
Efficiency of Top-Down Parsing of Recursive Adjunction for Tree
Adjoining Grammar

Jing Ji
Stony Brook University

jing.ji@mail.mcgill.ca

Abstract

CKY-type parser and Earley-type parser are
two widely-used parsing algorithms for Tree
Adjoining Grammar (TAG). In contrast, a stan-
dard top-down parser is not efficient since the
looping problem occurs during both the left
and right recursion of standard TAG derivation.
(Roark, 2001) combines the top-down parser
for CFG with a beam search, showing that the
probabilistic top-down parser yields a perplex-
ity improvement over previous results. In this
paper, we define the stochastic tree adjoining
grammar and apply the probabilistic top-down
parser for CFG to TAG. Comparing the pars-
ing efficiency of the standard and alternative
TAG derivation of the recursive adjunction, we
find that the alternative derivation is more ef-
ficient since it avoids the looping problem of
the right recursion, increasing the parsing effi-
ciency of our top-down parser.

1 Introduction

Tree Adjoining Grammar (TAG), introduced by
Joshi et al. (1975) (Joshi et al., 1975), falls in the
class of mildly context-sensitive languages (Joshi,
1985), which contain context-free languages and
can also describe cross-serial dependency as is in
Dutch and Swiss German. Two well-known chart
parsing algorithms for TAG are the O(n6)-time
CKY-type parser (Vijay-Shankar and Joshi, 1985)
and Earley-type parser extended from standard al-
gorithms for Context-Free Grammar (CFG) (Joshi
and Schabes, 1997; Nederhof, 1999). Recently,
neural network architectures have also been uti-
lized to build a shift-reduce parsing model for TAG
(Kasai et al., 2017).

A standard top-down parser, in contrast, is not
an efficient algorithm for CFG as it suffers from
looping when dealing with left recursion. For TAG,
the looping problem of the top-down parser even
occurs with the right recursion when adjoining to

the root node of elementary trees. Thus top-down
parsers are always combined with a beam search
strategy. Empirical results show that probabilistic
top-down parsing for CFG improves upon previ-
ous work in test corpus perplexity (Roark, 2001).
Moreover, Top-down parsers are incremental in
the sense that each word is attached to a fully con-
nected derivation, a property that left-corner and
bottom-up parsers do not have (Stabler, 2013).

In this paper, we apply the probabilistic top-
down parser with a beam search for CFG to TAG
based on the definition of stochastic tree adjoin-
ing grammar and compare parsing efficiency of the
standard and alternative TAG derivation of recur-
sive adjunction.

2 Stochastic Tree Adjoining Grammar

Tree Adjoining Grammar (TAG) is a tree-rewriting
system that consists of a finite set of elementary
trees. We provide the definition of TAG following
(Vijay-Shanker and Weir, 1994; Kallmeyer, 2010)
to set the stage.

Let N+ denotes the set of positive integers. D
is tree domain if it is a nonempty finite subset of
N∗+ such that if d ∈ D and d = d1d2 then d1 ∈ D
and if di ∈ D where i ∈ N then dj ∈ D for all
1 ≤ j ≤ i. Note that ε is the address of the root
node of the tree. A tree γ is denoted by a function
γ : Dγ → VN ∪ VT where Dγ is the domain of γ,
VN and VT are the set of nonterminal and terminal
node labels, respectively.

Definition 1 (Auxiliary Trees). Auxiliary trees is
a set of trees β : Dβ → VT ∪ VN where

• the root and internal nodes of β are labelled
by some V ∈ VN ;

• all leaf nodes of β except one are labelled by
some v ∈ VT . The remaining leaf node is the
foot nodemarked by an asterisk (*).

374
Proceedings of the Society for Computation in Linguistics (SCiL) 2021, pages 374-379.

Held on-line February 14-19, 2021

Definition 2 (Initial Trees). Initial trees is a set of
trees α : Dα → VT ∪ VN and the following hold.
• The root and internal nodes of α are labelled

by some V ∈ VN .
• Leaf nodes of α are labelled by some v ∈ VT

or some V ∈ VN which is a substitution node
marked by a down arrow (↓).

