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Abstract

The International Classification of Diseases
(ICD) is the foundation of global health statis-
tics and epidemiology. The ICD is designed to
translate health conditions into alphanumeric
codes. A number of approaches have been pro-
posed for automatic ICD coding, since manual
coding is labor-intensive and there is a global
shortage of healthcare workers. However, exist-
ing studies did not exploit the discourse struc-
ture of clinical notes, which provides rich con-
textual information for code assignment. In
this paper, we exploit the discourse structure
by leveraging section type classification and
section type embeddings. We also focus on
the class-imbalanced problem and the hetero-
geneous writing style between clinical notes
and ICD code definitions. The proposed rec-
onciled embedding approach is able to tackle
them simultaneously. Experimental results on
the MIMIC dataset show that our model outper-
forms all previous state-of-the-art models by a
large margin. The source code is available at
https://github.com/discnet2022/discnet

1 Introduction

The International Classification of Diseases (ICD)
is a classification system maintained by the World
Health Organization. The system is designed to
map health conditions to pre-defined ICD codes,
allowing the world to share healthcare data in a con-
sistent way between different regions. The founda-
tion of global health statistics and epidemiology is
based on the ICD.

The ICD coding task (as shown in table 1) is
usually performed by professional coders. Coders
review the whole clinical documents and manu-
ally assign the most appropriate codes. However,
manual coding is labor-intensive, expensive, and
error-prone. The approximate cost of ICD coding
is estimated to be about $25 billion per year in the
US (Lang, 2007).

*Corresponding author.

History of Present Illness:

A 62-year-old male with Type II

diabetes mellitus, coronary artery disease,
hypertension, chronic kidney disease...
Past Medical History:

Hypertension

Type II Diabetes Mellitus

s/p cervical laminoplasty...

Brief Hospital Course: ...

Discharge Diagnosis:

Anasarca

Heart failure with restrictive physiology...

428.31 Diastolic heart failure
584.9 Acute renal failure, unspecified
427.32 Atrial flutter ...

Clinical
Document

Assigned
ICD codes

Table 1: An illustration of ICD coding task

In recent years, deep learning approaches have
demonstrated promising results on ICD coding.
Some of these studies improved clinical document
representation by leveraging Convolutional Neu-
ral Networks (CNN) (Mullenbach et al., 2018; Xie
et al., 2019). The others improved ICD code repre-
sentation by exploiting the dependencies between
codes (Xie and Xing, 2018; Vu et al., 2020; Cao
et al., 2020). However, these approaches entail lim-
itations. Firstly, they ignore the discourse structure
of clinical documents. Secondly, most of these ap-
proaches did not consider the writing style discrep-
ancies between ICD code descriptions and relevant
clinical documents related to the codes. Thirdly,
most of these approaches did not consider the class
imbalanced problem of the label spaces.

Why is the discourse structure important?
Medical professionals prepare clinical documents
in different sections. = The sections convey
discourse-level information and follow rhetorical
moves of argumentation (Teufel et al., 1999). Such
as “History of Present Illness”, “Past Medical His-
tory”, followed by “Hospital Course”, etc. The
health conditions that appear in different sections
may contribute differently to code assignments. For
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example, in table 1, the s/p cervical laminoplasty
in the past medical history is not related to the cur-
rent hospitalization and does not contribute to code
assignment. In such cases, omitting discourse-level
information may mislead the coding task. The
identification of the discourse structure can also
benefit word sense disambiguation. For example,
the acronym BS probably signifies blood sugar
in the laboratory test section, but more likely sig-
nifies breath sounds in the physical examination
section (Li et al., 2010). Therefore the meaning
of a health condition must be considered from a
discourse-level point of view.

The heterogeneity between ICD code descrip-
tions and relevant clinical documents. Each
ICD code is associated with a code description. For
example, the code description of 414.01 is Coro-
nary atherosclerosis of native coronary artery. A
code description provides a formal definition of an
ICD code. On the contrary, clinical documents that
are written by physicians usually in an informal
way, accompanied with telegraphic phrases and
abbreviations. For example, Coronary artery dis-
ease is denoted by CAD. The writing style is highly
heterogeneous between the code descriptions and
relevant clinical documents.

