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Abstract

Recent work in multilingual machine transla-
tion (MMT) has focused on the potential of
positive transfer between languages, particu-
larly cases where higher-resourced languages
can benefit lower-resourced ones. While train-
ing an MMT model, the supervision signals
learned from one language pair can be trans-
ferred to the other via the tokens shared by
multiple source languages. However, the trans-
fer is inhibited when the token overlap among
source languages is small, which manifests
naturally when languages use different writ-
ing systems. In this paper, we tackle inhib-
ited transfer by augmenting the training data
with alternative signals that unify different
writing systems, such as phonetic, romanized,
and transliterated input. We test these signals
on Indic and Turkic languages, two language
families where the writing systems differ but
languages still share common features. Our
results indicate that a straightforward multi-
source self-ensemble — training a model on a
mixture of various signals and ensembling the
outputs of the same model fed with different
signals during inference — outperforms strong
ensemble baselines by 1.3 BLEU on both lan-
guage families. Further, we find that incor-
porating alternative inputs via self-ensemble
can be particularly effective in low-resource
settings, leading to +5 BLEU when only 5%
of the total training data is accessible. Fi-
nally, our analysis demonstrates that includ-
ing alternative signals yields more consistency
and translates named entities more accurately,
which is crucial for increased factuality of au-
tomated systems.

1 Introduction

Machine translation has seen great progress, with
improvements in quality and successful commer-
cial applications. However, the majority of this
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improvement benefits languages with large quan-
tities of high-quality training data (high-resource
languages). Recently, researchers have focused on
the development of multilingual translation mod-
els (Aharoni et al., 2019; Fan et al., 2020) capa-
ble of translating between many different language
pairs rather than specialized models for each trans-
lation direction. In particular, such multilingual
models hold great promise for improving transla-
tion quality for low-resource languages, as group-
ing languages together allows them to benefit from
linguistic similarities as well as shared data be-
tween related languages. For example, training a
translation system with combined Assamese and
Bengali data would enable transfer learning be-
tween the two languages.

We investigate how to enable multilingual trans-
lation models to optimally learn these similarities
between languages and leverage this similarity to
improve translation quality. The fundamental unit
representing lingual similarity is the token — lan-
guages that are similar often have similar words
or phrases — and during training, translation mod-
els can learn strong representations of tokens in
low-resource languages if they are also present in
high-resource languages. However, a challenge
arises when similar languages share only a small
amount of tokens, which inhibits the transfer to lim-
ited and trivial cases of token sharing, e.g., punc-
tuation marks and digits. This is particularly clear
in cases where similar languages are written in
different scripts, as the amount of shared tokens
is small compared to languages using the same
written script. An example would be Hindi and
Gujarati, which have phonetic similarity but are
written in their own native scripts.

To tackle inhibited transfer due to distinct writ-
ing systems, we transform the original input via
transliteration, the process of converting text from
one script to another, to get alternative signal from
the original source sentences. Transliteration has
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Figure 1: A generic illustration of self-ensemble for a multilingual translation system while translating Bengali
to English. The input contains different signals, each preceded by a special language token (‘__bn__’ indicates

input in original Bengali script, *__bn_ipa__’ the phonetic version of the same Bengli input, ‘__bn_romani__

k)

the romanized version and ‘__bn_inscrip__’ the same input but written in the script of Hindi, a language within
the same language family). The log probabilities output by the model given each type of input are averaged for

subsequent decoding process.

been used in many real world cases, such as con-
verting Cyrillic Serbian to Latin Serbian, as the
language is commonly written with both scripts,
or typing in romanized Hindi for convenience on
a Latin-script keyboard. To unify various writing
scripts to increase token overlap, we experiment
with three types of transliteration: (1) transliterate
into phonemes expressed by international phonetic
alphabet (IPA), (2) transliterate into Latin script
(ROMANT), and (3) transliterate into a script used
by another language within the same language fam-
ily (INSCRIP). Beyond training on alternative in-
puts created through transliteration, we also system-
atically examine approaches to combining different
signals. Our experimental results on Indic and Tur-
kic datasets demonstrate that (i) a self-ensemble
(Figure 1) — training a model on the mixture of
different signals and using an ensemble of the
same model given different input signals during
inference time, outperforms other methods such as
multi-source ensemble and multi-encoder architec-
ture, which require training multiple models or sig-
nificant architectural changes. (ii) Further, without
the need for additional bitext, a self-ensemble over
the original and transliterated input consistently
outperforms baselines, and is particularly effective
when the training set is small (e.g. low-resource
languages) with improvements of up to +5 BLEU.
(iii) Finally, the improvements in BLEU originate
from clear gain in the accuracy and consistency in
the translation of named entities, which has strong
implications for increased factuality of automated
translation systems.

2 Method

Multilingual translation models enable languages
to learn from each other, meaning low-resource

languages can benefit from similarities to high-
resource languages where data is plentiful. How-
ever, surface-level differences between languages,
such as writing system, can obscure semantic simi-
larities. We describe an approach to transliterating
input sentences to various alternative forms that
maximize transfer learning between different lan-
guages, and various modeling approaches to incor-
porating such varied inputs.

