
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the
12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 777–791

November 20–23, 2022. ©2022 Association for Computational Linguistics

777

Cross-lingual Few-Shot Learning on Unseen Languages

Genta Indra Winata∗1, Shijie Wu∗1, Mayank Kulkarni∗†2
Thamar Solorio‡1, Daniel Preoţiuc-Pietro‡1

1Bloomberg 2Amazon Alexa AI
{gwinata,swu671,tsolorio,dpreotiucpie}@bloomberg.net, maykul@amazon.com

Abstract

Large pre-trained language models (LMs) have
demonstrated the ability to obtain good per-
formance on downstream tasks with limited
examples in cross-lingual settings. However,
this was mostly studied for relatively resource-
rich languages, where at least enough unlabeled
data is available to be included in pre-training a
multilingual language model. In this paper, we
explore the problem of cross-lingual transfer
in unseen languages, where no unlabeled data
is available for pre-training a model. We use
a downstream sentiment analysis task across
12 languages, including 8 unseen languages, to
analyze the effectiveness of several few-shot
learning strategies across the three major types
of model architectures and their learning dy-
namics. We also compare strategies for select-
ing languages for transfer and contrast findings
across languages seen in pre-training compared
to those that are not. Our findings contribute to
the body of knowledge on cross-lingual mod-
els for low-resource settings that is paramount
to increasing coverage, diversity, and equity in
access to NLP technology. We show that, in
few-shot learning, linguistically similar and ge-
ographically similar languages are useful for
cross-lingual adaptation, but taking the context
from a mixture of random source languages is
surprisingly more effective. We also compare
different model architectures and show that the
encoder-only model, XLM-R, gives the best
downstream task performance.

1 Introduction

The availability of large-scale multilingual pre-
trained language models has enabled a more effec-
tive transfer of knowledge across languages (Con-
neau and Lample, 2019; Pires et al., 2019; Wu
and Dredze, 2019a; Shliazhko et al., 2022; Lin
et al., 2021), thus limiting the need to gather task-
specific annotated data for a given target language.

∗ The authors contributed equally. †The work was done
while at Bloomberg. ‡Senior authors.

Recent research into few-shot learning approaches
proposed methods that explicitly aim to improve
performance when few annotated data points are
available to perform a task (Brown et al., 2020;
Lin et al., 2021; Srivastava et al., 2022), semantic
parsing (Liu et al., 2021c), topic modeling (Bianchi
et al., 2021). Further, cross-lingual few-shot learn-
ing uses multilingual models and few-shot learning
methods to perform a task given limited training
data in another language and has shown promise on
several downstream tasks (Lauscher et al., 2020a;
Liu et al., 2020; Zhao et al., 2021; Winata et al.,
2021).

These studies have only looked at relatively
resource-rich target languages, as they are part of
the pre-training data for the multilingual language
model, and even for these languages, the represen-
tation quality is not equal due to imbalanced corpus
size (Wu and Dredze, 2020). Representation quality
is expectedly lower for the vast majority of the spo-
ken languages in the world, most of which are not
part of the pre-training data in multilingual models,
albeit being spoken by large populations. For exam-
ple, Ngaju is the native language of over 890,000
people, yet there is no Wikipedia available for this
language, which is a common source of data for
pre-training. Cross-lingual few-shot learning meth-
ods are a promising avenue of research for enabling
NLP technologies for such languages, especially
as we can assume both unlabeled and, especially,
labeled data for a given task are difficult to obtain
at scale (Joshi et al., 2020; Lauscher et al., 2020b;
Pfeiffer et al., 2020; Liu et al., 2021b; Winata et al.,
2021; Aji et al., 2022).

This paper is the first to study cross-lingual few-
shot learning methods in unseen languages at the
pre-training stage. We focus mainly on how to most
effectively train a model for a downstream classifi-
cation task in an unseen language without having
access to any labeled data in that language. We
experiment with all three major types of multilin-
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gual pre-trained language model architectures, in-
cluding the encoder-only XLM-R (Conneau et al.,
2020a), the decoder-only XGLM (Lin et al., 2021)
and the encoder-decoder mT5 (Xue et al., 2021)
models. We combine these with different strategies
for few-shot learning for a new language, including
in-context learning, prompt-based fine-tuning, and
encoder-based fine-tuning. We evaluate the effec-
tiveness of these approaches under varying levels
of available training data. We perform several anal-
yses to understand aspects such as the performance
gap between languages seen in pre-training com-
pared to those unseen and which source languages
are best suited for a target language.