Elementary trees are the union of auxiliary and
initial trees. In lexicalized TAG (LTAG), every
elementary tree γ has at least one non-empty lexical
item, its lexical anchor. LTAG is weakly equivalent
to TAG (defining the same language) (Kuhlmann
and Satta, 2012).

Definition 3 (Tree Adjoining Grammar). A TAG
is a tuple G = 〈VN , VT , VL, I, A, S, fOA, fSA,−〉
where
VL is a finite set of tree labels,
I is a finite subset of initial trees,
A is a finite subset of auxiliary trees,
S ∈ VN is a start symbol,
fOA and fSA are functions representing adjunc-

tion constraints:
fOA : 〈γ, d〉 → {true, false} where d ∈

Dγ , γ ∈ I ∪A, γ(d) ∈ VN ,
fSA : 〈γ, d〉 → P (A) where d ∈ Dγ , γ ∈ I ∪

A, γ(d) ∈ VN ,
− : I ∪A→ VL is the elementary tree labelling

function.
Adjunction applies to nonterminal internal nodes

of elementary trees. For γ ∈ I∪A, d ∈ Dγ , γ(d) ∈
VN , if fSA(γ, d) = ∅, adjunction is forbidden for
γ(d); if fOA(γ, d) = true, adjunction is obliga-
tory; otherwise adjunction is optional.

Definition 4 (Adjunction and Substitution). Given
a TAG G = 〈VN , VT , VL, I, A, S, fOA, fSA,−〉,
for γ ∈ I ∪ A, α ∈ I , β ∈ A, d ∈ Dγ , d′ ∈ N∗+,
γ′ = γ[d, α] and γ′′ = γ[d, β] are the result of
substituting α and adjoining β into γ, which are
defined below.

γ′(d′) =

{
γ(d′) if d = d′

α(d′′) if d′ = dd′′ and d′′ ∈ Dα

γ′′(d′) =





γ(d′) if d = d′

β(d′′) if d′ = dd′′ and d′′ ∈ Dβ

γ(dd′′) if d′ = ddfd
′′ and df is the

address of the foot node of β

Definition 5 (Derived Trees and Derivation Trees).
Let G = 〈VN , VT , VL, I, A, S, fOA, fSA,−〉 be a
TAG. A derivation tree in G can be taken as a di-
rected graph, which is a pair 〈V,E〉 where V is a

finite set of vertices and E ⊆ V × V is a set of
edges.
• Every γ ∈ I ∪ A is a derived tree in G. The

corresponding derivation tree is 〈{−(γ)}, ∅〉.
• Let γ be a derived tree and 〈V,E〉 be its deriva-

tion tree. If γ′ = γ[d, η] for d ∈ Dγ and
η ∈ I ∪ A, then γ′ is a derived tree and the
derivation tree of γ′ is 〈V ′, E′〉 such that

– V ′ = V ∪ {−(η)},
– E′ = E ∪ {〈−(γ),−(η)〉},
– g(〈−(γ),−(η)〉) = d.

A derived tree γ with no substitution nodes and
no internal node γ(d) such that fOA(γ, d) = true
is a saturated derived tree. A derivation tree is
complete if its corresponding derived tree is sat-
urated. Let ωji denote the string ωi+1 . . . ωj . Let
Tωn

0
be the set of all complete derivation trees with

ωn0 as leaves of their corresponding derived trees.
A Stochastic TAG (STAG) is a TAG with a prob-
ability assigned to each rule. A STAG defines a
probability distribution over strings of words in the
following way.

P (ωn0) =
∑

t∈Tωn
0

P (t) (1)

3 A Probabilistic Top-Down Parser with
Beam Search for TAG

The definition of probabilistic top-down parser
stems from the top-down parser (left-to-right,
depth-first) described in (Roark, 2001) for PCFG.
We apply it to STAG parsing without left-
factorization. The parser takes an input string ωn0 ,
a STAG, and a priority queue of candidate analyses.
A candidate analysis C = (E,S, PE , F, ω

n
i) con-

sists of a set of edges E of a derivation tree, a stack
S, a derivation probability PE , a figure of merit
F , and a string ωni to be parsed. The first word
in the string remaining to be parsed, ωi+1, is the
look-ahead word. The stack S contains a sequence
of node labels superscripted with the tree-labels
and an end-of-stack marker $ at the bottom. The
probability PE is the product of the probabilities
of all the edges in E. F is the product of PE and a
look-ahead probability LAP (S, ωi+1).