2.1 Alternative Inputs Bridge the Gap
between Surface Form and Meaning

While training a multilingual translation system,
tokens shared by multiple source languages serve
as anchors to transfer information obtained from
learning one language pair to the other. For exam-
ple, the translation of ‘terisini’ in low-resourced
Uzbek data can benefit from the word ‘derisinin’
in relatively high-resourced Turkish data after tok-
enizing into sub-word units. However, the transfer
is hindered when the amount of shared tokens is
small — exacerbated by cases where the source and
target languages are written in different scripts.’
To alleviate the issue of various writing systems
and encourage languages to transfer, we focus on
alternative signals that unify the script of source
languages and have larger token overlap. The core
concept we explore is how to best leverage translit-
eration, or the process of converting the text from
one script to the other. We demonstrate that translit-
eration can be an effective data augmentation ap-
proach that improves the translation performance
without the need of acquiring additional parallel
data. We explore three alternative inputs that allow

! Muller et al. (2021) show that the discrepancy in scripts
causes failure to transfer in multilingual models and further
hurts performance in downstream tasks.
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models to share information more easily across lan-
guages with low token overlap but high semantic
similarity. Figure 4 in Appendix C shows example
alternative signals of the same Oriya sentence.

Phonetic Input. Related languages in the same
language family usually sound similar, such as lan-
guages in the Romance language family and those
in the Indo-Aryan language family. Although cog-
nates can be captured to some degree for Romance
languages on subword-level, it is difficult for the
Indo-Aryan family as those languages use different
writing systems. Therefore, to fully exploit shared
information, we transform the original textual input
(BASE) into the phonetic space, where the basic
units are phonemes expressed in international pho-
netic alphabet (IPA). For example, “S4<T=es in
Bengali looks like ‘Prodhanmontri’ in TPA form.

Romanized Input. Many languages use Latin al-
phabet (or Roman alphabet) in their default writing
system, if not, they more or less have romanization
of their default script in order to accommodate con-
ventional keyboards, e.g., Chinese can be typed on
U.S. keyboards through Pinyin, the romanization
of Chinese. To utilize this existing form of alter-
native input, the romanized input is another signal
we explore in this work. For example, “S~a=ear
looks like ‘pradhanmantri’ in romanized form.

In-family Script Input. The two previous alter-
native representations introduce tokens not present
in the existing vocabulary, which increases the num-
ber of input and output representations the transla-
tion models must learn. Further, phonetic input is
artificial in the sense that it is not used by people to
communicate to each other in written form — and
only used for pronunciation. Romanization natu-
rally would introduce many additional tokens if the
source language does not use Latin script. A third
alternative that does not suffer these drawbacks is
transliterate source language into the script of any
of the other source languages in the multilingual
translation model. To take advantage of language
relatedness (Dhamecha et al., 2021), we unify the
source languages with the script used by a language
within the same language family (INSCRIP). This
method has the additional advantage of not need-
ing to learn new subword tokenization models or
replace the old vocabulary with a new one since
all the inputs are expressed in one of the exist-
ing multilingual model’s source language scripts.
For example, R4S looks like 73w when

transliterated into Hindi script.

Advantages of Transliterated Inputs. Various
different input representations have been inserted
into translation models, from parse trees (Li et al.,
2017; Currey and Heafield, 2018) to pretrained
embeddings (Artetxe et al., 2018; Conneau et al.,
2018). Compared to these alternatives, translitera-
tion has several clear advantages. Most importantly,
transliteration is fast and accurate. Several existing
alternatives often use other models to produce a dif-
ferent input, such as a parse tree, which cascades
error from the first model into the translation model.
Comparatively, the alphabet alignment between var-
ious writing systems is quite well known, even for
many low-resource languages, as alphabet is one
of the foundational aspects of studying any new
language. Similarly, phonetic pronunciation guides
are often widely available. These resources are
also easily accessible programmatically, making
them ideal for converting large quantities of super-
vised training data, for instance, the espkea—-ng
tool supports phonemization of more than 100 lan-
guages and accents. Beyond the ease of creating
transliterations, we emphasize that this technique
does not require any data annotation or collection
of parallel data. Thus, it can be utilized in any
existing translation system.

2.2 Adding Transliterated Input
Combinations to Translation Models

How can additional transliterated inputs be incor-
porated into modern machine translation architec-
tures? Since each alternative signal could capture
a different view of the original input, in addition
to training on each of the individual alternative sig-
nal alone, we investigate different approaches to
combining them.

Straight Concatenation The simplest combina-
tion strategy is to concatenate different input sig-
nals and separate them by a special token. For
instance, to combine the original and phonetic in-
put, we re-arrange the input to be of the format:
“loriginal input] [ SEP] [phonetic input]”. During
training, the decoder explicitly attends to tokens in
both input signals. The advantage of this method is
that no architectural change is required as all modi-
fication is operated on the input data. However, as
the concatenated input becomes longer, this method
requires more computation to train compared to the
baseline model trained on the original input only.
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Multi-Encoder Architectures Prior works have
found multi-encoder architecture to be effective
for multi-source machine translation (Nishimura
et al., 2018). To cope with input from different
sources, each encoder in the multi-encoder archi-
tecture deals with one type of input. To attend to
multiple encoders on the decoder side, four cross-
attention mechanisms can be adopted. We direct
the reader to Appendix A for a detailed descrip-
tion of these attention variations. Although prior
work investigates the efficacy of this approach, it is
a complicated model choice requiring non-trivial
architectural changes.