We perform this study on the downstream task
of sentiment analysis across 12 languages spoken
in Indonesia plus English from the NusaX corpus
(Winata et al., 2022). This dataset contains parallel
sentences annotated for sentiment, which conve-
niently allows control for content drift when com-
paring transfer capabilities across languages.
Our contributions are as follows:
• The first study on cross-lingual few-shot learn-

ing on diverse low-resource languages not seen
during pre-training across three model types and
three few-shot learning strategies focusing on
the task of sentiment prediction.

• Insights into the learning dynamics with varying
amounts of training data.

• Analysis of various data mixing strategies for
multi-source cross-lingual few-shot learning.

• Insights into transfer learning effectiveness
across languages.
In sum, our work contributes new insights to the

growing body of work in cross-lingual NLP for
extremely low-resource languages, a critical step in
increasing coverage and access to NLP technology.

2 Methodology

We define our task as follows: Let θ be
the LM and Tl be the dataset for language
l consisting of N sentence and label pairs
{x1, y1}, {x2, y2}, ..., {xN , yN}, where xi, yi, are
the inputs and labels, respectively. In the cross-
lingual setting, we take the source language lsrc
from a pool of languages L that does not include
the target language ltgt. In this work, we categorize
languages as seen and unseen. The unseen lan-
guages, are those languages that were not present
in the data used to pre-train the multilingual mod-
els, while the seen languages were included during

pre-training. Our goal is to investigate what are the
most successful strategies for cross-lingual trans-
fer learning under extremely limited data settings.
With this in mind, we want to answer the following
questions:
• Multilingual models: which model architecture

is better for this scenario?
• Few-shot learning: different model architectures

will require different learning, which is better?
• Language selection: given that data is available

for several source languages, how should we se-
lect the languages to improve transfer to target
languages?
Next, we expand on the methods followed in

order to answer the questions above.

2.1 Multilingual Language Models

We experiment with a model from each of the three
major types of pre-trained language model archi-
tectures: encoder-only architectures such as BERT
(Devlin et al., 2019), decoder-only architectures
such as the GPT series (Brown et al., 2020) and
encoder-decoder architectures such as T5 (Raffel
et al., 2020). Pre-trained multilingual models, such
as mBERT, significantly improve the ability to gen-
erate cross-lingual representations (Conneau and
Lample, 2019; Pires et al., 2019; Wu and Dredze,
2019a), which led to the creation of multilingual
variants for all architecture types. In this paper, we
use XGLM (Lin et al., 2021), XLM-R (Conneau
et al., 2020a), and mT5 (Xue et al., 2021).

2.2 Few Shot Learning Strategies

We explore multiple approaches to few-shot learn-
ing using LMs as follows:

2.2.1 Cross-lingual Few-shot Fine-tuning
Encoder-based Model Fine-tuning The com-
mon approach to applying a pre-trained LM to
a downstream task involves fine-tuning the pre-
trained model with a classification head on the la-
beled data. Given k training samples, we take them
to fine-tune an encoder model θ (i.e., XLM-R). In
this case, we fine-tune the model using the text
samples as input and update all parameters of the
encoder.

Prompt-based Fine-tuning For the XGLM and
mT5 models, we conduct few-shot fine-tuning by
casting the problem as text-to-text using a simple
template t = [xi => yi] as in Tab. 1. For mT5, the
template is t = ([xi =>], [yi]). We fine-tune all pa-
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Prompt Example Translation

x1 => y1\n Susujih segar ngon sayur nyang bereh, nyum kuah The milk is fresh with amazing vegetables and delicious
mangat ngon peulayanan nyang ramah that=>positive soup flavour, complete with super nice service.=>positive

... ...
xk => yk\n Menyeusai kupeugah bak kah, farrel.=>negative I regret ever telling ye anything, Farrel.=>negative
Q => Ae beneh, iye sedeng nyaga warung=> Yeah that’s right, he’s looking after the store now=>

Table 1: Cross-lingual prompt template. It shows the k-shot context in Acehnese and the query in Balinese.

rameters of the model to maximize pθ(t). Instances
in the template belong to the source language lsrc.
During inference, we compute the probability dis-
tribution of the label as the following:

