate sentence at-
tributes than other baselines, which demonstrates
A-TIP can generate text that satisfies the desired
attribute. While the accuracy was improved by 8%
compared with the baselines, we observed ILM and
BERT also yield high classification accuracy. This
is because we randomly masked 50% of tokens in
the original input without considering whether the
token has a specific attribute. We did not generally
mask attribute relevant tokens, that helps the sen-
tence maintain its original attribute. If all attribute
relevant tokens are masked, we can obtain better re-
sults. For a fair comparison, we randomly masked
tokens instead of masking specific tokens.

5.3 Ablation Study

To verify the effect of each component in A-TIP, we
conducted an ablation study. In specific, A-TIP/Dis
does not include the plug-and-play discriminator,
and the text infilling part remains unchanged. A-
TIP/KL does not include the KL loss and threshold-

based strategy. Table 2 shows A-TIP/Dis can im-
prove text fluency while reducing attribute rele-
vance. A-TIP/KL increases attribute relevance and
decreases text fluency. Since the discriminator can
guide generation towards the attribute-aware direc-
tion, while losing the fluency to a certain extent. By
incorporating KL and a threshold, A-TIP achieves
a better balanced performance.

5.4 Human Evaluation

We considered two types of human annotation: flu-
ency and attribute relevance (Attri-Rele). Anno-
tators were asked to evaluate the fluency/attribute
relevance of each individual sample on a scale of
1∼5, with 1 being Not fluent/Not relevant at all and
5 being Very fluent/Very relevant, as in (Lample
et al., 2019). We randomly selected 100 samples
for each baseline from each test data and asked
ten people on Amazon Mechanical Turk to identify
the fluency and attribute relevance for each sample.
We then used the average scores of ten annotations
as final scores (see more detail in Appendix C).

As shown in Table 3, A-TIP achieved the high-
est score compared with the baselines, indicating
that sentences infilled by A-TIP can be not only
more fluent but also more attribute relevant. Some-
what surprisingly, we observed that BERT, TIGS,
and MaskGan yield the worst performance. BERT
performed poorly due to the intrinsic difficulty of
finding convincing infilling content with a suitable
length. TIGS and MaskGan may have performed
poorly because, unlike ILM and A-TIP, they were
not initialized from a large-scale pre-trained LM.

5.5 Running Time Comparison

To generate attribute-aware tokens, we update the
Eq.(10) less than 10 times for each token. As
shown in Fig.5, we compare the running time be-

5865

Figure 4: Case study for sentiment content infilling and expert knowledge infilling.

tween A-TIP/Dis and A-TIP to ensure that we have
less additional time-consuming. Specifically, we
randomly select 30 samples from SST-5 and ROC-
Stories datasets, where SST-5 contains short sen-
tences and ROCStories contains almost long sen-
tences. Then, we changed the mask rate from 30%
to 70% for each selected sample to make our results
more reliable. As shown in Fig.5, compared with
the unconditional LM-based text generation task,
updating the hidden state towards attribute-relevant
direction will take less additional time.

Figure 5: Running time comparison between A-TIP/Dis
and A-TIP on SST-5 and ROCStories. We change the
mask rate from 30% to 70%.

5.6 Case Study

We conducted a case study to show the infilling
ability of A-TIP. Specifically, as shown in Fig.4,
we first propose to infill the blanks with sentimental
words. We choose Roberta and BLK as our com-
pared examples. Because these two methods get
the best result in this case. We can see Roberta in-
fill the blanks with two contradictory words (funny
and heartbreaking), where humans do not have such
contradictory and complex emotional expressions.

BLK can unify the expression of emotion, but it can
not ensure the fluency of the generated sentence. In
contrast, we can control A-TIP to generate positive
or negative infilling contents with high fluency.

We want to explore if A-TIP can generate do-
main knowledge for a specific area for the second
case. We choose BERT and TIGS as our com-
pared examples. Since these two methods get the
best result in domain knowledge infilling. We find
that they cannot generate expert knowledge infill-
ing content. And they tend to generate correct
and high-frequency infilling content, while they are
generally meaningless and monotonous (Sun et al.,
2021; Lazar et al., 2021; Su et al., 2021). However,
we can control A-TIP to generate both CS-related
and Math-related infilling content by constraining
the attribute as CS and Math.