Multi-Source Ensemble Ensembles are usually
employed to boost the performance of a translation
system. In a standard setup, each ensemble compo-
nent is trained with identical configuration except
for the random seed. We generalize this method
to multi-source ensemble, i.e., individual ensemble
components are trained on different transliterated
inputs. During inference time, each component is
fed with the type of transliteration it was trained on
and produces the predicted log probabilities, which
are averaged over all components for the subse-
quent decoding process. It is important for mod-
els trained on different source signals to have the
same target vocabulary so that the average of log
probabilities can happen. Unlike the previous two
methods, this approach requires training multiple
full models, thus requiring even more computation.

Multi-Source Self-Ensemble Ensembling mod-
els that are trained on different input translitera-
tions has the advantage that each individual model
is maximally simple — only the input data for train-
ing changes. However, it comes with the downside
that multiple different models need to be trained.
This creates challenges particularly when models
grow in size, as a new model would need to be
created for each different transliterated input.

Instead, we propose the Multi-Source Self-
Ensemble, which has all the advantages of tradi-
tional ensembling, but only requires one model to
be trained. Previous works in self-ensembles have
focused on model robustness (Liu et al., 2018),
which is distinct from varying input representa-
tions. Other work creates inputs in different lan-
guages (Fan et al., 2020), but have to use a transla-
tion model to create those inputs first.

In our case, we train the model with different
transliterated inputs mapping to the same translated

target sentence. Concretely, the model is trained
on the mixture of various input signals, each pre-
ceded by a special language token indicating which
type of signal this input belongs to. At inference
time, the alternative transliterated signals of the
same test sentence are fed to the same model and
the log probabilities produced by these separate
passes are averaged as in multi-source ensemble.
This approach is simple to implement as it requires
no architectural change, meaning the transliterated
inputs we propose can be added seamlessly to any
existing translation library. Unlike multi-source en-
semble, only one model needs to be trained, stored
and loaded for inference, greatly simplifying the
ensembling process and increasing the scalability
of our approach (particularly as translation models
increase in size). To enforce fair comparison be-
tween multi-source self-ensemble and multi-source
ensemble, we scale the former so that it has the
same number of parameters as that of all ensem-
ble components of the latter. For the purpose of
minimally impacting inference speed, the scaling
is done only to the encoder embedding dimension
so that the decoder remains the same.

3 Experimental setup

Dataset We train our model on two language
families: Indic and Turkic. The Indic dataset is
from the WAT Multilndic MT task?, including
10 Indic languages and in total around 11 million
Indic-English bi-texts. Six of the Indic languages
are Indo-Aryan languages and the rest are Dra-
vidian languages. All of these languages use a
different writing system. The Turkic dataset is col-
lected from the open parallel corpus (Tiedemann,
2012)3. For relatively high-resourced language
Turkish, we randomly select 4 million subset from
the CCAligned (El-Kishky et al., 2020) corpus.
Within this dataset, two languages use Cyrillic al-
phabet (Kazakh and Kyrgyz) and the rest use Latin
alphabet. Detailed dataset statistics are displayed
in Table 7 in Appendix B.

Single-input model To test the effectiveness of
each input signal, we train models on each single
type of input: original input (BASE), phonetic input
(IPA), romanized input (ROMANTI) or input all ex-
pressed in the script of a language within the same
language family (INSCRIP). On the Indic dataset,

https://lotus.kuee.kyoto-u.ac. jp/WAT/
indic-multilingual/index.html
*https://opus.nlpl.eu/
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~93 M parameters

~2x93 M parameters

Indic Turkic | Indic Turkic

Single-input Original Standard Ensemble

BASE 33.6 20.3 BASE+BASE 34.5 21.1
Single-input Alternative Multi-Source Ensemble

IPA 32.7 17.9 BASE+IPA 34.3 20.9

ROMANTI 32.5 20.7 BASE+ROMANI 34.4 21.4

INSCRIP 334 20.5 BASE+INSCRIP 34.5 21.5
Multi-Source Self-Ensemble Multi-Source Self-Ensemble

BASE+IPA 34.1 20.5 BASE+IPA 35.7 21.9

BASE+ROMANI 33.8 20.9 BASE+ROMANI 35.7 22.2

BASE+INSCRIP 34.2 21.3 BASE+INSCRIP 35.8 22.4

Table 1: BLEU scores on Indic test set and FloRes Turkic Devtest set.

for the INSCRIP signal, all Indo-Aryan languages
are transliterated into Hindi script, and all Dravid-
ian languages into Tamil script. On the Turkic
dataset, all languages in Latin script are transliter-
ated into Cyrillic script.

Multi-Source Ensemble A baseline for ensem-
bling models trained on different signals is the stan-
dard ensemble (BASE+BASE) where two BASE
models are ensembled, each trained with a different
random seed. Although there are multiple combi-
nations of input signals, we only discuss the cases
where BASE is combined with one of {IPA, RO-
MANI, INSCRIP}, since in our preliminary experi-
ments, we found dropping the BASE model leads
to significantly degraded performance.