ŷ = argmax
y

P (y|x, θ). (1)

2.2.2 Cross-lingual In-context Learning
In-context learning is proposed as an alternative for
few-shot learning in Brown et al. (2020). In this
setting, we use a set of examples from a template
to perform the downstream task directly without
any gradient update.1

We set up our prompt P = (C,Q) as the con-
catenation of context C and query Q. The context
C is generated by following a template shown in
Tab. 1, and we sample k pairs of inputs and labels
from lsrc to fill the template. The query Q is the
sentence from the test sample we want to evaluate.
For each test sample, we compute the probability
distribution of each label and take the highest score
as the predicted label ŷ:

ŷ = argmax
y

P (y|P, θ). (2)

In the zero-shot in-context learning setting, the
prompt P only consists of the query Q.

2.3 Language Sample Selection Methods
While many studies explore single- and multi-
source transfer between languages seen during LM
pre-training, to the best of our knowledge, there is
no study covering the setup where languages are un-
seen during pre-training as both source and target
languages. Given that existing labeled datasets only
cover a small fragment of the languages worldwide,
it would be helpful to be able to build NLP systems
via cross-lingual transfer with as little labeled data
in the target languages as possible.

We explore various methods for language se-
lection for a multi-source transfer involving un-
seen languages, aiming to choose source languages

1While there is no gradient update in in-context learning,
we still refer to the act as “training" for writing simplicity.

Language Language Geographical Availability
Root Location in LM⋆

Acehnese (ace) Malayo-Chamic Sumatera ×
Balinese (ban) Bali-Sasak-Sumbawa Java† ×
Banjarese (bjn) Malayo-Chamic Borneo ×
Buginese (bug) South Sulawesi Sulawesi ×
English (eng) Germanic n/a ✓
Indonesian (ind) Malayo-Chamic ‡ ✓
Javanese (jav) Javanese Java ✓
Madurese (mad) Madurese Java ×
Minangkabau (min) Malayo-Chamic Sumatera ×
Ngaju (nij) Greater Barito Borneo ×
Sundanese (sun) Sundanese Java ✓
Toba Batak (bbc) Northwest Sumatera Sumatera ×

Table 2: Languages in the NusaX dataset. †We group
Balinese to Java because it is located close to Java. ⋆We
check whether the language is part of the pre-training
dataset of XLM-R, XGLM, and mT5. A language is con-
sidered “unseen" if it is not present in the pre-training
data.

data split positive negative neutral

train 189 192 119
valid 38 38 24
test 151 153 96

Table 3: The label distribution of the NusaX dataset
splits.

that are likely to be useful for the target languages.
We evaluate different mixing strategies based on
the single-source performance of each target lan-
guage, geographic vicinity, and linguistic language
roots. Our goal is to understand whether mixed lan-
guage prompts provide any advantage to unseen
languages and to what extent they help alleviate the
data scarcity problem in cross-lingual settings.

Random Mixing We randomly sample instances
from different languages for each target language,
excluding the target language (random-mix). For
in-context learning, the prompt is then constructed
using the instances. For fine-tuning, we treat the
same set of instances as the training set.

Best Single-Source Languages Mixing We an-
ticipate that selecting source languages using lin-
guistic knowledge will give an advantage over the
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Figure 1: Experimental results on sentiment classification in F1 across various data sizes (X-axis), model types, and
learning setups.

random and single source language settings. To
evaluate this hypothesis, for each target language,
we select the languages to be mixed based on their
performance as a few-shot single source language.
We fine-tune a multilingual encoder model (i.e.,
XLM-R). We take the best-performing source lan-
guages for each target language on the target val-
idation set. We take the best 3 (top-3) and best 5
(top-5) languages.

Geographical Location We hypothesize that lan-
guage proximity could be a good criterion for se-
lecting source languages. In addition, we also verify
the performance of the opposite strategy, selecting
languages that are farthest from each other. Each
language is part of only a single group, except for
Indonesian, which has a high overlap with the two
groups. We use the label close-geo for close lan-
guages and far-geo for distant languages based on
the geographical location.

Language Roots We create two sets of languages
based on their linguistic roots: languages belong-
ing to the same language group, that we denote as
related-lang, and all other languages being dissim-
ilar from each other, denoted as unrelated-lang.