6 Conclusion

In this paper, we presented a simple strategy for text
infilling A-TIP that leverages an LM by proposing
new attention mechanisms and two-level positional
encoding to effectively improve the quality of gen-
eration in limited data settings. Furthermore, our
plug-and-play discriminator can guide the gener-
ation towards the direction of improving text at-
tribute relevance. In future work, we plan to incor-
porate the plug-and-play discriminator into more
systems that assist humans in the writing process,
where we hope that our work encourages more in-
vestigation of text infilling.

Acknowledgements

We would like to gratefully thank the anonymous
reviewers for their helpful comments and feedback.
Dongyuan Li and Jingyi You acknowledge the sup-
port from China Scholarship Council (CSC).

5866

References
Yoav Benjamini and Yosef Hochberg. 1995. Control-

ling the false discovery rate: a practical and pow-
erful approach to multiple testing. Journal of the
Royal statistical society: series B (Methodological),
57(1):289–300.

Federico Bianchi, Silvia Terragni, and Dirk Hovy. 2021.
Pre-training is a hot topic: Contextualized document
embeddings improve topic coherence. In Proceed-
ings of NAACL.

Thodsaporn Chay-intr, Hidetaka Kamigaito, and Man-
abu Okumura. 2021. Character-based Thai word seg-
mentation with multiple attentions. In Proceedings
of RANLP, pages 264–273.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2020. Plug and play language models:
A simple approach to controlled text generation. In
Proceedings of ICLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL.

Chris Donahue, Mina Lee, and Percy Liang. 2020. En-
abling language models to fill in the blanks. In Pro-
ceedings of ACL.

William Fedus, Ian J. Goodfellow, and Andrew M. Dai.
2018. Maskgan: Better text generation via filling in
the _______. In Proceedings of ICLR.

Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong
Yu, and Jun Wang. 2018. Long text generation via
adversarial training with leaked information. In Pro-
ceedings of AAAI.

Xingwei He. 2021. Parallel refinements for lexically
constrained text generation with bart. In Proceedings
of EMNLP.

Chris Hokamp and Qun Liu. 2017. Lexically con-
strained decoding for sequence generation using grid
beam search. In Proceedings of ACL.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney,
Caiming Xiong, and Richard Socher. 2019. CTRL:
A conditional transformer language model for con-
trollable generation. In Proceedings of ICLR.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of ICLR.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann,
Nitish Shirish Keskar, Shafiq R. Joty, Richard Socher,
and Nazneen Fatema Rajani. 2021. Gedi: Genera-
tive discriminator guided sequence generation. In
Proceedings of EMNLP.

Guillaume Lample, Sandeep Subramanian,
Eric Michael Smith, Ludovic Denoyer, Marc’Aurelio
Ranzato, and Y-Lan Boureau. 2019. Multiple-
attribute text rewriting. In Proceedings of ICLR.

Koren Lazar, Benny Saret, Asaf Yehudai, Wayne
Horowitz, Nathan Wasserman, and Gabriel
Stanovsky. 2021. Filling the gaps in Ancient
Akkadian texts: A masked language modelling
approach. In Proceedings of EMNLP.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting ob-
jective function for neural conversation models. In
Proceedings of NAACL.

Zhiyu Lin and Mark Riedl. 2021. Plug-and-blend:
A framework for controllable story generation
with blended control codes. arXiv preprint
arXiv:2104.04039.

Dayiheng Liu, Jie Fu, Pengfei Liu, and Jiancheng Lv.
2019. TIGS: An inference algorithm for text infilling
with gradient search. In Proceedings of ACL.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2020.
Roberta: A robustly optimized bert pretraining ap-
proach. In Proceedings of ICLR.

Lucas Gouveia Omena Lopes, Thales M. A. Vieira, and
William Wagner M. Lira. 2021. Automatic evalua-
tion of scientific abstracts through natural language
processing. arXiv preprint arXiv:2112.01842.

