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Abstract

Noise Learning is important in the task of text
classification which depends on massive la-
beled data that could be error-prone. However,
we find that noise learning in text classifica-
tion is relatively underdeveloped: 1. many
methods that have been proven effective in the
image domain are not explored in text clas-
sification, 2. it is difficult to conduct a fair
comparison between previous studies as they
do experiments in different noise settings. In
this work, we adapt four state-of-the-art meth-
ods of noise learning from the image domain
to text classification. Moreover, we conduct
comprehensive experiments on our benchmark
of noise learning with seven commonly-used
methods, four datasets, and five noise modes.
Additionally, most previous works are based
on an implicit hypothesis that the commonly-
used datasets such as TREC, Ag-News and
Chnsenticorp contain no errors. However, these
datasets indeed contain 0.61% to 15.77% noise
labels which we define as intrinsic noise that
can cause inaccurate evaluation. Therefore,
we build a new dataset Golden-Chnsenticorp
(G-Chnsenticorp) without intrinsic noise to
more accurately compare the effects of differ-
ent noise learning methods. To the best of our
knowledge, this is the first benchmark of noise
learning for text classification.

∗† Corresponding author.

1 Introduction
The fast development of text classification cannot be
achieved without massive labeled data resources, espe-
cially for supervised embedding-based methods. How-
ever, not all training data are correctly labeled in practice
(Wang et al., 2018; Zlateski et al., 2018). These incor-
rectly labeled data are called noisy labels. To alleviate
the interference caused by noisy labels, many noise
learning methods have been proposed (Rolnick et al.,
2017; Veit et al., 2017; Jiang et al., 2018; Yang Liu,
2019; Li et al., 2020; Curtis G. Northcutt, 2020; Garg
et al., 2021). Although both CV and NLP domains have
serious label noise problems, these work are mainly fo-
cused on the CV domain, only (Garg et al., 2021) is
dedicated to NLP domain. So in order to support the
development of noise learning in NLP, we would like to
propose a noise learning benchmark in the field of text
classification.

We find that the previous studies in noise learning
for text classification tasks have two weaknesses. 1.
The implicit hypothesis is unreasonable. 2. They lack
horizontal comparison.

Unreasonable implicit hypothesis. The previous
research uses a four-step approach to evaluate a new
method. First, they split a dataset into training data and
test data, and then add manufactured noise data to the
training data following a predefined noise mode. Third,
they apply the noise learning method to the training data.
In the end, they evaluate the noise learning method on
the test data. This approach makes an implicit assump-
tion that the dataset is completely reliable. Based on this
assumption, the noise data in the experiment is equal to
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Dataset Intrinsic Noise TotalFatal Inexact Ambiguous
TREC 1.94% 2.58% 3.16% 7.68%

Ag-News 0.00% 0.12% 0.49% 0.61%
Chn. 2.19% 4.63% 8.95% 15.77%

Table 1: The ratio of intrinsic noise in several widely
used datasets. Chn. denotes Chnsenticorp.

the manufactured noise data and the evaluation given
the test data is accurate. But we find that the dataset is
not completely noise-free and the ratio of noise data in
the dataset (i.e. intrinsic noise, which can be divided
into three parts according to the ambiguity level: fatal
noise, inexact noise, and ambiguous noise) is not negli-
gible for noise learning task (Han et al., 2020), as shown
in Table 1. Thus, the noise data in the experiment is
actually equal to the superposition of the intrinsic noise
data and the manufactured noise. Hence, the evaluation
in previous studies is not robust and accurate.

Lacking horizontal comparison. The previous stud-
ies lack horizontal comparison between them as they
usually use different datasets, different noise modes,
different noise ratios, etc. This is not conducive to the
development of noise learning for text classification.

In order to overcome these two weaknesses, we build
a new dataset without intrinsic noise and present a
benchmark of noise learning for text classification. The
main contributions of this paper can be summarized as
follows:

• We divide the intrinsic noise into three parts ac-
cording to the ambiguity level. To the best of our
knowledge, this is the first time intrinsic noise to
be defined and analyzed in the noise learning task
of text classification.

• We propose a new dataset without intrinsic noise,
named G-Chnsenticorp. Experiments on this
dataset would have more accurate results.

• This is the first time that a benchmark of noise
learning for text classification has been established.
First, we summarize the noise modes mentioned in
previous works. Second, we reproduce/transform
seven commonly used noise learning methods in/to
the text classification task.

• We have several interesting observations and con-
clusions: Intrinsic Noise is more difficult to be
learned than other noise modes; many methods do
not work well when the noise ratio is higher than
30%; a small amount of white noise can benefit
classification methods, etc.

2 Related Work

Plenty of previous studies have examined the factors
that impact label noise learning models. Zhang et al.
(2016) prove that a model of sufficient complexity can

over-fit any noise. Jacot et al. (2018) analyze conver-
gence and generalization in neural networks from the
perspective of Gaussian processes in the infinite-width
limit. Rolnick et al. (2017) propose a model that is ex-
tremely adaptive to specific patterns of artificial noise.
Li et al. (2020) prove that gradient descent with early
stopping is robust to label noise for overparameterized
neural networks. From the perspective of noise mode,
Algan and Ulusoy (2020) conduct a detailed analysis of
the influence of label noise on model training and pro-
pose a generic framework to generate feature-dependent
label noise. Hataya and Nakayama (2018) investigate
the behavior of Convolutional Neural Networks (CNNs)
under class-dependently simulated label noise. Flatow
and Penner (2017) test the robustness of the model by
randomly permuting the labels of the training set with
increasing frequency.Jiang et al. (2020) establish the
first benchmark of controlled real-world label noise in
the CV field.