3 Experimental Setup

3.1 Data

We use the NusaX dataset (Winata et al., 2022), a
parallel multilingual sentiment analysis dataset con-
taining labeled data in 10 low-resource languages
and their corresponding translations in English and
Indonesian. The list of the languages can be found
in Tab. 2 along with their language root and geo-
graphical location of the main body of speakers of
the language. We highlight that 8 out of the 12 lan-

guages are not covered in pre-training by any of the
three widely-used multilingual LMs that we consid-
ered. In this study, we are interested in quantifying
the extent to which multilingual models generalize
across languages. Given that the NusaX dataset is
built from translating the original data to all lan-
guages, we expect there is little to no semantic drift
across languages. The dataset contains 500 train-
ing, 100 validation, and 400 test samples for each
language.

3.2 Single Source Settings
Dataset Size We explore the impact of dataset
size on the performance of within languages
and cross-lingual transfer. We sample the
dataset for k-shot training setups where k ∈
{0, 3, 6, 15, 24, 30, 500}. For k < 500, the sam-
ples are created with the same number of examples
for each of the three labels. When k = 500, this is
effectively training on all samples for the source
language available. Tab. 3 shows the label distribu-
tion of the dataset.

Same Language Setting We conduct experi-
ments where we use the training data from the
same language as the target language.

Cross-lingual Transfer We conduct further ex-
periments where we use training data from an Or-
acle Source language in a cross-lingual setting.
This is determined, for each target language, as the
source language with the best performance on the
test set. We note this is an upper bound, given that
in a realistic setting, we do not have access to test
data to infer the best language.

Impact of Model Architecture As discussed in
§2.1, we consider three multilingual LMs of dif-
ferent architecture types: XLM-R as an encoder
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Same language Cross-lingual (oracle source)
Target Lang. XGLM (IC) XGLM (FT) mT5 (FT) XLM-R (FT) XGLM (IC) XGLM (FT) mT5 (FT) XLM-R (FT)

Unseen Languages

Acehnese 48.80 60.42 48.00 63.83 46.87 60.67 53.17 65.04
Balinese 45.03 57.33 54.08 63.61 50.68 61.83 55.50 68.39
Banjarese 40.44 68.17 48.83 68.03 53.89 65.83 59.92 74.77
Buginese 39.75 38.58 47.75 57.03 39.25 48.92 50.42 53.83
Madurese 45.18 51.08 45.17 58.74 47.29 59.25 55.08 64.91
Minangkabau 53.93 62.75 38.00 72.63 51.35 62.83 58.58 69.71
Ngaju 44.38 54.25 49.17 63.15 47.72 60.42 54.00 68.29
Toba Batak 37.06 41.67 42.75 51.59 44.06 53.92 48.83 54.42

avg. 44.32 54.28 46.72 62.33 47.64 59.21 54.44 64.92

Seen Languages

English 58.02 76.67 57.33 78.07 53.80 70.58 72.83 70.43
Indonesian 56.64 78.33 71.50 73.07 56.17 75.92 62.25 75.83
Javanese 53.55 58.58 49.75 66.57 49.74 63.67 64.00 72.41
Sundanese 41.82 53.50 58.42 61.80 49.42 60.75 61.42 74.43

avg. 52.51 66.77 59.25 69.88 52.28 67.73 65.13 73.28

Table 4: Results on 30-shots on monolingual and cross-lingual transfer. In oracle source, we report the best source
language for each target language. IC and FT denote in-context learning and fine-tuning, respectively. XGLM, mT5,
and XLM-R refer to XGLM-2.9B, mT5-3.7B, and XLM-RLARGE (550M), respectively.

Single-source Multi-source
Target Lang. mono x-oracle random-mix top-3 top-5 close-geo far-geo related-lang unrelated-lang

Unseen Languages

Acehnese 63.83 65.04 55.83 58.41 58.35 46.62 52.32 54.25 55.00
Balinese 63.61 68.39 58.38 60.60 63.15 56.53 48.92 n/a 58.38
Banjarese 68.03 74.77 61.42 52.75 66.81 55.00 57.13 59.09 57.44
Buginese 57.03 53.83 37.37 44.60 50.33 n/a n/a n/a 37.37
Madurese 58.74 64.91 50.29 53.02 59.58 55.53 55.76 n/a 50.29
Minangkabau 72.63 69.71 58.40 53.33 60.50 54.75 60.74 62.23 59.93
Ngaju 63.15 68.29 50.90 48.00 57.28 59.70 49.73 n/a 50.90
Toba Batak 51.59 54.42 41.51 43.26 53.23 43.96 46.94 n/a 41.51