Andrea Madotto, Etsuko Ishii, Zhaojiang Lin, Sumanth
Dathathri, and Pascale Fung. 2020. Plug-and-play
conversational models. In Proceedings of EMNLP.

Saif Mohammad. 2018. Obtaining reliable human rat-
ings of valence, arousal, and dominance for 20,000
English words. In Proceedings of ACL.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A corpus
and cloze evaluation for deeper understanding of
commonsense stories. In Proceedings of NAACL.

Jiefu Ou, Nathaniel Weir, Anton Belyy, Felix Yu, and
Benjamin Van Durme. 2021. Infillmore: Frame-
guided language generation with bidirectional con-
text. In Proceedings of *SEM.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. In Proceedings of ACL.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of ACL.

Damian Pascual, Beni Egressy, Clara Meister, Ryan
Cotterell, and Roger Wattenhofer. 2021. A plug-
and-play method for controlled text generation. In
Proceedings of EMNLP.

http://www.jstor.org/stable/2346101
http://www.jstor.org/stable/2346101
http://www.jstor.org/stable/2346101
https://doi.org/10.18653/v1/2021.acl-short.96
https://doi.org/10.18653/v1/2021.acl-short.96
https://aclanthology.org/2021.ranlp-1.31
https://aclanthology.org/2021.ranlp-1.31
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/2020.acl-main.225
https://doi.org/10.18653/v1/2020.acl-main.225
https://openreview.net/forum?id=ByOExmWAb
https://openreview.net/forum?id=ByOExmWAb
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16360
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16360
https://doi.org/10.18653/v1/2021.emnlp-main.681
https://doi.org/10.18653/v1/2021.emnlp-main.681
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/P17-1141
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/2021.findings-emnlp.424
https://doi.org/10.18653/v1/2021.findings-emnlp.424
https://openreview.net/forum?id=H1g2NhC5KQ
https://openreview.net/forum?id=H1g2NhC5KQ
https://doi.org/10.18653/v1/2021.emnlp-main.384
https://doi.org/10.18653/v1/2021.emnlp-main.384
https://doi.org/10.18653/v1/2021.emnlp-main.384
https://doi.org/10.18653/v1/n16-1014
https://doi.org/10.18653/v1/n16-1014
https://arxiv.org/abs/2104.04039
https://arxiv.org/abs/2104.04039
https://arxiv.org/abs/2104.04039
https://doi.org/https://doi.org/10.48550/arXiv.1905.10752
https://doi.org/https://doi.org/10.48550/arXiv.1905.10752
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2112.01842
https://arxiv.org/abs/2112.01842
https://arxiv.org/abs/2112.01842
https://doi.org/10.18653/v1/2020.findings-emnlp.219
https://doi.org/10.18653/v1/2020.findings-emnlp.219
https://doi.org/10.18653/v1/P18-1017
https://doi.org/10.18653/v1/P18-1017
https://doi.org/10.18653/v1/P18-1017
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/2021.starsem-1.12
https://doi.org/10.18653/v1/2021.starsem-1.12
https://doi.org/10.18653/v1/2021.starsem-1.12
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2021.findings-emnlp.334
https://doi.org/10.18653/v1/2021.findings-emnlp.334

5867

Tuomas Puoliväli, Satu Palva, and J. Matias Palva. 2020.
Influence of multiple hypothesis testing on repro-
ducibility in neuroimaging research: A simulation
study and python-based software. Journal of Neuro-
science Methods, 337:108654.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research.

Tianxiao Shen, Victor Quach, Regina Barzilay, and
Tommi S. Jaakkola. 2020. Blank language models.
In Proceedings of EMNLP.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. MASS: masked sequence to sequence
pre-training for language generation. In Proceedings
of ICML.

Yixuan Su, David Vandyke, Simon Baker, Yan Wang,
and Nigel Collier. 2021. Keep the primary, rewrite
the secondary: A two-stage approach for paraphrase
generation. In Proceedings of ACL-IJCNLP.