Following the work of Han et al. (2020) which
divides noise learning methods into three categories
optimization-based method, objective-based method,
and data-based method for a more comprehensive com-
parative analysis, we select several commonly-used
noise learning methods from each category to conduct
comparison experiments.

There exist a few benchmarks (Xu et al., 2018; Jiang
et al., 2020) in the field of image classification, but
there is no benchmark in the field of text classification.
Therefore, many works in text classification task (Jindal
et al., 2019; Garg et al., 2021) only do comparative
experiments with their own baseline. Moreover, very
few studies consider different noise settings. A robust
benchmark is much needed in the development of the
field of text classification.

3 G-Chnsenticorp database
Ambiguity level. We then define three categories of
intrinsic noise based on the aforementioned annotator
agreement thresholds: fatal noise [90%, 100%], inexact
noise [60%, 90%), and ambiguous noise [0%, 60%).
Specifically, when more than 90% of the annotators
agree upon a label different from the original one, we
consider the sample as fatal noise. When 60% to 90%
of annotators agree on a label different the original,
we consider the sample as inexact noise. When less
than 60% of annotators agree on the label, no matter
what label it is we consider it as ambiguous. Ratios
of the three intrinsic noises in TREC, Ag-News and
Chnsenticorp are summarized in Table 1. We adopted
two annotator agreement thresholds 90% and 60% as our
guidance. (Please refer to Appendix B for the selection
of threshold.) Note that annotator agreement threshold
here means the ratio of agreement on labeling among
the annotators.

We investigate three common datasets for text classi-
fication illustrated as follows:

• TREC (Voorhees and Tice., 1999): An question
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classification dataset consisting of fact-based ques-
tions divided into broad semantic categories. There
are six classes. It contains 5k+ training samples.

• Ag-News (Xiang Zhang, 2015): A large-scale,
four-class topic classification dataset. It contains
approximately 110K training samples.

• Chnsenticorp (Tan and Zhang, 2008): A hotel re-
view classification dataset. It contains 5K+ positive
reviews and 2K+ negative reviews.

With regard to the Chnsenticorp dataset, we recruited
a team of 10 experts in hotel management as annota-
tors to label samples from Chnsenticorp and found that
there existed four categories in the dataset: positive,
negative, irrelevant, and neutral. We remove irrelevant
and neutral samples to construct a new binary dataset
Golden-Chnsenticorp (G-Chnsenticorp) since we be-
lieve those samples are ambiguous in the task of text
classification.

Based on the three types of intrinsic noise, we recon-
struct the G-Chnsenticorp dataset as follows: we correct
samples of fatal noise with the annotator majority la-
bel and remove samples of inexact or ambiguous noise.
Note that since G-Chnsenticorp is a simple binary text
sentiment classification dataset, we are confident to cor-
rect the fatal noise labels with our expert majority label
and remove the other two types of noise. Ambiguous
noise samples such as "Good breakfast but bad bed"
are indeed noise to the binary classification dataset and
challenging samples such as sarcastic reviews are not
classified as ambiguous or inexact noise during anno-
tating. The new dataset can ensure the robustness of
the models trained on it. Through our annotating and
modification as mentioned above, we obtain the final
G-Chnsenticorp dataset which contains around 4,000
training samples.

4 Noise Generation Methods
In single-label text classification tasks, we assign a
corresponding label to each sentence. For all n sam-
ples with k different types of classes, we let D =
{(x1, y1), (x2, y2), . . . , (xn, yn)} as noise-free dataset,
where xi denotes the ith sentence in the dataset, yi ∈
{1, . . . , k} denotes the class of the ith sentence. How-
ever, it is hard for us to find truly noise-free data
in the dataset except for manual verification. There-
fore, we first assume all pre-given data are true. Then,
we use noise transfer matrix to automatically generate
the corresponding noise-labeled dataset. Here, we set
D

′
= {(x1, y

′

1), (x2, y
′

2), . . . , (xn, y
′

n)} as the noisy
dataset, where y

′

i denotes the corresponding noise label
of sentence xi. The noise transfer matrix Φ(y, y

′
) rep-

resents the transfer distribution of the true label y and
the noise label y

′
, which is a k × k matrix.

Under the same assumption in other studies (Ari-
tra Ghosh, 2017; Patrini et al., 2017; Jindal et al., 2019),
the noise label y

′

i only depends on the corresponding

Noise Mode Noise Generation Formula

Symmetric Noise Φ = (1 − p)I + p
k
A

Pairflip Noise Φ = (1 − p)I + pB

Uniform Noise Φ = (1 − p)I + p
k
C

Random Noise Φ = (1 − p)I + pD

White Noise other unrelated field text

Table 2: Different generation formala of noise mode.
Here, I represents the identity matrix. A denotes an all-
ones matrix with zeros along the diagonal. B represents
the identity matrix where the last column is transferred
to the first column. C represents the matrix with zeros
along the diagonal, and except for the diagonal, the
values are uniformly and independently distributed. D
is a matrix independent of the k − 1 dimensional unit
simplex with zeros along the diagonal.

true label yi, but not the input xi or the other labels
yj or y

′

j . In our experiment, we use the noise transfer
matrix Φ to generate the corresponding noise labels for
the training set, but labels in the test set are not changed.
Meanwhile, we use p to denote the noise rate, which is
the overall probability of label errors, where 0 ≤ p ≤ 1.