avg. 62.33 64.92 51.76 51.75 58.65 53.16* 53.08* 58.52* 51.35

Seen Languages

English 78.07 70.43 35.39 49.60 57.03 n/a n/a n/a 35.39
Indonesian 73.07 75.83 49.86 58.07 68.39 51.46 53.85 45.43 53.74
Javanese 66.57 72.41 44.92 61.21 60.90 44.82 41.28 n/a 44.92
Sundanese 61.81 74.43 52.98 50.09 62.43 57.47 43.76 n/a 52.98

avg. 69.88 73.28 45.79 54.74 62.19 51.25* 46.30* 45.43* 46.76

Table 5: Results on 30-shots with multi-source cross-lingual mixing strategies via few-shot encoder-based fine-tuning
using XLM-RLARGE. Results marked with * are not directly comparable due to some results being n/a.

model, mT5 as an encoder-decoder model, and
XGLM as a decoder model, and evaluate these mod-
els to determine which is most effective at cross-
lingual transfer learning. Specifically, we consider
the pre-trained versions XGLM2.9B, XLM-R0.5B,
and mT53.7B respectively.

Training Strategy We train models using in-
context learning, prompt-based fine-tuning, and
encoder-based model fine-tuning as described in
§2.2 as different training strategies are afforded by

each model architecture. XGLM is trained using
both in-context learning and prompt-based fine-
tuning. We note that XGLM cannot be trained with
in-context learning with k > 30 as we are lim-
ited by the maximum sequence length of the po-
sitional embeddings. mT5 is trained with prompt-
based fine-tuning. Finally, XLM-R is trained using
encoder-based model fine-tuning.

Zero-Shot Cross-Task Finally, Winata et al.
(2021) introduce zero-shot cross-lingual learning
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with BERT fine-tuned on natural language entail-
ment. Given a fine-tuned XLM-R with an entail-
ment head θTE , a test sample as query Q, and all
possible labels Y . The model accepts two inputs,
the query Q and label y′ ∈ Y , and generates the
entailment score given any combinations of the
hypothesis and label Pθ(y = entail|h, l):

ŷ = argmax
y′∈Y

P (y = entail|Q, y′, θTE) (3)

We consider a zero-shot setup as cross-lingual as
no real source language label was used.

3.3 Multi-Source Settings
Random Mixing As a baseline, we randomly
mix the samples across different languages and we
show the distribution of random mixing accumu-
lated from three random seeds in Fig. 2.

Figure 2: Language Distribution of Random Mixing

Geographical Location To evaluate this strat-
egy, we form 5 groups of languages based on the
geographical region as follows:
• Sumatera Region: Acehnese, Indonesian, Mi-

nangkabau, Toba Batak
• Java Region: Balinese, Javanese, Indonesian,

Madurese, Sundanese
• Kalimantan/Borneo Region: Banjarese, Ngaju
• Sulawesi Region: Buginese
• Non-regional: English

Language Roots We look at grouping source lan-
guages based on their linguistic roots as described
in Winata et al. (2022). Resulting in a grouping
of Acehnese, Banjarese, Indonesian, and Minangk-
abau as related languages and all other languages
as unrelated languages.

3.4 Label Translation
The labels in the NusaX dataset are in English.
We explore the impact of translating labels to the
target language. We choose a seen language, In-
donesian, and an unseen language, Balinese, as
our two target languages. The labels are translated
by native speakers. The goal of this experiment is
to assess whether the generative models can gain
performance from leveraging semantic knowledge
from the labels translated to the target language.
We use the following translations for the labels of
"positive", "negative" and "neutral" in the same
order:
• Indonesian: positif, negatif, netral.
• Balinese: becik, jele, sedeng.
For Balinese, the native speaker was not able to
identify a literal word-to-word translation for the
labels and thus suggested words that, in their view,
are closely related to the English labels.