The class imbalanced problem. Most of the re-
cently proposed methods are based on a per-label
attention mechanism that was initially proposed
by Mullenbach et al. (2018). In this setting, the
attention parameters for each label can be con-
sidered as the representation for each ICD code,
which are learned from relevant segments in clini-
cal documents (hereinafter referred to as “relevant
documents”) that are highlighted by the attention
mechanism. However, the label frequency follows
a highly skewed distribution. About 50% of the
codes have less than 5 occurrences. In such a case,
it is difficult to learn decent representations for
instance-scarce codes. Considering the nature of
code descriptions and the label distribution, we ar-
gue that instance-scarce code representations are
supposed to learn more from code descriptions,
since code descriptions are the essential definitions
of ICD codes. On the contrary, instance-rich code
representations are supposed to learn more from
relevant documents, since relevant documents pro-
vide various expressions of each code.

In this paper, we design a novel neural architec-
ture for automatic ICD coding given unstructured

clinical documents:

* To the best of our knowledge, our work is the
first to incorporate discourse-level features
into automatic ICD coding. Our proposed
Discourse Net (DiscNet) exploits discourse-
level features by utilizing section type embed-
dings. In addition, we combine word-level
features and sentence-level features for better
expressive power.

* We propose a Reconciled Embedding (RE) ap-
proach to learn ICD code representations, mit-
igating the class imbalanced problem while
reconciling the heterogeneity between code
descriptions and relevant clinical documents.

* Experimental results on the MIMIC-III
dataset (Johnson et al., 2016) show that our
method outperforms all previous state-of-the-
art methods across evaluation metrics by a
large margin.

2 Related Works

Recently released automatic ICD coding ap-
proaches are mainly based on deep learning and
performed on unstructured clinical documents.
Baumel et al. (2018) proposed a possibility to ex-
ploit discourse structure, which inspired our work.
Mullenbach et al. (2018) proposed a convolutional
attention model and outperformed existing state-of-
the-art methods (Baumel et al., 2018). Li and Yu
(2020) and Xie et al. (2019) improved the convo-
lutional attention model by exploiting multi-scale
features. However, it is challenging for a CNN-
based model to capture long-term dependencies in
a document.

Discourse analysis is a task to model language
phenomena that go beyond the individual sentences
(Joty et al., 2019). There are few relevant works
that focus on discourse analysis in the clinical do-
main. Li et al. (2010) focused on the discourse
analysis of clinical notes and performed argumen-
tative zoning (Teufel et al., 1999) using a hidden
markov model. Denny et al. (2009) leveraged NLP
techniques to categorize section headers in clinical
documents.

To reconcile the heterogeneous writing styles
of diagnosis descriptions and ICD code descrip-
tions, Xie and Xing (2018) proposed an adversarial
learning approach, which inspired our work.

Some studies worked on addressing the class
imbalanced problem. Mullenbach et al. (2018)
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proposed a regularization method using embedded
code descriptions to improve the performance on
infrequent codes. However, the method worsened
the average performance on the MIMIC-III dataset.
Some methods improved the performance on infre-
quent codes by modeling the hierarchical structure
of ICD codes (Xie et al., 2019; Vu et al., 2020).
Zhou et al. (2021) leveraged an interactive shared
representation network to alleviate the long-tail
problem.

3 Method

We propose a novel neural architecture for auto-
matic ICD coding given unstructured discharge
summaries. A discharge summary from an Elec-
tronic Health Record (EHR) is an unstructured clin-
ical document that outlines the details of a hospital
stay. We partition clinical documents into sections
and exploit the discourse structure by leveraging
section type embeddings. The ICD code represen-
tations are learned using a reconciled embedding
approach. Finally, we use a dot production to pre-
dict the codes.