Generally speaking, noise labels can be categorized
into four types according to different noise transfer ma-
trices. As shown in Table 2 and Figure 1: (1) Symmetric
Noise (Van Rooyen et al., 2015); (2) Pairflip Noise (Han
et al., 2018); (3) Random Noise (Garg et al., 2021);
(4)Uniform Noise (Garg et al., 2021). Here, if i means
the original category and j means the convered category,
Φ[i][j] represents the probability of class i becoming
to class j. Additionally, we define a new type of noise
named White Noise. Referring to the practice in the im-
age field (Rolnick et al., 2017), we first collect different
fields of text data and generate white noise by randomly
labeling the labels.
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Figure 1: Transition matrices of different noise types
(using 4 classes and noise rate p=0.2 as an example).

5 Method
Common noise learning methods can be divided into
three categories: optimization-based method, objective-
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based method and data-based method (Han et al., 2020).

5.1 Optimization-based Method
Optimization-based methods use two networks to make
predictions on the same mini-batch data and calculate
a joint loss with Co-Regularization for each training
example. For the optimization policy, the key is to
explore the dynamic process of optimization, which
relates to memorization. (Han et al., 2020)

Here, we modify the Co-teaching (Han et al., 2018),
Co-teaching+ (Yu et al., 2019) and JoCoR (Wei et al.,
2020) frameworks to make the data and models compat-
ible with natural language processing tasks. All of them
are originally used in the field of computer vision.

• Co-teaching: it trains two networks simultaneously.
In each batch data, both networks select their small-
loss samples to cross-update parameters of the
other network.

• Co-teaching+: it trains two networks simultane-
ously, too. Different from selecting all small-loss
data in Co-teaching, Co-teaching+ only keeps pre-
diction discrepancy data in the two networks.

• JoCoR: it also trains two networks, but updates
parameters with a joint loss. To reduce divergence
between two networks, JoCoR uses the joint loss
and sampling discrepancy data to backward propa-
gate in a whole.

For feature representation layers, we use three types
of networks to extract features, which are FNN, CNN,
and BERT.

• Co-teachingFNN : based on the Co-teaching
method, we use three-layer feedforward neural net-
works to extract features.

• Co-teachingCNN : based on the Co-teaching
method, we use CNN for feature representation.

• Co-teachingBERT : based on the Co-teaching
method, we use BERT for feature extraction.

5.2 Objective-based Method
The objective-based methods learn from noisy data by
modifying the objective function. Specifically, the key
is to design a suitably modified loss, which is noise-
tolerant and guarantees statistical consistency compared
to the original loss (Han et al., 2020).

Here we select LSTMDN−H (Garg et al., 2021),
LSTMDN−S (Garg et al., 2021) and Peer (Yang Liu,
2019) to modify the loss function. In these three ap-
proaches, only Peer is originally used in the field of
natural language processing.

• LSTMDN−H : the network first assigns a probabil-
ity score to each training data by a beta mixture
model clustering the losses at an early epoch of
training. Then the network is trained with these
scores using the joint loss lDN−H .

lDN−H = lCE(ŷ
(n), y) + β ·B(x) · lCE(ŷ

(c), y)

where ŷ(n) denotes the noisy label prediction, ŷ(c) de-
notes the clean label prediction, y denotes the input in
training dataset, lCE denotes the cross entropy loss, B(x)
denotes the posterior probability that x has a clean label,
and β is a weighting parameter between the two terms.

• LSTMDN−S: similar to the LSTMDN−H . The only
difference is that the network uses an alternative
formulation by replacing the Bernoulli R.V. B(x)
with the indicator 1[B(x) > 0.5]. The lDN−S loss
function is as follows:

lDN−S = lCE(ŷ
(n), y) + β · χ · lCE(ŷ

(c), y)

where χ denotes the indicator 1[B(x) > 0.5]. In the
experiments of LSTMDN−H and LSTMDN−S model,we
use pretrained word2vec embeddings and lstm neural
network layer to extract features.

• Peer: introduces a new family of loss functions
called peer loss functions.This method enables
training a classifier over noisy labels without using
explicit knowledge of the noise rates of labels. The
lpeer loss function is as follows:

lpeer(f(xj), yj) = l1(f(xj), yj)− αl2(f(xj1), yj2)

where alpha is non-zero real number hyper-
parameter. For each sample (xj , yj), randomly draw
other two samples (xj1 , yj1), (xj2 , yj2) such that j1 ̸=
j2. These two samples are called the peer sample. f
represents the bayes optimal classifier. l1 and l2 can
be any standard classification-calibrated loss function,
such as cross entropy loss and mean square error loss.
In our experiments, we use BERT (Devlin et al., 2019)
as the feature extraction layer.

5.3 Data-based Method
For data-based methods, we aim to discover the under-
lying noise transition pattern. The noise transfer matrix
allows us to find the relationship between the clean la-
bel and the noisy label. Therefore, the key point here is
to design an accurate estimator of the noise transition
matrix. In this method, we select the Confident learning
approach that is originally used in computer vision to
solve this problem.