Bin Sun, Shaoxiong Feng, Yiwei Li, Jiamou Liu, and
Kan Li. 2021. Generating relevant and coherent
dialogue responses using self-separated conditional
variational AutoEncoders. In Proceedings of ACL-
IJCNLP.

Wilson L Taylor. 1953. “cloze procedure”: A new tool
for measuring readability. Journalism quarterly.

Yiming Yang and Xin Liu. 1999. A re-examination
of text categorization methods. In Proceedings of
SIGIR.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In Proceedings of NeurIPS.

Jingyi You, Dongyuan Li, Hidetaka Kamigaito, Ko-
taro Funakoshi, and Manabu Okumura. 2022. Joint
learning-based heterogeneous graph attention net-
work for timeline summarization. In Proceedings
of NAACL, pages 4091–4104.

Najam Zaidi, Trevor Cohn, and Gholamreza Haffari.
2020. Decoding as dynamic programming for re-
current autoregressive models. In Proceedings of
ICLR.

Wanrong Zhu, Zhiting Hu, and Eric P. Xing. 2019. Text
infilling. arXiv preprint arXiv:1901.00158.

https://doi.org/https://doi.org/10.1016/j.jneumeth.2020.108654
https://doi.org/https://doi.org/10.1016/j.jneumeth.2020.108654
https://doi.org/https://doi.org/10.1016/j.jneumeth.2020.108654
https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2020.emnlp-main.420
http://proceedings.mlr.press/v97/song19d.html
http://proceedings.mlr.press/v97/song19d.html
https://doi.org/10.18653/v1/2021.findings-acl.50
https://doi.org/10.18653/v1/2021.findings-acl.50
https://doi.org/10.18653/v1/2021.findings-acl.50
https://doi.org/10.18653/v1/2021.acl-long.437
https://doi.org/10.18653/v1/2021.acl-long.437
https://doi.org/10.18653/v1/2021.acl-long.437
https://doi.org/https://doi.org/10.1177/107769905303000401
https://doi.org/https://doi.org/10.1177/107769905303000401
https://doi.org/10.1145/312624.312647
https://doi.org/10.1145/312624.312647
https://doi.org/https://doi.org/10.48550/arXiv.1906.08237
https://doi.org/https://doi.org/10.48550/arXiv.1906.08237
https://doi.org/10.18653/v1/2022.naacl-main.301
https://doi.org/10.18653/v1/2022.naacl-main.301
https://doi.org/10.18653/v1/2022.naacl-main.301
https://openreview.net/forum?id=HklOo0VFDH
https://openreview.net/forum?id=HklOo0VFDH
https://doi.org/https://doi.org/10.48550/arXiv.1901.00158
https://doi.org/https://doi.org/10.48550/arXiv.1901.00158

5868

A Detail Information for Datasets

As shown in Table 4, we give the number of ex-
amples, the total number of words and the detail
attributes label for three widely used datasets, SST-
5, ROCStories and Attributes, respectively. We
selected these three datasets since we would like to
check if A-TIP can infill the blanks with sentiment
words, domain knowledge and topics.

We can directly use their labels to train our plug-
and-play discriminator for datasets with attribute
labels like SST-5 (sentiment labels) and Abstract
(domain knowledge labels).

Figure 6: Topic similarity graph.

However, considering most datasets like ROC-
Stories have no labels, we extend our method to
deal with this situation. Intuitively, we can con-
struct a general attribute-based plug-and-play dis-
criminator to guide different datasets to generate
different infilling content. However, in practical
operation, it is unrealistic to build such an available
attribute-based discriminator to guide the infilling
generation because the downstream datasets have a
variety of different attribute requirements. There-
fore, we need to generate specific category labels
for different downstream datasets to satisfy their
specif attribute-related needs and use them to guide
the infilling generation.