Multi-Source Self-Ensemble Similar to above,
we train a single model on the mixture of original
input and one of {IPA, ROMANI, INSCRIP} input
for multi-source self-ensemble. To enforce fair
comparisons with the ensembled models, which
have more parameters in total, we train two sizes of
the self-ensemble (SE) model, one having the same
size of a single baseline model, the other scaled to
have twice the number of parameters of a single
BASE model.

Data Preprocessing We use espeak-ng* to
convert the original input to phonetic input. For
Indic languages, we use indic-trans’ (Bhat
et al.,, 2015) to obtain the romanized as well
as the in-family transliterated input. On the

4https://github.com/espeak—ng/
espeak—-ng

Shttps://github.com/libindic/
indic-trans

Turkic dataset, we manually align the Cyril-
lic and Latin alphabet and substitute the let-
ter(s) in one script with the corresponding one
in another.® The Indic languages are tok-
enized with indic_nlp_library and the rest
are tokenized with mosesdecoder’. We use
sentencepiece? to create 32K BPE (Sennrich
et al., 2016) subword vocabularies for each type
of input signal. Examples longer than 250 tokens
are discarded. We merge the source dictionaries
of different signals by dropping duplicated tokens,
while keeping the decoder dictionaries all the same
in order to compute the average log probabilities in
ensemble settings.

Training & Evaluation We train many-to-En
language directions during training (10 and 5 direc-
tions for Indic and Turkic dataset respectively). The
architecture is a standard 6-layer encoder 6-layer
decoder Transformer model, with 512 embedding
dimension and 2048 hidden dimension in the de-
fault setting. For the scaled self-ensemble model,
we increase the encoder hidden dimension such that
the number of parameters in this model approxi-
mately matches that of n baseline models (n = 2
for results in Table 1). We use 4000 warmup steps
and learning rate 0.0003. Both the dropout and at-
tention dropout rate are set to 0.2. Label smoothing
is set to 0.1. Data from different language pairs
are sampled with 1.5 temperature sampling. We

®The substitution process starts from the letter in the target
script that corresponds to the most number of letters in the
source script.

"https://github.com/moses—smt/
mosesdecoder

$https://github.com/google/
sentencepiece
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‘BASE IPA ROMANI INSCRIP

0.03 0.15 0.13 0.16
347 393 25.9 51.3

Uni-gram
Sent. len

Table 2: Uni-gram token overlap and sentence length
of various types of input on Multilndic dev set.

train all models for 18 epochs and 40 epochs for
Indic and Turkic dataset respectively and evaluate
the best checkpoint selected by dev loss. We use
SpBLEU? (Goyal et al., 2021; Guzmén et al., 2019)
to compute the BLEU scores. '

4 Results

In this section, we compare the performance of
our proposed multi-source self-ensemble model
to various alternative ways of input combinations
on two low-resource language families: Indic and
Turkic languages. Furthermore, we show multi-
source self-ensemble learns faster and generates
more consistent and accurate translations.

4.1 Performance of Multi-Source
Self-Ensemble

Our method is based on the hypothesis that incorpo-
rating alternative inputs increases the token overlap
of source languages, which benefits the transfer
during training. To verify this, we compute aver-
age sentence-level uni-gram overlap of all source
language pairs (Table 2) and find that alternative
signals do have higher token overlap compared to
the original input. For instance, the IPA signal,
having similar average sentence length as BASE ,
has much higher token overlap (0.15 vs. 0.03).

Do increased token overlaps result in better trans-
lation performance? We train models on each of
the alternative inputs alone and report the results
in the left column of Table 1. We find that using
only one alternative input in the source has either
worse or similar performance as the original base-
line, indicating higher token overlap among source
languages does not guarantee better BLEU scores.
The degraded performance is likely due to unfavor-
able interference introduced by shared tokens in

‘https://github.com/facebookresearch/
flores#spm-bleu

While prior work (Kocmi et al., 2021) has shown bet-
ter correlation between neural metrics and human ratings,
there have not been extensive evaluations for low-resource
languages, especially for systems dealing with various writing
scripts. Therefore we use spBLEU which is consistent with
previous works (Goyal et al., 2021).

35.0
32,5
30.0

@ 275

m 25.0
22,5
20.0

—eo— BASE
—4— SE(BASE+INSCRIP)
—»— SE(BASE+INSCRIP+INSCRIP1)

5% 10% 20% 40% 60% 80%
percentage of training set

Figure 2: Learning curve of the baseline model BASE
and the same-sized self-ensemble model trained on the
original input as well as transliterated input. INSCRIP
denotes the transliteration where the target script for
Indo-Aryan and Dravidian languages are Hindi and
Tamil respectively. The target scripts of INSCRIP1 are
Oriya and Kannada respectively.

the alternative signals. The interference may create
information loss'! or increased ambiguity'2, which
reinforces the importance of combining alternative
inputs with the original input.