Confident learning (CL) is an alternative approach
that instead focuses on the label quality by character-
izing and identifying label errors in datasets. Based
on the principles of pruning noisy data, we count with
probabilistic thresholds to estimate noise and rank ex-
amples to train with confidence (Curtis G. Northcutt,
2019). The CL model inferred which samples are noisy
by obtaining the predicted probabilities of the samples
on different classifications. In other words, the predicted
probabilities are the feature of the CL model to discrimi-
nate noisy labels. In our experiments,we use three-layer
feedforward neural networks to extract predicted proba-
bilities of the samples.
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T
R

E
C

Symmetric Noise Pairflip Noise

Method Clean Data 10% 20% 30% 40% 50% 60% 10% 20% 30% 40% 50% 60%

Co-teaching 88.40% 85.00% 82.20% 80.80% 73.80% 66.80% 64.00% 85.00% 79.60% 74.40% 53.60% 33.00% 15.80%

Co-teaching+ 84.60% 84.00% 82.40% 81.20% 78.80% 74.20% 68.40% 83.80% 84.00% 77.40% 72.40% 46.60% 29.40%

JoCoR 84.80% 83.20% 80.20% 80.80% 77.60% 67.20% 63.80% 84.40% 78.40% 75.80% 48.20% 31.00% 28.60%

LSTMDN−H 94.20% 92.20% 89.20% 85.80% 83.30% 82.40% 81.10% 91.90% 88.80% 85.60% 84.50% 83.00% 81.50%

LSTMDN−S 94.40% 92.20% 90.70% 87.80% 84.80% 83.20% 82.00% 92.10% 90.20% 88.30% 86.30% 83.40% 81.50%

Peer 78.44% 77.52% 75.03% 73.84% 73.11% 71.33% 64.89% 76.99% 75.38% 75.14% 73.03% 66.80% 27.41%

CL 82.63% 83.57% 84.57% 81.69% 77.35% 70.74% 61.32% 83.17% 77.56% 72.34% 54.11% 30.26% 22.04%

White Noise Random Noise

Method Clean Data 10% 20% 30% 40% 50% 60% 10% 20% 30% 40% 50% 60%

Co-teaching 88.40% 85.80% 86.40% 87.40% 85.40% 83.00% 81.40% 83.80% 81.80% 75.80% 70.40% 67.60% 47.80%

Co-teaching+ 84.60% 83.00% 84.20% 84.40% 82.60% 82.20% 83.40% 83.20% 82.80% 80.80% 72.40% 69.80% 60.60%

JoCoR 84.80% 85.40% 85.60% 82.60% 82.60% 82.00% 82.80% 84.40% 82.60% 75.60% 72.80% 69.20% 63.00%

LSTMDN−H 94.20% 94.30% 94.40% 94.30% 94.00% 93.50% 93.80% 92.00% 89.60% 86.50% 83.40% 82.00% 81.40%

LSTMDN−S 94.40% 94.40% 94.20% 94.20% 93.80% 93.80% 93.60% 92.20% 91.10% 88.80% 83.50% 81.80% 81.40%

Peer 78.44% 77.15% 77.35% 76.93% 75.21% 76.60% 76.73% 74.74% 71.23% 70.05% 68.02% 65.31% 58.98%

CL 82.63% 83.15% 83.17% 81.74% 74.80% 71.18% 65.36% 83.37% 80.56% 78.76% 70.34% 61.72% 36.87%

50% Symmetric Noise + 50% Pairflip Noise 50% Random Noise + 50% Pairflip Noise

Method Clean Data 10% 20% 30% 40% 50% 60% 10% 20% 30% 40% 50% 60%

Co-teaching 88.40% 82.40% 81.20% 77.20% 74.20% 65.40% 47.00% 86.80% 80.20% 76.60% 70.40% 61.00% 36.20%

Co-teaching+ 84.60% 82.80% 81.40% 80.20% 72.40% 70.20% 60.60% 85.00% 78.40% 77.80% 75.40% 68.40% 30.80%

JoCoR 84.80% 85.00% 81.20% 78.80% 75.00% 67.80% 44.00% 84.80% 80.40% 78.60% 68.60% 62.60% 34.40%

LSTMDN−H 94.20% 91.10% 88.70% 85.30% 83.10% 82.00% 81.00% 91.80% 88.50% 86.30% 84.30% 83.60% 81.00%

LSTMDN−S 94.40% 91.60% 88.90% 86.70% 84.40% 82.80% 81.30% 91.40% 89.70% 88.20% 84.10% 82.80% 81.10%

Peer 78.44% 78.07% 77.65% 75.11% 73.34% 68.92% 45.20% 76.23% 74.88% 73.26% 65.06% 53.73% 28.19%

CL 82.63% 83.20% 80.76% 77.59% 72.20% 62.31% 48.24% 84.19% 81.47% 74.33% 71.22% 60.09% 33.35%

A
g-

N
ew

s

Symmetric Noise Pairflip Noise

Method Clean Data 10% 20% 30% 40% 50% 60% 10% 20% 30% 40% 50% 60%

Co-teaching 78.43% 76.95% 75.55% 74.86% 72.99% 69.33% 63.54% 77.51% 76.01% 69.59% 65.51% 47.80% 15.64%

Co-teaching+ 76.88% 76.59% 75.84% 75.53% 74.62% 71.82% 67.46% 76.83% 75.46% 74.26% 69.53% 47.08% 15.66%

JoCoR 77.92% 77.00% 76.17% 74.45% 72.96% 70.12% 62.95% 76.99% 75.12% 70.22% 62.39% 38.14% 15.51%