Specifically, we extend our model to more ap-
plications by combining our model with any topic
exploration algorithms to mine topic labels on un-
labeled datasets. For instance, we adopt COM-
BINETM (Bianchi et al., 2021) to detect topic at-
tributes for ROCStories dataset by two methods
Contextual and Combined. As shown in Table 5,
we adopt three metrics to evaluate the quality of the
attributes of ROCStories dataset: Topic Coherence,

Inverted RBO and NPMI. And we choose 13 topics
as our final labels since it has the best performance
on average of all metrics.

As shown in Fig.6, we draw a topic similarity
graph among thirteen topics. We find the similarity
within topics is high, and the similarity between
topics is low, demonstrating that the detected topics
have high quality and low redundancy. We adopt
13 topic labels to train discriminators for ROCSto-
ries datasets, and we achieve the best performance
about topic-relevant on human evaluation.

B Benjamini-Hochberg procedure

The Benjamini-Hochberg (B-H) Procedure is a
powerful tool that decreases the false discovery
rate (Benjamini and Hochberg, 1995). Considering
the reproducibility of multiple significant test, we
introduce how we adopt the B-H procedure and
give the hyper-parameter values that we used.

Specifically, we first adopt t-test (Yang and Liu,
1999) with default parameters3 to calculate p-value
between each compared algorithm with A-TIP.
Then, we put the individual p-values in ascend-
ing order as input to calculate p-value corrected
by B-H. We directly use the “multipletests(*args)”
function from python package4 and set the hyper-
parameter of false discover rate Q = 0.05 which
is the widely used default value (Puoliväli et al.,
2020). Finally, we get cut-off value as the output
of “multipletests(*args)” function, where cut-off
is a dividing line that distinguishes whether two
groups of data are significant or not. Specifically,
if the p-value is smaller than the cut-off value, we
can get the conclusion that two groups of data are
significant different.

C Detail Information for Human
Evaluation

We show the human evaluation in Fig.7. We adopt
fluency and attribute relevance as our evaluation
metrics. We use their label as their attribute for
labelled datasets SST-5 and Abstract. For unlabeled
datasets like ROCStories, we manufacture labels
as their attributes. And we list detailed scores from
1 to 5 for each metric.

3https://docs.scipy.org/doc/scipy/
reference/generated/scipy.stats.ttest_
ind.html

4https://www.statsmodels.org/dev/
generated/statsmodels.stats.multitest.
multipletests.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html
https://www.statsmodels.org/dev/generated/statsmodels.stats.multitest.multipletests.html
https://www.statsmodels.org/dev/generated/statsmodels.stats.multitest.multipletests.html
https://www.statsmodels.org/dev/generated/statsmodels.stats.multitest.multipletests.html

5869

Dataset Examples Words Attributes

SST-5 11,855 215,154 Negative/ Somewhat negative/ Neutral/ Somewhat positive/ Positive
ROCStories 100K 5M Sport/ Shop/ School/ Food/ Family/ Hospital/ Work/ Car/ Vacation/ House/ Music/ Pet/ Other

Abstracts 200K 30M Condensed Matter/ CS/ Math/ Nonlinear Sciences/ Physics/ Bio/ Quant-Phy/ Statistics

Table 4: Descriptive statistics of datasets and their attributes.

Contextual Combined
Topic Number Coherence RBO NPMI Coherence RBO NPMI

10 0.490 0.160 0.150 0.348 0.079 0.232
11 0.981 1.000 0.007 0.981 1.000 -0.008
12 0.986 1.000 0.030 0.933 1.000 -0.004
13 0.993 1.000 0.053 0.972 1.000 0.061
14 0.951 1.000 0.048 0.971 1.000 0.060
15 0.936 1.000 0.042 0.946 1.000 0.059
16 0.935 1.000 0.044 0.921 1.000 -0.008
17 0.905 0.998 0.042 0.922 0.992 0.037
18 0.906 0.982 0.045 0.868 0.989 0.038
19 0.892 0.977 0.043 0.822 0.982 0.021
20 0.882 0.972 0.040 0.802 0.978 0.022

Table 5: Contextual-based and Combined-based topic detection algorithms evaluate three widely used metrics:
Topic Coherence, Inverted RBO, and NPMI.

Figure 7: Human evaluations on Amazonmturk.