3.1 Discourse Net

Discourse Net (DiscNet) exploits discourse-level
features, word-level features, and sentence-level
features to learn multi-granularity clinical docu-
ment representations as shown in Figure 1.

3.1.1 Section Type Embeddings

Clinical documents usually contain multiple sec-
tions with nonstandardized section headings. We
partition a document into sections by identifying
the locations of section headings using regular ex-
pressions. Terms that clinicians use to label sec-
tions are ambiguous and various, e.g. past medical
history might appear as pmh. Due to various writ-
ing conventions, we extracted more than 10,000
distinct headings. We chose the top 100 most fre-
quent headings as known section types since they
accounted for 93% of the total heading occurrence.
We map each section to known section types using
a naive bayes classifier based on TF-IDF vectorized
section contents. Concretely, each section content
is converted to a TF-IDF vector. Then a naive bayes
classifier is trained using known section types as
labels. Finally, the trained naive bayes model map
each section to known section types. We initial-
ize an embedding matrix for know section types:
S = {s1, 82, ..., S100}- Where each s is a d dimen-
sional vector, representing a known section type.

3.1.2 Input Layer

The input word sequence is mapped into an em-
bedding space using pre-trained word embeddings.
The word embeddings of size d = 100 are pre-
trained on the training set of the MIMIC-III dataset
using the word2vec CBOW method (Mikolov et al.,
2013). The word embedding sequence is denoted
as D = {w;,wy, ...,w|D|}, where w € R? de-
notes a word vector, | D| denotes the number of
words. The input embeddings are the sum of word
embeddings and section type embeddings, which
can be denoted as E = {e1, e, ..., e p|}. Each
e; is the sum of a word embedding w; and the
associated section type embedding s;.

3.1.3 Multi-Granularity Representations

FE is a combination of word-level features and
discourse-level features. Besides that, we carry
sentence-level features for better expressive power.
We use a bidirectional GRU (Chung et al., 2014) to
model the sequential structure of E:

H,H =BiGRU(E), H = (ﬁ I ﬁ) W,
(D

Where || denotes concatenation. Wy € R2%*9 is a
trainable weight matrix to project the dimensional-
ity of the forward and backward hidden states from
2dtod.

Let C € RI€1*4 denote the ICD code represen-
tations obtained through the Reconciled Embed-
ding (RE) approach (refer to subsection 3.2). |C|
is the number of distinct ICD codes. C' is used
as attention parameters to interact with document
representations. A per-label attention mechanism
(Bahdanau et al., 2014) is applied to re-express a
document with respect to each code.

Z =HC", o= Softmax;(Z)
Vword — aT H (2)
T denotes matrix transposition. a € RIPIXICl are
attention weights of a document representation as-
sociated with each code. Softmax; is applied to the
first dimension of Z, ensuring the distribution over
locations in a document sum to 1. V%ord ¢ RICIxd
is the code-specific document representations at
word level.

We concatenate the hidden state of ﬁ at the end
position of a sentence and the hidden state of T{ at
the start position of a sentence to embed a sentence.
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Figure 1: An illustration of how DiscNet works. The sentence embeddings e} and e/, correspond to the input word

embeddings {w!, ...,wl} and {w}, ...,

Then we concatenate all sentence embeddings:

¢ = (Hipena] | Hlpsur]) W2

E=¢e].

3

| 61P|

Where E’ represents sentence-level features.
W, € R24%4 js a weight matrix. |P| denotes the
number of sentences. We follow the computation
step of equation 1 and equation 2 with newly ini-
tialized network parameters to obtain V", which
is the code-specific document representations at
sentence level. Finally, we concatenate V'*°' and
Vet Then a Max Pooling is applied over the level
dimension to obtain the condensed code-specific
document representations:

V = MaxPooling (V"¢ || V") 4)

V e RICI%4 is the condensed code-specific docu-
ment representations.

3.2 Reconciled Embedding (RE)

We focus on the class-imbalanced problem and the
heterogeneity between code definitions and rele-
vant documents. The proposed RE approach is
designed to reconcile them simultaneously.