LSTMDN−H 93.31% 91.54% 91.24% 91.01% 88.53% 87.92% 87.66% 91.56% 90.94% 90.55% 88.03% 87.68% 87.45%

LSTMDN−S 93.31% 91.77% 91.48% 91.07% 89.42% 88.79% 88.52% 91.75% 91.30% 90.87% 89.52% 88.90% 88.37%

Peer 74.03% 73.77% 72.68% 72.60% 71.00% 70.59% 65.39% 73.35% 72.16% 71.63% 67.08% 36.11% 17.52%

CL 80.30% 78.58% 69.97% 63.21% 55.19% 46.86% 37.43% 77.23% 69.32% 61.56% 54.33% 46.12% 36.28%

White Noise Uniform Noise

Method Clean Data 10% 20% 30% 40% 50% 60% 10% 20% 30% 40% 50% 60%

Co-teaching 78.43% 78.46% 78.41% 78.18% 78.05% 77.25% 76.05% 77.07% 76.34% 74.54% 72.61% 63.42% 62.75%

Co-teaching+ 76.88% 77.02% 76.66% 77.07% 76.45% 76.33% 76.86% 76.59 % 76.16% 75.80% 74.11% 71.79% 64.99%

JoCoR 77.92% 77.88% 77.87% 77.68% 77.39% 76.17% 74.55% 77.09% 75.80% 73.79% 71.42% 67.59% 60.58%

LSTMDN−H 93.31% 93.34% 93.25% 93.24% 93.20% 92.89% 93.12% 91.59% 91.20% 90.83% 90.05% 89.74% 88.51%

LSTMDN−S 93.31% 93.34% 93.18% 93.11% 93.15% 93.04% 93.07% 91.86% 91.44% 91.01% 90.23% 89.88% 88.63%

Peer 74.03% 74.25% 74.11% 73.68% 73.02% 72.43% 72.16% 73.87% 73.68% 72.10% 71.78% 70.31% 63.80%

CL 80.30% 80.46% 78.73% 77.75% 74.27% 72.68% 67.35% 78.51% 69.72% 62.82% 54.06% 46.72% 37.18%

50% Symmetric Noise + 50% Pairflip Noise 50% Uniform Noise + 50% Pairflip Noise

Method Clean Data 10% 20% 30% 40% 50% 60% 10% 20% 30% 40% 50% 60%

Co-teaching 78.43% 76.45% 75.30% 73.63% 71.24% 63.91% 40.82% 78.43% 77.09% 75.94% 73.53% 63.34% 46.24%

Co-teaching+ 76.88% 76.96% 75.79% 74.89% 73.41% 67.49% 38.71% 76.74% 75.99% 74.25% 74.00% 66.46% 43.21%

JoCoR 77.92% 76.92% 75.17% 74.39% 75.64% 63.03% 75.95% 76.39% 75.64% 72.95% 70.00% 62.72% 47.63%

LSTMDN−H 93.31% 91.43% 90.87% 90.16% 87.95% 87.66% 87.12% 91.86% 91.47% 91.09% 90.03% 89.85% 89.37%

LSTMDN−S 93.31% 91.59% 91.25% 90.63% 89.04% 88.20% 87.64% 92.31% 91.85% 91.20% 90.86% 89.57% 89.30%

Peer 74.03% 73.77% 73.50% 72.37% 70.74% 62.59% 46.49% 73.01% 73.16% 72.20% 71.29% 63.63% 44.93%

CL 80.30% 77.63% 68.42% 60.30% 54.89% 45.21% 36.85% 78.69% 71.37% 64.49% 56.74% 47.55% 39.64%

C
hn

se
nt

ic
or

p

Symmetric Noise / Pairflip Noise White Noise

Method Clean Data 10% 20% 30% 40% 50% 60% 10% 20% 30% 40% 50% 60%

Co-teaching 72.05% 66.88% 69.98% 64.39% 63.35% 55.28% 38.3% 70.18% 71.22% 68.12% 69.98% 68.94% 67.08%

Co-teaching+ 71.42% 69.98% 69.98% 63.35% 67.49% 52.17% 38.92% 71.84% 66.87% 71.64% 69.98% 69.77% 68.32%

JoCoR 73.5% 68.94% 70.39% 65.01% 61.49% 55.90% 37.06% 69.77% 72.67% 70.6% 70.39% 69.36% 69.15%

LSTMDN−H 59.42% 58.59% 57.26% 56.17% 54.29% 53.46% 52.23% 59.42% 59.36% 59.21% 59.14% 59.07% 59.10%

LSTMDN−S 59.62% 59.00% 57.83% 56.33% 64.60% 53.55% 52.13% 59.62% 59.62% 59.61% 59.59% 59.57% 59.53%

Peer 75.63% 73.23% 71.17% 65.31% 60.69% 42.35% 31.02% 76.11% 76.82% 73.25% 72.07% 71.53% 71.83%

CL 88.17% 87.55% 85.47% 74.27% 73.03% 47.51% 28.22% 88.59% 88.38% 88.80% 86.10% 89.00% 87.55%

G
-C

hn
se

nt
ic

or
p

Symmetric Noise / Pairflip Noise White Noise

Method Clean Data 10% 20% 30% 40% 50% 60% 10% 20% 30% 40% 50% 60%

Co-teaching 75.98% 72.05% 71.01% 69.57% 66.05% 48.45% 32.20% 76.81% 75.16% 74.12% 75.36% 75.78% 75.36%