3.5 Hyperparameters
All our experiments are reported across 3 runs with
fixed seeds {42, 52, 62} for reproducibility, and we
report error bars in figures to facilitate transparency.
For fine-tuning using XLM-R, we use a batch size
of 32, a learning rate of 1e-5, and a learning rate
decay of 0.9. We apply early stopping with patience
of 5. For XGLM and mT5 fine-tuning, we fine-
tune the model with a constant learning rate of
1e-5. The batch size for XGLM and mT5 is 4 and
32, respectively. For XGLM, we fine-tune for 3
epochs when k = 500 and 6 epochs when k =
30. For mT5, we fine-tune for 24 epochs when
k = 500 and 48 epochs when k = 30, keeping
the same number of gradient updates as XGLM.
Additionally, we use learning rate of 1e-4 for mT5
when k = 30. Due to the large model size, we
use mixed precision and DeepSpeed (Rasley et al.,
2020) for training. We utilize one V100 32GB GPU
for XLM-R and two GPUs for XGLM and mT5.

4 Results

4.1 Single-Source Transfer
Fig. 1 plots the results of different models and train-
ing setups with varying amounts of training data.
We observe a consistent trend in the same language
than in the cross-lingual setting: in the extreme few
shot setting, less than 15 examples, fine-tuning and
in-context learning show comparable performance,
although error bars for in-context learning show a
large variance, a well-documented fact in recent
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Figure 3: Relation between cross-lingual transfer and vocabulary overlap of different models.
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Figure 4: Results on 30-shot cross-lingual fine-tuning
in the sentiment analysis task with XLM-RLARGE. We
separate seen and unseen languages with a clear row
and column.

work (Brown et al., 2020). As more labeled data
becomes available, the best strategy is to use fine-
tuning. Surprisingly, in the cross-lingual setting,
the XLM-R cross-task baseline gives a very strong
performance and seems like a better alternative in
the case of having less than 15 labeled examples.
As expected, when using all available training data,
fine-tuning performs best. However, in smaller data
regimes, XLM-R is the best approach.

Tab. 4 provides a window into the performance
metrics in the 30-shot setting across all model archi-

Source \ Target Indonesian (ind) Balinese (ban)
l=eng l=ind l=eng l=ban

Unseen Languages

Acehnese 62.08 69.19 61.50 43.55
Balinese 59.58 65.54 57.33 38.97
Banjarese 68.83 73.65 59.83 48.27
Buginese 42.42 68.98 32.00 39.50
Madurese 62.08 70.53 50.75 32.44
Minangkabau 72.42 73.77 61.83 49.36
Ngaju 62.33 63.17 53.25 39.54
Toba Batak 51.08 59.55 47.75 25.72

Seen Languages

English 75.92 63.24 53.83 43.60
Indonesian 78.33 73.95 51.42 54.34
Javanese 71.75 68.25 56.33 46.57
Sundanese 71.83 69.43 54.58 34.92

Table 6: Single-source fine-tuning results with translated
labels using XGLM. l=ind and l=ban denotes the
labels are translated to Indonesian and Balinese, respec-
tively.

tectures. We observe that XLM-R fine-tuning out-
performs all other models by a considerable margin,
both across unseen languages and seen languages.
This demonstrates that fine-tuning methods leverag-
ing an encoder-based model are the most effective
at cross-lingual transfer for this task while having
five times fewer parameters. In Fig. 3 we illustrate
how token overlap correlates with model perfor-
mance for unseen languages as the source. There
is one very clear trend in these results: when the
target language has not been seen by the model dur-
ing pre-training, it is beneficial to choose a source
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Source \ Target Indonesian (ind) Balinese (ban)
l=eng l=ind l=eng l=ban

Unseen Languages

acehnese 55.18 26.91 50.21 28.46
balinese 41.16 34.01 45.03 25.84
banjarese 44.96 23.60 38.08 28.07
buginese 52.02 30.39 46.63 24.68
madurese 51.53 29.77 43.29 28.04
minangkabau 55.70 31.71 50.10 26.04
ngaju 44.44 22.41 44.94 30.52
toba batak 41.95 30.73 40.40 25.23

avg. 48.37 28.69 44.84 27.11

Seen Languages

english 49.85 19.98 37.41 33.41
indonesian 56.64 24.38 41.07 23.84
javanese 54.41 31.74 50.68 32.78
sundanese 56.17 21.82 49.70 29.01

avg. 54.27 24.48 44.72 29.76

Table 7: Single-source in-context learning results with
translated labels using XGLM. l=ind and l=ban de-
notes the labels are translated to Indonesian and Bali-
nese, respectively.

language with high token overlap with the target
language.