Due to undesired interference exhibited in the
alternative input spaces, we therefore adopt the in-
put combination using our proposed Multi-Source
Self-Ensemble to combine the original input and
alternative signals. Results in left lower part of
Table 1 demonstrate improvements over the single-
input baseline. Our best performing alternative
input configuration improves +1.0 BLEU on Tur-
kic languages and +0.6 BLEU on Indic languages
for 93M parameter models.

In production, model ensembles are often em-
ployed to achieve the best possible performance.
This is usually done by training multiple models
each initialized with a different random seed (Baw-
den et al., 2020; Tran et al., 2021b), and averaging
the predicted next token probabilities at inference
time. We also provide results against these strong
ensemble baselines and observe +1.3 BLEU im-
provements on both Indic and Turkic languages.
Note that, to enforce a fair comparison, we compare
a scaled version of the multi-source self-ensemble
model which has the same number of parameters
as multiple ensemble baseline components.

"For example, the punctuation marks are lost during phone-
mization process.

2For instance, multiple words may have the same pronunci-
ation and thus have the same input in IPA form, which makes
the learning harder.

5296


https://github.com/facebookresearch/flores#spm-bleu
https://github.com/facebookresearch/flores#spm-bleu

Configuration BLEU
Single-input Baseline
BASE 33.6
Straight Concatenation
BASE+<SEP>+IPA 33.7
BASE+<SEP>+ROMANI 33.7
BASE+<SEP>+INSCRIP 33.6
Multi-Encoder Architectures
Bi-Encoder
BASE+BASE 34.2
BASE+IPA 33.9
BASE+ROMANI 33.9
BASE+INSCRIP 34.0
Quad-Encoder
BASE+BASE+BASE+BASE 343
BASE+IPA+ROMANI+INSCRIP 34.1
Multi-source Self-ensemble
BASE+INSCRIP 34.2

Table 3: Indic test set BLEU of models trained on
straight concatenation of input as well as multi-encoder
architectures. Training on the concatenated input does
not impact the BLEU much. Multi-encoder architec-
tures, although having a lot more number of parame-
ters, for instance, quad-encoder, achieve similar perfor-
mance of a much smaller multi-source self-ensemble.

4.2 Advantages of Multi-Source
Self-Ensemble

Architectural Simplicity. As introduced in §2.2,
there are various ways to incorporate multiple in-
puts, such as concatenation to form a longer input
or using multiple encoders networks. In Table 3,
we show that using multiple encoders has no im-
provements over the comparable baseline with raw
text input, and straight concatenation only brings
marginal gains (+0.1 BLEU). Further, our sim-
ple but effective Multi-Source Self-Ensemble tech-
nique reaches the same performance as that of a
much larger quad-encoder model, which requires
non-trivial architectural changes and takes more
compute to train. Thus, our technique is suitable to
be used out of the box in any seq-to-seq library.

Faster Learning in Low-Resource Settings. To
understand how self-ensemble performs with dif-
ferent amounts of data, we plot the learning curve
of both the baseline and the self-ensemble model
on 5%"3 to 80% of the total Indic training set.'* As

3When the training set is very small (5% and 10%), we
train for 60 epochs and select the model by dev loss.

'“The transliterated input are those of the same subset of
training data, thus no sentences having new semantic meaning

C-BLEU NE-F1

Single-input Baseline

BASE 34.7 55.9
Single-input Alternative Input

IPA 33.8 54.7

ROMANI 33.0 54.5

INSCRIP 35.3 554
Multi-Source Self-Ensemble

BASE+IPA 36.2 56.1

BASE+ROMANI 35.5 56.3

BASE+INSCRIP 36.2 56.4

Table 4: The consistency BLEU (C-BLEU) and exact
named entity match F1 (NE-F1) of Multilndic test set.
Higher C-BLEU scores imply more consistent output
in many-to-En setting. Higher NE-F1 scores indicate
better translation of named entities.

shown in Figure 2, the self-ensemble model outper-
forms the baseline model by a large margin when
the amount of training data is small (+5 BLEU
when only 5% of the total set is used for train-
ing). This is the scenario for most low-resource
languages, as the gap gradually closes when more
data is available. Overall, the multi-source self-
ensemble model is consistently better than the base-
line model irrespective of training data scale. This
suggests that transliteration can be a cheap and ef-
fective data augmentation approach when used in
conjunction with multi-source self-ensemble.

Improved Output Consistency. We conduct a
deeper analysis to understand the performance im-
provement of Multi-Source Self-Ensembles beyond
BLEU scores alone. We find that our proposed
technique generates much more consistent output,
which could be a benefit of alternative signals trans-
ferring information more easily amongst source lan-
guages. We propose consistency BLEU (C-BLEU)
to quantify the consistency of multi-way evaluation
output of a many-to-En translation model. We treat
the output of L;-En direction as reference and out-
put of all other L;-En directions as hypothesis. We
compute this for all N source languages in the
dataset, accounting for total N(N — 1) C-BLEU
scores, then take the average of all (Table 4). While
training on IPA or ROMANT alone does not out-
perform the baseline in terms of C-BLEU, model
trained on INSCRIP input improves the score by
+1.3. Self-ensemble over BASE and IPA increases
the C-BLEU to 36.2 (and from 36.3 to 38.1 with
scaled model), indicating the alternative signals are
best trained together with the original input.

are added in the multi-source self-ensemble setup.
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Figure 3: The exact named entity match F1 score of BASE INSCRIP and same-sized self-ensemble model trained
on the previous two inputs (SE(BASE+INSCRIP)). Although the results of the self-ensemble model only slightly
outperforms the baseline (55.9 vs. 56.4), the gains are more obvious when breaking the results by entity type.