3.2.1 Reconciling the heterogeneity

We initialize a new bidirectional GRU to encode
the word embeddings of code descriptions. Sim-
ilar to equation 1, the final hidden states of both
directions are extracted and projected. Let C =
{€1,€2,...,¢c|} € RICI*4 denote the encoded
code descriptions. We design a gate mechanism as

w}} respectively.

¢

Yi © ¢

Yi © ¢ + u;
u;

/

b

Figure 2: An example of equation 6 in two dimensional
space. ~; is set to [0.75,0.5] T, &; is set to [4.0,7.0] T,
u,; is set to [6.0, —1.0] T

follows:
Q = ReLU ((C I U) Wg) .
I' = sigmoid (QWj)
U = {uy,ug,...,uc|} € RICI%d 5 trainable

code-specific attention parameters, which are sup-
posed to learn from relevant documents. CandU
are concatenated at the last dimension, followed
by a linear projection and a ReLU non-linearity.
W3 € R24%d and W, € R are trainable weight
matrices. T' = {v1,72, .., c|} € RICIxd i the
gate vectors to adjust C:

C = LayerNorm (tanh ((I‘ o C + U) W5))

Where tanh is the hyperbolic tangent function. Lay-
erNorm denotes layer normalization (Ba et al.,
2016). ® denotes hadamard product. Wy € R4*¢
is a trainable weight matrix. C' € RIC*4 is the
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Figure 3: Ly norm of «ys with respect to each code sorted
by code occurrences in descending order. A moving
average smoothing is applied with a window size equal
to 100. A smaller norm indicates less information flow
from code descriptions.

reconciled code embeddings to interact with docu-
ment representations. An example of equation 6 in
two dimensional space is given in figure 2.

We suggest the function of the gate mechanism
is twofold: Firstly, the element-wise addition of
C and U is able to aggregate semantics both from
code descriptions and relevant documents. Con-
sidering their heterogeneous nature, we leverage
the gate vectors I to adjust C, reconciling the se-
mantic discrepancies between C and U during the
element-wise addition. Each ~; is able to tune both
the length and the direction of ¢; within the same
quadrant (as shown in figure 2). A naive example
is shown in figure 2. Secondly, each ~; is able to
scale the information flow from ¢;. We assume for
rare classes, the norm of -y is required to be greater
than for frequent classes, since it is necessary to
learn more from the encoded code definitions for
rare classes.

3.2.2 Reconciling the class-imbalance

We assume taking more information from code
descriptions than relevant documents could bene-
fit the representation learning of rare codes. But
for frequent code, it could be beneficial to take
more information from relevant documents than
code descriptions. To examine our assumption,
we plot the Lo norm of the trained gate vectors
(.e. {v1,72;-¥c|}) With respect to code oc-
currences sorted in descending order as shown in
figure 3. The observation supports our assumption.

The “self-taught” plot in figure 3 indicates that the
proportion of the information transferred is related
to the code distribution. The ~s has learned to
transfer more information from code descriptions
to rare codes.

To better cope with the class imbalanced prob-
lem, we have found imposing a regularization on
~s according to code distribution to be beneficial.
We regularize the Ly norm of each « according to
code distribution. The regularization encourages
the norm of rare codes’ «s to be large, forcing
them to learn more from the essential definitions in
code descriptions. Meanwhile, there’s less regular-
ization imposed on frequent codes since they can
learn their heterogeneous expressions from relevant
documents. Let K € {ki, k2, ..., k|| } denote the
number of occurrences of each code. The regular-
ization term is computed as follows:

;o max (K) — k; T
b= <max (K) —min(K))
le] (7

Lreg = - Z k;HFYZHQ
7

Firstly, a min-max normalization is applied to
rescale the range of K in [0, 1]. k] is the regu-
larization weights associated with each code. T is
arescaling hyperparameter. As shown in figure 3,
the smaller 7 is, the greater the regularization on
frequent codes.