Co-teaching+ 76.19% 73.08% 71.01% 69.77% 64.80% 54.04% 35.40% 74.95% 74.95% 74.21% 76.81% 75.16% 75.57%

JoCoR 75.78% 76.19% 70.60% 69.15% 63.56% 56.11% 38.92% 78.05% 74.32% 73.71% 75.57% 73.08% 72.26%

LSTMDN−H 62.11% 61.90% 59.61% 57.43% 55.15% 53.40% 52.10% 62.11% 62.06% 62.01% 61.98% 61.83% 61.78%

LSTMDN−S 62.31% 62.05% 59.16% 57.42% 54.84% 52.96% 51.89% 62.11% 62.07% 61.90% 61.75% 61.90% 61.85%

Peer 79.15% 77.83% 74.26% 70.89% 68.35% 60.32% 37.11% 79.83% 79.02% 78.83% 78.49% 77.10% 76.60%

CL 95.44% 91.49% 85.06% 79.25% 70.95% 50.83% 28.63% 95.85% 94.81% 94.19% 95.43% 93.98% 95.02%

Table 3: The accuracy of seven different models trained on the four datasets with different noise ratios and noise
modes respectively
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6 Results and Discussion

In our experiments, we evaluate the performance of
the models in Table 3 on accuracy which is a widely-
used metric in noise learning. We consider five dif-
ferent noise modes (random, symmetric, pairflip, uni-
form, and white) and some of their combinations on
four datasets. We compare the performance of seven
widely-used methods and five of them are originally
used in the field of computer vision. Hence, we trans-
form them to adapt to the task of text classification. To
examine the robustness of the proposed approaches,
we set the noise ratio from 0% to 60%. In detail,
p ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}.

6.1 Effects of Noise Mode

For single mode of noise We find that when white
noise is included, the results are comparable with those
of the clean dataset. Even if the ratio of noise reaches
the maximum, the results are still comparable. We be-
lieve that this is because neural networks learn features
from text contents. Since the white-noise texts are not
related to the original datasets, the results are not greatly
affected.

For multi-class classification problems We find that
in most cases when the noise ratio increases to 30%, the
accuracy of models with pairflip noise is significantly
lower than others. We argue that the main reason here is
the transfer matrix. When the number of classes exceeds
two, the labels with pairflip noise can only transfer to a
fixed category or remain unchanged. But for symmetric,
uniform, and random transfer matrices, there is a cer-
tain possibility of transferring to each category. When
the number of classes is two, pairflip transfer matrix is
the same as other transfer matrices. Therefore, models
involving pairflip noise may have worse accuracy.

For different combinations of noise modes We se-
lect symmetric, uniform, pairflip, and random noises
to do combinations. We set the total noise ratio from
10% to 60% and assign an equal portion to each noise of
the combinations. For most combinations, we find that
when combining two noise modes which generally have
high classification accuracy, the accuracy of the com-
bination is usually lower than that of the single noise
mode. Interestingly, when two noise modes with low
accuracy in each single mode are combined, the accu-
racy may be higher than their single mode’s results. For
example, in Ag-News we find that choosing the com-
bination of 50% uniform and 50% pairflip noise can
achieve better results than their single mode of noise.

6.2 Effects of Noise Rate

For all four datasets, we find that as the noise ratio in-
creases, the performance gradually decreases in most
cases. Especially when the noise ratio exceeds 30%, the
accuracy drops significantly. However, there are a few
exceptions. For instance, including less than 20% of

Noise Mode
Noise Ratio %

5 10 15 20 25

symmetric 75.97% 73.24% 72.05% 71.52% 71.01%
white 76.03% 76.32% 76.81% 75.23% 75.17%

intrinsic noise 75.83% 70.18% 68.42% 65.97% 63.09%

Table 4: Accuracy of Co-teaching with different noise
modes and ratios on G-chnsenticorp

symmetric or white noises would lead to higher accu-
racy than the clean dataset. We think this may be due to
the network’s robustness as suggested in (Rolnick et al.,
2017) . For symmetric noise, different from other noise
transfer matrices, its matrix is an equal division of prob-
abilities except for the diagonal. Then, labels flip with
a small equal probability. Due to the fault-tolerance of
neural networks, the accuracy can be high. For white
noise, when adding a small number of irrelevant texts,
the model is consistent and better in its predicted results.

6.3 Effects of Method

For all three categories methods mentioned in Section
5, we find that the data-based method achieves high ac-
curacy in Chnsenticorp and G-Chnsenticorp. The goal
of CL is to discover the underlying noise transition pat-
tern which is closer to our noise generation approaches.
Therefore, CL can get more accurate results. Compared
to Chnsenticorp and G-Chnsenticorp, TREC and Ag-
News have more categories than them. This may be
the reason for the decreasing results on TREC and Ag-
News.

For TREC and Ag-News, the objective-based method,
especially LSTMDN−H and LSTMDN−S , performs
better than other methods. We think that the model can
identify the wrong labels by the sample loss value of the
training process via modifying the loss function. Hence,
based on a suitably constructed loss, it can train a robust
deep classifier from the noisy training data and thus can
assign correct labels on clean test data.

Among Co-teaching, Co-teaching+, and JoCoR ap-
proaches, Co-teaching+ achieves the best result. We
argue that this noise learning approach can capture an
arbitrary noise function so it can predict a more precise
result.