Improved Named Entity Accuracy. The previ-
ous analysis implies the self-ensemble model out-
puts more consistent translation, yet this does not
mean the consistent translations are accurate. In
this section, we conduct an analysis targeted at
named entities. We use spaCy (Honnibal et al.,
2020) NER tagger to extract all named entities,
and then compute the exact match of the extracted
entities. According to the results in Table 4, self-
ensemble introduces small gains (+0.5) in terms of
named entity F1 (NE-F1), whereas the scaled self-
ensemble boosts NE-F1 score by +1.1. Although
the improvement is small in aggregate, we find
significant improvement when breaking down by
entity type. As shown in Figure 3, the multi-source
self-ensemble model (without scaling) outperforms
the baseline model on certain entity types, e.g., per-
son, organization, time and event by a large margin.

5 Related work
5.1 Alternative Input for Multilingual MT

Our work can be viewed as multilingual MT (Firat
etal., 2016) combined with multi-source MT (Zoph
and Knight, 2016), where the sources are not other
languages but rather alternative transliterated sig-
nals. The transliterated input has been explored
in the past for translation system. Nakov and Ng
(2009) use transliteration as a preprocessing step
for their phrase-based SMT model to tackle sys-
tematic spelling variation. Both Chakravarthi et al.
(2019) and Koneru et al. (2021) convert Dravid-
ian languages to Latin script and train multilingual
models with both source and target in Latin script;
the latter identify code-switching to be a challenge
during back-transliteration. Besides converting to
Latin script, Dabre et al. (2018) use another com-
mon script, Devanagari, for Indic languages. In ad-
dition to the natural written scripts, previous works

also explored artificial script, such as IPA. Liu et al.
(2019) incorporate phonetic representations, specif-
ically for Chinese Pinyin, to cope with homophone
noise. Unlike our work, Chakravarthi et al. (2019)
adopt transliteration to IPA for both the source and
target. Apart from transliterated input, other po-
tential alternative signals we did not fully explored
include orthographic syllable units (Kunchukuttan
and Bhattacharyya, 2016, 2020), morpheme-based
units (Ataman et al., 2017; Dhar et al., 2020), and
character (Lee et al., 2017) or byte (Wang et al.,
2019a) level input in addition to the subword-level
units (Sennrich et al., 2016).

5.2 Input signal combination

Multi-encoder architecture is the most common
way to combine input from different sources. While
previous works mainly use additional encoders to
encode syntactic information (Li et al., 2017; Cur-
rey and Heafield, 2018) or input in another lan-
guage (Nishimura et al., 2018), we feed in each
encoder with different signals of the same sen-
tence. Prior works also investigated approaches
to combining input at different granularity (Ling
et al., 2015; Chen et al., 2018; Casas et al., 2020).
Wang et al. (2019b) combine the decoupled lex-
ical and semantic representations through an at-
tention mechanism. Another common method of
utilizing additional input signal is multi-task learn-
ing, force the model to output extra labels (Luong
et al., 2016; Gronroos et al., 2017). Apart from
combining the sources during training, inference-
time ensemble (Garmash and Monz, 2016) is of-
ten adopted by recent submissions to shared MT
tasks (Ng et al., 2019; Tran et al., 2021a). The
ensemble components are usually separate systems
trained with different random initialization or lan-
guage pairs. Fan et al. (2020) ensemble the same
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model by feeding in source sentences in different
languages. The self-ensemble approach was also
found to make networks more robust after adding
random noises (Liu et al., 2018). Prior work also
uses the term "self-ensemble" to refer to an ensem-
ble of models using weights from different time
steps during training (Xu et al., 2020).

6 Conclusion

To overcome the low token-overlap issue exhibited
in multilingual MT systems due to distinct writ-
ing system, we examined three alternative signals
(phonetic, romanized and in-family transliterated
input) and investigated four approaches (input con-
catenation, multi-encoder, multi-source ensemble,
self-ensemble) to combining them with the origi-
nal input. Our results show that training a single
model with a mixture of diverse signals and per-
forming self-ensemble during inference time can
improve BLEU by 1.3 points on Indic and Turkic
dataset. The improvements can reach +5 BLEU
when training data size is small. Further, we show
this approach generate more accurate and consis-
tent translation of named entities which greatly
impacts the factuality accuracy of news translation.
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A Multi-encoder architecture

As has been systematically explored by Libovicky
et al. (2018), there are four kinds of multi-encoder
cross-attention that can be applied on the decoder
side: (1) Serial: cross-attention to each encoder
is performed layer by layer. (2) Parallel: cross-
attention to each encoder is performed in parallel
and then the outputs are added together before feed-
ing to the feed-forward layer. (3) Flat: outputs of
all encoders are concatenated along the length di-
mension as the input to a single cross-attention. (4)
Hierarchical: a second attention block is added to
attend to the representations output by the parallel
cross-attention. While models in Table 3 all use the
parallel cross-attention described in § 2.2, Table 5
ablates different multi-source cross-attention mech-
anisms. Three out of four cross-attention achieve
similar performance, whereas the ‘flat’ attention
is considerably worse. This echos the findings by
Libovicky et al. (2018).