Label Translation We evaluate the effect of
translated labels from English to target languages
(Indonesian and Balinese) in the text-to-text frame-
work. We use the label translations as described
in §3.4 and Tab. 7 to translate the labels to tar-
get languages for each source language in the
prompt-based fine-tuning and in-context learning,
respectively. We use XGLM for our experiment
as this supports both paradigms. For Indonesian,
we observe that translated labels lead to significant
improvement when source languages are unseen.
However, these labels do not improve the perfor-
mance when source languages are seen. As for
Balinese, the translated labels lead to consistently
worse performance, likely due to there not being
direct translations for these labels in this language.
This suggests more attention is needed when trans-
lating labels into target languages, and future work
could consider cross-lingual transfer when the la-
bels are in the corresponding languages instead of
English.

4.2 Multi-Source Transfer
Fig. 4 shows that there could be more than a single
good source language for a given target seen or
unseen language. Moreover, as shown in Tab. 4,
in many cases, the oracle source language outper-

forms using the target language as the source. One
plausible explanation for why training on a source
language can benefit a different target language
could be its token overlap. Therefore, we perform
experiments to explore the effectiveness of using
multiple-source languages for cross-lingual trans-
fer. We employ various multi-source language se-
lection techniques as described in §2.3. In addition,
we conduct experiments using XGLM in-context
learning (Tab. 8) and XLM-R fine-tuning.

Tab. 5 shows the performance of the various lan-
guage selection techniques when fine-tuning with
XLM-R. We add “mono" (same language) and “x-
oracle" (cross-lingual oracle source) as ceilings to
compare against. We find that a nuanced selection
of the source languages to mix is essential in ob-
taining competitive performance. We see that when
randomly mixing all source languages or choos-
ing languages that are unrelated linguistically to
the target language, we obtain the worst perfor-
mance in both seen and unseen languages. One
challenge when using expert knowledge to select
source languages such as geographical closeness or
linguistic similarity is that there can be null sets for
a given target language, denoted as n/a in Tab. 5.
We observe that when these methods are applica-
ble, they are effective techniques, obtaining perfor-
mance that is largely better than random.

We propose to use the validation set to find the
top-k most transferable source languages and use
these for multi-source mixing. Here we find that
when we add more languages to the mix based
on this metric, performance improves. More con-
cretely, using the top-5 transferable source lan-
guages for mixing is more effective than using the
top-3. This is also a practical method as it induces
some form of selection across languages but also
scales to many languages in the source without
needing detailed information about the language
itself. Finally, we also observe that when using
the top-5 mixing strategy, the gains compared to
random are much more pronounced in the seen lan-
guages as compared to the unseen languages, as
might be expected.

We also explore using constraints, such as forc-
ing at least one example per label for any selected
source language, with and without language re-
placement for language choice. However, we did
not see noticeable trends and omitted these for
brevity. In Fig. 3, we do not find significant dif-
ferences in subword overlap between languages
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and rule this out as an underlying cause for better
source language performance.

5 Related Work

Language-Specific LM Self-supervised pre-
trained LM methodologies leverage unlabeled data
on low-resource languages (e.g., in French (Martin
et al., 2020; Le et al., 2020), Indian languages (Kak-
wani et al., 2020), Indonesian (Wilie et al., 2020;
Koto et al., 2020; Cahyawijaya et al., 2021), Korean
(Park et al., 2021), Chinese (Xu et al., 2020), Italian
(Polignano et al., 2019)). This has enabled transfer
learning to low-resource languages. Another line of
work is to train large multilingual languages models
by taking hundreds of languages (e.g., mBERT (De-
vlin et al., 2019), XLM-R (Conneau et al., 2020a),
XGLM (Lin et al., 2021)). These models enable
cross-lingual transfer when there are very limited
in-language training samples available.