3.3 Output Layer

Firstly, V is fed to a linear layer followed by a
ReLU non-linearity. Then a dot product of C' and
V is applied. Finally, a sigmoid activation function
is applied to obtain the probability vector:

V =ReLU (VW;), ¢ = sigmoid (CVT)
(®)
Let y denote the label vector. The code assign-
ment task is treated as a multi-label classification
problem. The training objective is to minimize
the binary cross-entropy loss and the regularization

term from subsection 3.2:

Loss(x, y, 0) = CrossEntropy (y, ) + ALyeq
©)
Where @ denotes input word tokens and 6 denotes
all trainable parameters. A is a hyperparameter.
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AUROC F1 P@k
Model Macro Micro Macro Micro 8 15
CAML* (Mullenbach et al., 2018) 0.895 0986 0.088 0.539 0.709 0.561
DR-CAML* (Mullenbach et al., 2018) 0.897 0985 0.086 0.529 0.690 0.548
MultiResCNN* (Li and Yu, 2020) 0910 0986 0.085 0.552 0.734 0.584
HyperCore* (Cao et al., 2020) 0930 0989 0.090 0.551 0.722  0.579
DiscNet+RE* (Ours) 0945 0991 0.137 0.579 0.760  0.608
MSATT-KG (Xie et al., 2019) 0910 0992 0.090 0.553 0.728 0.581
LAAT (Vu et al., 2020) 0919 0988 0.099 0575 0.738 0.591
JointLAAT (Vu et al., 2020) 0.921 0.988 0.107 0575 0.735 0.590
ISD (Zhou et al., 2021) 0938 0990 0.119 0559 0.745 -
DiscNet+RE (Ours) 0956 0993 0.140 0.588 0.765 0.614

Table 2: Experimental results on the MIMIC-III full test set. Models with “*” are under a length limitation of 2,500.
Models without “*” are under a length limitation of 4,000. We ran our model 5 times and averaged the scores.

4 Experiments

4.1 Dataset and Preprocessing

We use publicly available and widely studied
MIMIC-III dataset (Johnson et al., 2016), which
is an extension of the MIMIC-II dataset (Saeed
et al., 2011). The dataset comprises de-identified
EHR associated with over 40,000 ICU admissions.
We follow the well studied MIMIC-III full setting
that was initially proposed by Mullenbach et al.
(2018), which consists of 8,929 ICD codes, 47,719,
1,631, and 3,372 discharge summaries for training,
development, and testing respectively.

To better investigate the performance of our
method on codes with different sample sizes, we
divide the test set into head, body, and tail subsets.
Each subset has the same number of discharge sum-
maries as in the MIMIC-III full test set but with
different range of codes. In the head subset there
are 1446 distinct codes with sample size greater
than or qual to 50. In the body subset there are
1779 distinct codes with sample size less than 50
and greater than 5. In the tail subset there are 860
distinct codes with sample size less than or equal
to 5. There are only 4085 distinct codes in total
present in the MIMIC-III full test set.

We tokenize the text, then lowercase and lem-
matize the words. All numbers are replaced with a
“NUM?” token. We perform sentence segmentation
using spaCy library'.

4.2 Evaluation Metrics

For a complete comparison with previous studies,
we use macro-averaged and micro-averaged F1,
macro-averaged and micro-averaged AUC (area
under the receiver operating characteristic curve)

"https://spacy.io/

and P@k (precision at k).

4.3 Hyper-parameter Tuning and Training

The model is trained using Adam optimizer
(Kingma and Ba, 2014) and the initial learning
rate is set to 0.0005, the batch size is set to 12. The
d-dimensional word embeddings are trainable. A
dropout mechanism (Srivastava et al., 2014) is ap-
plied after each BiGRU with a dropout probability
of 0.2. We notice that the model with section type
embeddings is more prone to overfitting. Therefore
a dropout mechanism is applied on the section type
embeddings with a dropout probability of 0.5. 7 is
set to 1,000, and ) is set to 0.0001.