Config. BLEU Config. BLEU
Serial 34.1 Flat 24.9
Parallel 34.0 Hierarchical 34.1

Table 5: Indic test set BLEU scores of multi-encoder
architecture trained on BASE+INSCRIP using different
multi-source cross-attention. All mechanisms perform
similarly except flat cross-attention.

B Experiments

B.1 Data statistics

The number of training examples for each language
in both Turkic and Indic dataset is shown in Table 7.
We evaluate the Turkic dataset on multi-way Flo-
Res101 devtest set, each having 1012 examples.
To evaluate the Indic models, we use the provided
multi-way test set of WAT21 Multilndic task, each
having 2390 examples.

B.2 Input concatenation analysis

In § 4, results show that models trained on the
concatenated input does not bring any discernible
improvement, but rather the performance is almost
the same. To understand if the model has indeed
utilized the concatenated alternative signals, we
take the trained model and evaluate BLEU scores
on the corrupted input. Specifically, one part of the
concatenated input is corrupted while the other is
left intact. The corruption is done by shuffling the

Config. BLEU | Config. BLEU
BASE + IPA 23.3 IPA + BASE 23.0
BASE’ + IPA 3.3 IPA’ + BASE 13.9
BASE + IPA”  20.2 | IPA + BASE’ 9.5

Table 6: Models trained on concatenated original and
phonetic input while evaluated on partially corrupted
input. We use IPA’ to denote the phonetic part of the
input is in corruption. Results are reported on the Flo-
Res101 Indic languages instead of Multilndic test set.

tokens within the selected part of the input. Over-
all, we find that the model indeed pays attention to
both parts of the input, as corrupting any part of
them leads to large regression in BLEU scores (Ta-
ble 6). Moreover, no matter which type of signal is
put in the front of the sentence, the model always
pays more attention to the original input rather than
the phonetic input, since corrupting the original
input causes larger performance degradation than
corrupting the phonetic input.

C Example alternative input signal

We present example alternative signals in Figure 4
and Figure 5. When the input are transformed
to scripts other than their native script, there are
more shared tokens in the source languages (as
highlighted in Figure 5).

D Analysis

D.1 Token overlap details

In § 4 we show the token overlap of various signals
aggregated over all source language pairs, in this
section we show the token overlap of each source
language pair in Table 8 for the original input and
in Table 9 for the in-family transliterated input'>.
Before performing transliteration, all source lan-
guages share only a small amount of token overlap
except between Marathi and Hindi. The shared to-
kens between native scripts are mostly punctuation
marks, digits and English tokens. After translitera-
tion, the token overlap becomes more obvious and
a clear division between language families can be
found.

D.2 Similarity in latent space

Besides examining the consistency of system out-
put as in § 4.2, we also measure the distance of

STarget script for Indo-Aryan languages is Oriya and Dra-
vidian languages Kannada.
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BASE _qeuInvaeal Qddsm , 6QI6 6RIT _6AIRER IR ¥e° AQecdofsa “A@MI Ao’ _QodF 68 _adq cl6a_QlQl
qd6ee AN Qa0 gedd @de ol _dqele eddem |
_prodhanomontri _kohithile _koti _koti _lokongko _mono _eboy _mo sti s kore _obhil, asa _srusti re _koribare

IPA __baba sa he bo _am bedo koro _go _hroffoukar o _hroffoukar _fo _halant _letobi : satoeko _po _di: rghukar _ro
_halant _murddhenno _halant _murddhenno _bhu : mika _nirba h _korithile

ROMANI _pradhanamanthri _kahithile , koti _koti _lok ank _man _eban _m asth ishk are _“ _ab hil asha " _ srist ire
_kariv are _bab asa hib _ambed akar _ guruthpurna _bhoomika _nirvah _ karithile _.

TRANSL WA AA T FE TR, Fc Fe D _Aes o AT _TT ¢ AT DU S _<xH DFIFW_F -
sT 3 X 29 oR_99 oM g A o Sg IR od o9 Of ool _HqfFer T o _a Uy e