Cross-lingual Transfer The effectiveness of
cross-language transfer with multilingual LMs
has been extensively studied, focusing on lan-
guages that are seen during pre-training. Cross-
lingual transfer learning has been applied to vari-
ous downstream NLP and multimodal tasks, such
as natural language understanding (Liu et al.,
2019, 2020; Winata et al., 2021), named entity
recognition (Liu et al., 2021a), textual entail-
ment (Artetxe and Schwenk, 2019), entity link-
ing (Rijhwani et al., 2019), hate speech detec-
tion (Nozza, 2021; Pamungkas et al., 2021), ma-
chine translation (Eriguchi et al., 2018), question
answering (Zhou et al., 2021; Faisal and Anasta-
sopoulos, 2021; Limkonchotiwat et al., 2022; Agar-
wal et al., 2022; Zhang and Wan, 2022), part-of-
speech tagging (Wu and Dredze, 2019b; Ansell
et al., 2021; Parović et al., 2022), sentiment analy-
sis (Fei and Li, 2020; Ghasemi et al., 2022), text-
to-image search (Huang et al., 2021), and informa-
tion retrieval (Yarmohammadi et al., 2021). Malkin
et al. (2022) show the effect of pre-trained language
selection on the zero-shot setting by limiting the
distribution of pre-trained data size to be balanced
across all languages. Winata et al. (2021) conduct
the first exploration on using English LM for cross-
lingual transfer via in-context learning. For lan-
guages that are unseen during pre-training, Adelani
et al. (2021) and Ebrahimi et al. (2022) explore the
effectiveness of cross-lingual transfer in African
and American languages, respectively. They found
that fine-tuning the multilingual encoder model is

an effective method for adapting to new languages.
The difference between our study and theirs is we
conducted a structured study on how to leverage
the pre-trained LM in few-shot settings with vari-
ous LM architectures (i.e., encoder and generative
models). In another line of work, using more com-
plex sampling strategies for few-shot multilingual
transfer outperforms the random sampling (Kumar
et al., 2022). Conneau et al. (2020b) explore fac-
tors on why multilingual models are effective for
cross-lingual transfer.

6 Conclusion

We present the first comprehensive study to mea-
sure the effectiveness of few-shot in-context learn-
ing and fine-tuning approaches with multilingual
LMs on languages that have never been seen dur-
ing pre-training. We investigate the effectiveness of
utilizing few-shot examples and present strategies
and insights depending on the amount of labeled
training data available. We find that fine-tuning the
multilingual encoder model (i.e., XLM-R) is gen-
erally the most effective method when we have
more than 15 samples; otherwise, zero-shot cross-
task is preferable. We also observe that in-context
learning has a relatively higher variance than fine-
tuning, and mixing multiple source languages is a
promising approach when the number of training
examples in each language is limited.

Limitations

In this work, we only choose pre-trained models
that are fit on maximum two V100 32GB GPUs for
fine-tuning. To ensure the comparisons are fair, we
choose generative models (i.e., XGLM and mT5)
with similar sizes. It is possible to gain higher per-
formance if we choose larger models and we leave
this for future investigation.

Ethical Consideration

We didn’t find any significant harms in apply-
ing in-context learning and fine-tuning on cross-
lingual few-shot training. The methods we explore
are general-purpose methods for low-resource lan-
guage adaptation.
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A In-context Learning Results

We show detailed results of in-context learning with
various multi-source mixing strategies in Tab. 8. In
general, random-mix strategy outperforms other
mixing strategies. This finding does not apply to
few-shot fine-tuning experiments, where random-
mix achieves worse performance compared to se-
lecting top-k languages.
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Target Lang. random-mix top-3 top-5 close geo far geo related lang. unrelated lang.

Unseen Languages

acehnese 57.03 46.68 34.19 41.47 48.33 41.09 37.77
balinese 58.52 44.83 45.10 47.72 49.45 n/a 58.52
banjarese 62.13 37.61 50.89 46.30 29.60 45.30 42.43
buginese 35.88 33.00 36.52 n/a 35.88 n/a 35.88
madurese 42.41 27.16 37.20 42.45 47.06 n/a 42.41
minangkabau 50.69 42.23 50.66 35.79 52.02 35.34 41.89
ngaju 46.96 30.68 35.54 35.37 25.41 n/a 46.96
toba batak 46.70 41.33 39.24 37.82 40.42 n/a 46.70

avg. 50.04 37.94 41.17 40.99 41.02 40.58 44.07

Seen Languages

english 41.61 34.31 47.47 n/a 41.61 n/a 41.61
indonesian 53.58 45.87 60.44 49.66 49.10 43.78 48.63
javanese 51.95 45.44 45.69 46.33 53.16 n/a 51.95
sundanese 50.80 37.99 43.55 37.60 49.87 n/a 50.80

avg. 49.49 40.90 49.29 44.53 48.44 43.78 48.25

Table 8: Results on 30-shots with multi-source cross-lingual mixing strategies via in-context learning.
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