4.4 Baselines

Some studies truncated the input text to a maximum
length of 2,500, the others to a maximum length of
4,000. We have noticed that there are performance
differences between different length limitation set-
tings. For a fair comparison, we conducted the
experiments under the length limitations of 2,500
and 4,000, then report the results separately.
CAML: The first per-label attention based model
for automatic ICD coding preposed by Mullenbach
et al. (2018).

DR-CAML: An extension of CAML which in-
corporates the code descriptions to improve the
performance on rarely observed codes. However,
DR-CAML performed worse on most metrics than
CAML.

MSATT-KG: The MSATT-KG (Xie et al., 2019)
approach employed a graph convolutional neural
network to capture the hierarchical relationships
among codes, alleviating the class imbalanced prob-
lem. The study achieved SOTA performance.
HyperCore: Proposed by Cao et al. (2020), which
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AUROC F1 P@k Macro F1

Model Macro Micro Macro Micro 8 15 head body tail

BiGRU 0904 0986 0.097 0562 0734 0581 0369 0.164 0.052
BiGRU-+discourse 0919 0988 0.115 0583 0.752 0.601 0408 0211 0.063
only DiscNet 0919 0988 0.119 0583 0.757 0.605 0419 0216 0.064
only REseif-taught 0942 0990 0.126 0.567 0.750 0.595 0400 0.214 0.086
DiscNet+REgeif.augne  0.943 0990  0.134 0575 0.756  0.603  0.420 0.235  0.097
DiscNet+REconstantys~ 0.938 0990  0.129 0574  0.757 0.603 0419 0.225 0.082
DiscNet+RE;—100 0947 0991 0.132 0578 0.756  0.606 0420 0.241 0.106
DiscNet+RE;—1000 0945 0991 0.137 0.579 0.760 0.608 0.425 0.240 0.106
DiscNet+RE;—5000 0946 0991 0.132 0579 0.756 0.604 0419 0.229  0.100

Table 3: Ablation results on the MIMIC-III full test set under a length limitation of 2500. We ran each model 5

times and averaged the scores.

can jointly exploit code hierarchy and code co-
occurrence. The approach outperformed all ex-
isting baseline models.

MultiResCNN: The MultiResCNN (Li and Yu,
2020) leveraged a multi-filter convolutional layer
to capture various text patterns.

LAAT: A label attention model was proposed by
Vu et al. (2020). LAAT outperformed all existing
baseline models.

JointLAAT: An extension of LAAT, which lever-
aged a hierarchical joint learning mechanism to
handle the class imbalanced problem.

ISD: The ISD approach (Zhou et al., 2021) lever-
aged an interactive shared representation network
to alleviate the long-tail problem.

4.5 Compared with Baselines

Table 2 show the experimental results on the
MIMIC-III full dataset. Our model outperformed
all baseline models across all evaluation metrics
and achieves new state-of-the-art results. It is worth
noting that the macro-AUROC and macro-F1 were
improved by 1.8% and 2.1% compared with the
best baseline model. The improvements indicate
our model is more robust to infrequent code as-
signments, since macro-averaging highlights the
performance of infrequent classes. Meanwhile,
the micro-F1, P@8§, and P@15 were improved by
2.9%, 2%, and 2.4% respectively. The results sug-
gest our model improves both macro-averaging and
micro-averaging measurements simultaneously.

4.6 Ablation study

We performed an ablation study as shown in table
3 and in figure 4. In order to investigate the ef-
fectiveness of our methods on codes with different
sample sizes, we use macro-F1 to evaluate each
ablation experiment on the head, body, tail sub-
sets of the MIMIC-III test set (refer to subsection
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Figure 4: Ablation experiments on head, body and
tail subsets demonstrate the improvements of DiscNet
on frequent codes and the RE approach on infrequent
codes.