6.4 Effects of Dataset

Compared with Chnsenticorp and G-Chnsenticorp, we
find the results on G-Chnsenticorp are significantly bet-
ter than those on Chnsenticorp. There may be two rea-
sons for this. First, the imbalance of label distribution
in Chnsenticorp may affect the results. Second, intrin-
sic noise is an important influencing factor. Interest-
ingly, for results on symmetric or pairflip noise, we find
Chnsenticorp has worse results than G-Chnsenticorp at
first. But as the noise ratio exceeds 40%, the accuracy
on G-Chnsenticorp drops even faster than Chnsenticorp.
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Models
Noise Ratio %

10 20 30 40 50

Co-teachingFNN 83.80% 81.80% 75.80% 70.40% 67.60%
Co-teachingCNN 83.34% 80.07% 74.56% 65.44% 62.03%

Co-teachingBERT 87.27% 83.77% 77.92% 74.35.67% 70.03%

Table 5: Accuracy of models with different complexities
and ratios of random noise on G-chnsenticorp

6.5 Effects of Intrinsic Noise

Because we completely check and relabel the Chnsen-
ticorp dataset, we can analyze the impact of intrinsic
noise and artificial noise (e.g. symmetric) on the model.
We gradually add noise samples to G-chnsenticorp to
examine the effects of different intrinsic noise ratios on
the performance of Co-teaching model.

According to Table 4, we can see that the accuracy
with intrinsic noise is higher than that of artificial noise.
This is because intrinsic noise contains more uncer-
tainty than artificial noise which has a definite pattern.
There can be a number of reasons for incorrect anno-
tating of data: ambiguity of the correct label (Zhan
et al., 2019), annotation speed, human errors, inexpe-
rience of annotator, etc. The noise labels generated by
these behaviors have no patterns. It is more difficult for
the model to capture and counteract these noise labels.
Thus, the accuracy of the model with intrinsic noise is
negatively affected.

6.6 Effects of Model Complexity

We also examine the influence of model complexity
on its performance using different feature extraction
layers. We experiment on G-chnsenticorp with random
noise. Intuitively, models with different complexities
should have different tolerances for noise data. Results
in Table 5 also illustrate this: the accuracy of CNN and
FNN drops faster than that of BERT as the noise ratio
increases. Since the BERT model is pre-trained on a
large-scale corpus, it has better generalization ability
and can better combat the interference from noise data.

7 Conclusion

In conclusion, we firstly construct a text classification
dataset without intrinsic noise, then do experiments
on these datasets using some sota noise learining meth-
ods, and finally draw some useful conclusions about
noise learning: Intrinsic Noise is more difficult to be
learned than other noise modes; many methods do not
work well when the noise ratio is higher than 30%; a
small amount of white noise can benefit classification
methods. This is the first time a benchmark of noise
learning for text classification has been established. We
construct a dataset without intrinsic noise for more ac-
curate evaluations in the noise learning. We present this
benchmark to summarize and compare the contributions
and weaknesses of previous work in noise learing, to
make up for their lack in intrinsic noise analysis, and

hopefully to provide a reference for future research in
the field of noise learning.

In future work, we will build more data without in-
trinsic noise and conduct more in-depth analysis of
intrinsic noise in other settings. Of course, we will
also research a better noise learing method based on the
experimental findings of this paper.
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Appendices
A Cases of Intrinsic Noise
Table 6 shows some cases of Intrinsic Noise.

B Selection of Threshold
During human annotation, we analyze the annotation
results of our 10 annotators. Based on the annotation
accuracy on the annotators’ emotional inclination (the
majority agree on one label), we choose 90% and 60%
as the annotator agreement thresholds using the 3σ prin-
ciple of Normal Distribution.

First, we calculate the rate of annotators’ agreement
on the annotated labels. We find that the accuracy of an-
notators getting the labels with significantly emotional
inclination correct is 92.08%. With regard to those la-
bels without significantly emotional inclination, we as-
sume that the probability of annotating the label positive
or negative is 50%. The rate of annotators’ agreement
on the annotated labels is illustrated as Table 7. The
details results are summarized in Table 8.

Based on the annotator agreement rates on emotion-
ally inclined or not inclined samples, we can compute
the accuracy of getting those samples correct as follows:

accuracy(ai) =
ai

ai + bi

accuracy(bi) =
bi

ai + bi

(1)

where ai and bi denote the annotator agreement rate
on emotionally inclined or not inclined samples respec-
tively.

The accuracy is summarized in Table 9.
We choose the 95% Confidence interval for our re-

sults and have the following definitions on intrinsic
noise:

As more than 90% of annotations are the same among
the annotators, the original sample is significantly emo-
tionally inclined (accuracy > 95%). If the majority an-
notation is different from the original label, we consider
the sample as Fatal noise.

As less than 60% of annotations are the same among
the annotators, the original sample is not significantly
emotionally inclined (accuracy > 95%). Not matter what
the original label is, we consider it as Ambiguous noise.

As 60% to 90% of annotations are the same among
the annotators, the original sample is inexact in terms
of emotional inclination. If the majority annotation is
different from the original label, we consider the sample
as Inexact noise.

C Effects of Hyperparameter Settings
To explore other different settings, we conduct experi-
ments using the following uniform setup: Co-teaching
model trained the fixed TREC dataset with different
ratios of random noise. Here, we explore the effects of

learning rates, number of training epochs, and optimiz-
ers. Table 10 shows the accuracy on different settings.