Figure 4: Example alternative signals. BASE is the original input in Oriya script, IPA is the phonetic input,
ROMANI the romanized input, and TRANSL (INSCRIP in the main text) the input transliterated into Devanagari

script.
Turkic languages ‘ Indic Languages

Language #bi-text ‘Language #bi-text Language  #bi-text

Kazakh 919,877 | Bengali 1,756,197 Marathi 781,872

Kyrgyz 243,179 | Guyjarati 518,015 Oriya 252,160

Turkish 4,000,000 | Hindi 3,534,387 Punjabi 518,508

Uzbek 156,615 | Kannada 396,865 Tamil 1,499,441

Azerbaijani 1,847,723 | Malayalam 1,204,503 Telugu 686,626

Table 7: Training data statistics for Turkic and Indic dataset.
bn hi pa or gu mr  kn ml ta te bn hi pa or gu mr  kn ml ta te

bn 005 004 004 001 001 001 00l 001 001 bn 033 026 029 032 029 003 003 003 0.03
hi | 0.05 0.06 005 002 0.8 001 001 002 001 hi | 0.33 049 026 049 04 003 003 003 0.03
pa | 0.04 0.06 004 002 002 001 001 002 001 pa | 026 049 0.19 037 034 003 003 003 003
or | 0.04 005 0.04 001 001 001 001 001 001 or | 029 026 0.19 023 022 001 001 001 00l
gu | 001 002 002 001 005 004 004 005 0.04 gu | 032 049 037 0.23 041 003 003 003 0.03
mr | 001 0.8 002 001 005 0.04 005 005 0.04 mr| 029 04 034 022 041 003 003 003 0.03
kn | 001 001 001 001 004 004 0.04 005 0.04 kn | 003 003 003 001 003 003 025 0.17 031
ml | 0.01 001 001 001 004 005 0.04 0.05 0.04 ml | 0.03 003 003 001 003 003 025 035 033
ta | 001 002 002 001 005 005 005 005 0.05 ta | 0.03 003 003 001 003 003 017 035 0.26
e | 001 001 001 001 004 004 004 004 0.05 te | 003 003 003 001 003 003 031 033 026

Table 8: Token overlap BASE

source representations in the latent space. Con-
cretely, we compute the average of normalized Eu-
clidean distance over all source language pairs:

% > dist (I, In)
(2) m,n

, where NV is the total number of source languages,
dist(ly,,l,) compute the distance between a sen-
tence in language m and language n:

dist(ly, 1) =
1,1 . .
3 (m zl: mjm (dZSt(wmiv wnj))+

1 . .
] 2 i (dist(wmis wy)))
J

Table 9: Token overlap INSCRIP

, where |[,,,| and |l,,| are the number of tokens
within sentence in language m and language n re-
spectively. w,,; represents the i*" encoder output
of sentence [,,,. dist represents the Euclidean dis-
tance between the two vectors. We additionally
normalize the distance with v/d where d is the di-
mension of the dense vector. Adding the scaling
factor is to make the scaled self-ensemble model
comparable with the rest variants.

As shown in Table 10, none of the alternative
signals alone can lead to more similar source rep-
resentations. While training on the original input
and one alternative input, only the combination of
BASE and INSCRIP lowers the distance of origi-
nal input representations from 0.60 to 0.58. The
distances become even more smaller while train-
ing the scaled self-ensemble model. The distances

5303



Config. BASE IPA ROMANI INSCRIP
Trained separately 0.60 0.62 0.60 0.61
SE(BASE+IPA) 0.60 0.62 - -
SE(BASE+ROMANI)  0.61 - 0.60 -
SE(BASE+INSCRIP)  0.58 - - 0.60
SE(ALL) 0.60 0.62 0.60 0.61
S-SE(ALL) 0.54 0.53 0.52 0.52

Table 10: Normalized Euclidean distances of single-
input model (Trained separately), self-ensemble model

(SE) and scaled self-ensemble model (S-SE).

among BASE representations decrease to 0.54 and
the rest three input signals all yield more similar
representations than the original input. Overall, we
didn’t find significant differences in latent space,
which we would like to keep investigating in the

future.
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BASE IPA ROMANI TRANSL
bn _ NS qE .. _prodhanmontri _boalen... _pradhanmantri _balen ... 70\6}&\9‘919‘\@\6\1
gu J;kllrrtlbﬂa 755:1 75(.1 L _pradha :namntri:e: .. _pradhanmantri _kahyu ... _ Qe @ o° @ {N
hi _guTAA A wer .. _pradha : namantri_ne: ... _pradhanmantri _ne ... _ Qe @ o° @ {@W
kn IRAREERRSENE L R A _ba:ba:_sa:he:b_embe.. _baaba_saheb ambedkar.. - R0 _Ta..
ml _ @89S o6 6m 06 ay ... _ko : dik : e nak :ini ... _kotic nak in _janath ute ... _Bped3 nd, ..
mr AT <Y _oleh .. _kero:do:_lo:kic:ja: .. _karodo _lokanchya_mana..  @Q60l@ 69l ...
or _gIRnee] _ @Qc6A... _prodhanomontri _kohithile ... _pradhanamanthri _kahithile... _dQIAAAGQT I...
pa _HTS s _faT [ _pradhan _mantari _ne _kiha ... _pradhan _mantri _ne ... _qoIe _q S
ta _G&IT19.58 6701 SSMEU _LDSS6T |5 - i kkanakka : na_makkalin .. kot ik n akk ana _makalin . _Beedg oy ..
te Bgo mo os. _ko:tla:di_prajala .. _kot Ladi _prajal _hrid ayal ... _Bpe g 0 g L

Figure 5: Example alternative signals of the same sentence in ten Indic languages. The token overlap across
multiple languages are highlighted in blue. Compared to the original input, transliteration significantly increases

token overlap.
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