4.1)>. For the BiGRU setting, we use a BIGRU
to model the input word embeddings, followed
by a per-label attention to perform classification.
For the BiGRU+discourse setting, we add section
type embeddings to the BiGRU setting, achiev-
ing 1.8% improvement on Macro-F1 and 2.1% on
Micro-F1, significantly improved Macro-F1 on the
head subset by 3.9%. The improvements demon-
strate the effectiveness of exploiting discourse-level
features. For the only DiscNet setting, we add
sentence-level features to the BiGRU+discourse
setting, The minor improvements indicate the ef-
fectiveness of sentence-level features. The only

*In the data splitting setting of Mullenbach et al. (2018),
there are only 4,085 distinct codes out of 8,929 present in the
test set. The F1 score of a non-appearing code is evaluated to
0. To better compare the F1 score of the head, body, and tail
subsets. We evaluate only the 4,085 codes that are present in
the test set.
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with section type embeddings

w/o section type embeddings

Brief Hospital Course:
#VB: She had increased bleeding ...

Case 1 leading up to presentation...

Anemia: Ms. On HD#6, her hematocrit trended

down to 25 ...
... was transfused 2 units of red blood cells...
Discharge Diagnosis: Anemia...

Past Medical History:

1.Uterine fibroids 2.Anemia, iron-deficiency...
History of Present Illness:

... with history of anemia secondary...

Brief Hospital Course:

... her hematocrit trended down to 25...
Discharge Diagnosis: Anemia...

285.1 Acute posthemorrhagic anemia

2?;2;. ; ‘7 iLFi;(?(:'l:ﬂ.(?d (%il(?”ll’ﬁ

“self-taught”

constant s

Smoked 30 yrs, 2 ppd, quit on...
Case 2

week ago due to shortness of breath...

... Patient recently quit smoking... We encouraged to
continue smoking abstinence... He quit smoking two

We continued Lisinopril 5Smg PO daily...
Spiculated pulmonary lesions: consider
infectious/inflammatory/neoplastic...

In the right, pulmonary artery embolus...

V15.82 prediction score: 0.70
personal history of tobacco use

V15.82 prediction score: 0.02
personal history of tobacco use

Table 4: Each example contains a predicted ICD code and relevant document with high attention score.

REgeif-taught setting, namely the “self-taught” model
in figure 3, achieving 3.8% improvement on Macro-
AUC, 2.9% on Macro-F1 and 3.4% on Macro-F1
on the tail subset compared to the BiIGRU model.
The significant improvements demonstrate the ef-
fectiveness of RE, particularly on rare codes. For
DiscNet+REconstantys setting, all s are set equal to
1. The performance drop indicates the effectiveness
of the gate mechanism in 3.2.1. We experimented
with different 7 values and 7 = 1000 yields the
best results, which demonstrates the effectiveness
of the regularization approach in 3.2.2.

4.7 Case Study

To better understand the effectiveness of our ap-
proaches, we give examples shown in table 4. We
investigate the relevant documents with high atten-
tion scores associated with a predicted ICD code.
For the first case, the type of Anemia is not spec-
ified in the discharge diagnosis. The model with
section type embeddings correctly linked bleeding
in the “Brief Hospital Course” section to anemia.
On the contrary, the unspecified Anemia that ap-
pears in the “Past Medical History” and the “his-
tory of present illness” mislead the baseline model
to 285.9 unspecified anemia. The second exam-
ple illustrates the impacts of the heterogeneity be-
tween code descriptions and relevant documents.
The code description personal history of tobacco
use and relevant document (smoked, smoking ab-
stinence, and etc) are literally very different. The
“self-taught” model has successfully linked them
together. In contrast, the model with constant s,
namely all ~s are set equal to 1, failed to highlight

any meaningful relevant document.

5 Conclusion

This paper proposed a novel neural architecture for
automatic ICD coding. We leverage section type
embeddings to make our model discourse-aware.
We focus on the class imbalanced problem and the
heterogeneity between code definitions and rele-
vant documents. The proposed Reconciled Embed-
ding approach tackled them simultaneously. We
achieve state-of-the-art performance on the widely-
studied MIMIC-III dataset. DiscNet can be ap-
plied to all texts with a discourse structure, but not
limited to clinical texts. The proposed reconciled
embedding approach can be applied in scenarios
where there is auxiliary information associated with
labels.
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