For learning rates, we observe that the optimal learn-
ing rate increases as the noise ratio increases as expected.
We think this is because an appropriately large learning
rate can help the model escape from local optimum and
increases the model robustness to noise labels. Small
learning rates tend to make the model trapped in a lo-
cally optimum or overfit the model. It also takes a longer
time to train.

For training epochs, we set the same learning rate
1e-3. We find model can gradually fit all data as training
epochs increase. But after 50 epochs, the model is
over-fit. We have two interesting observations on fitting
labels with random mode: a) we do not need to change
the learning rate schedule; b) once the fitting starts, it
converges quickly.

For optimizers, as the noise ratio increases, the results
with RMSprop and Adam optimizers are significantly
better than the simple SGD optimizer. The RMSprop
and Adam optimizers have the following advantages:
first, the gradient of the current batch is used for fine-
tuning the final update. Second, the learning rate is
adaptive for each parameter. These advantages help to
be able to get rid of the local optima.
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Case Source Label Checked Label Sample source

What company is being bought by Yahoo and how much is the
deal worth ? HUM HUM and NUM TREC

What is the best college in the country ? HUM LOC TREC

Mars water tops science honours.The discovery that salty, acidic
water once flowed across the surface of Mars has topped a list of
the 10 key scientific advances of 2004.

World Sci/Tech Ag-News

Pharma Groups Work on EPC Issues.Sept. 30, 2004 Reacting
to calls from pharmaceutical retailers, distributors and manufac-
turers, EPCglobal has added a new action group to specifically
study the pharmaceutical industry.

Sci/Tech Sci/Tech and Business Ag-News

比较实惠，旁边有易初莲花，买东西比较方便，还有麦
当劳。 (This hotel is not only affordable, but also close to
Etsu Lotus, which is convenient for shopping.There’s also a
McDonald’s which is convenient for dining.)

negative positive Chnsenticorp

购物较方便，上外滩也近，但房间太小。没有早餐不方
便，较为嘈杂，装修较老。 (This hotel is convenient for
shopping and close to the Bund. But the disadvantages are small
room, no breakfast, noisy environment and old decoration.)

negative positive and negative Chnsenticorp

作为酒店的老客户，恐怕以后要做另外的选择了——服务
水平在下降，价格却一升再升，再这样下去，下次不会再
入住了。(As a regular customer of the hotel, I’m afraid I’ll
have to make another choice in the future - the service level is
declining, but the price is rising. if this continues, I won’t stay
there again next time.)

positive negative Chnsenticorp

Table 6: Examples of intrinsic noise in different datasets

Conditions Rate generation formula

n mod 2 = 1 and ⌈n/2⌉ ≤ i ≤ n rate = Ci
np

i(1− p)n−i + Cn−i
n pn−i(1− p)i

n mod 2 = 0 and i = ⌈n/2⌉ rate = Ci
np

i(1− p)n−i

n mod 2 = 0 and ⌈n/2⌉ < i ≤ n rate = Ci
np

i(1− p)n−i + Cn−i
n pn−i(1− p)i

Table 7: The conditions and the rate generation formulas of annotators’ agreement. Here, n is the number of
annotators, i denotes the number of annotators who get the same annotation, p denotes the accuracy of annotators
getting the labels correct.

Sample type\The rate of same annotation (n=10) 100% 90% 80% 70% 60% 50%

Emotionally inclined 43.82% 37.69% 14.59% 3.35% 0.51% 0.05%

Not Emotionally inclined 0.20% 1.95% 8.79% 23.44% 41.02% 24.61%

Table 8: The rate of annotators agreement on emotionally inclined or not inclined samples. Note that this table only
lists annotator agreement rate from 100% to 50% as the dataset is binary. The rates are complementary such as
r90% = r10%. All percentages are rounded up.

Accuracy\ The rate of same annotation (n=10) 100% 90% 80% 70% 60% 50%

Emotionally inclined 99.56% 95.07% 62.40% 12.49% 1.22% 0.21%

Not Emotionally inclined 0.44% 4.93% 37.60% 87.51% 98.78% 99.79%

Table 9: The accuracy of getting emotionally inclined or not inclined samples correct.
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Hyperparameters Noise Ratio %
10 20 30 40 50

learing rates

1e-2 83.79% 82.10% 75.92% 70.97% 68.60%
1e-3 83.80% 81.80% 75.80% 70.40% 67.60%
1e-4 82.56% 81.44% 75.59% 70.11% 66.36%
1e-5 82.43% 81.32% 75.24% 69.89% 66.12%
1e-7 82.13% 80.76% 74.68% 69.43% 65.68%

training epochs

10 83.24% 79.74% 73.96% 69.36% 65.07%
20 83.80% 81.80% 75.80% 70.40% 67.60%
30 86.55% 81.54% 76.05% 70.94% 67.80%
50 86.55% 81.66% 76.23% 70.93% 67.81%

100 86.56% 81.67% 76.23% 71.04% 67.81%

optimizers

SGD 82.43% 78.37% 72.68% 67.60% 65.03%
Adagrad 82.57% 78.45% 72.97% 67.83% 65.48%

Momentum 83.64% 79.86% 73.52% 68.25% 66.23%
RMSprop 85.24% 81.22% 74.26% 69.22% 67.01%

Adam 83.80% 81.80% 75.80% 70.40% 67.60%

Table 10: Accuracy of Co-teaching model trained fixed TREC dataset with different noise ratios of random noise
and hyperparameter settings