A derives relation between two candidate analy-
ses, denoted as 7→, is defined based on the follow-
ing conditions.

Condition 1: the first symbol on the stack is not
a foot node, and no substitution or adjunction per-
forms. (E,S, PE , F, ωni) 7→ (E′, S′, PE′ , F ′, ωnj)
where

375

• E′ = E

• S = V γπχ$ (γ ∈ VL, π ∈ V ∗L)
• if V γ → Xγ

1 . . . X
γ
k , then S′ =

Xγπ
1 . . . Xγπ

k χ$, and j = i; if V γ → ωi+1 or
V γ = ωi+1, then j = i+ 1, and S′ = χ$;
• if V γ → Xγ

1 . . . X
γ
k , then PE′ =

PEP (V
γ → Xγ

1 . . . X
γ
k), otherwise PE′ =

PE
• F ′ = PE′LAP (S′, ωj+1)

Condition 2: V γ is the foot node of γ adjoin-
ing to the tree labeled η. (E,S, PE , F, ω

n
i) 7→

(E′, S′, PE′ , F ′, ωnj) where

• E′ = E

• S = V γηπχ$

• if V η → Xη
1 . . . X

η
k , then S′ =

Xηπ
1 . . . Xηπ

k χ$, and j = i; if V η → ωi+1,
then j = i+ 1, and S′ = χ$

• PE′ = PE
• F ′ = PE′LAP (S′, ωj+1)

Condition 3: the node V γ is substituted or ad-
joined by a tree labeled η, denoted as γ V

==⇒ η.
(E,S, PE , F, ω

n
i) 7→ (E′, S′, PE′ , F ′, ωnj) where

• E′ = E ∪ {〈γ, η〉}
• S = V γπχ$

• S′ = V ηγπχ$

• PE′ = PEP (γ
V
==⇒ η)

• F ′ = PE′LAP (S′, ωj+1)

The parse begins with a single candidate analy-
sis on the priority queue: (∅, Sα$, 1, 1, ωn0) where
α ∈ I and α(ε) = S. If S = $ and ωi+1 = 〈/s〉,
the end symbol of the string, the analysis is com-
plete. The symbols on the stack are the contracted
representation of the items.

Example 1. Suppose Graising =
〈{S,NP, V P, V }, {John, seems, to sleep},
{αs, αn, β}, {αs, αn}, {β}, S, fOA, fSA,−〉 is a
TAG. The sentence to be generated is John seems
to sleep.The elementary trees and derivation tree
are shown in Figure 1 and 2. The parsing trace is
presented in Table 1.

The LAP is the probability of a particular ter-
minal being derived as the first non-empty leaf
from a set of nonterminal nodes. For a stochastic
LTAG (SLTAG), a stack S = V γ1π1

1 . . . V γkπk
k $

and a look-ahead terminal item ωi+1, the look-
ahead probability defined in Equation 2 computes
the probability of the concatenation of yield of the
subtrees rooted at V γ1π1

1 . . . V γkπk
k of the derived

NP

John

(a) αn

S

V POA

V

to sleep

NP↓

(b) αs

V PNA

V P ∗NAV

seems

(c) β

Figure 1: The elementary trees of Graising.

αs

βαn

1 2

Figure 2: A derivation tree in Graising.

tree starting with ωi+1. Let P (V γπ 4−→ λ) denote
the probability of the yield of the subtree of the
derived tree rooted at V γπ being empty.

LAP (S, ωi+1) = P (V γ1π1
1 . . . V γ1πk

k
?−→ ωi+1)

(2)

P (V
γjπj
j . . . V γkπk

k
?−→ ωi) = P (V

γjπj
j

?−→ ωi)+

P (V
γjπj
j

4−→ ε)P (V
γj+1πj+1

j+1 . . . V γkπk
k

?−→ ωi)

(3)

where P (V γπ ?−→ ωi) and P (V γπ 4−→ λ) are
defined recursively.

P (V γπ ?−→ ωi) = P (V γ → Xγ
1 . . . X

γ
n)P (X

γ
1

. . . Xγ
n

?−→ ωi)+
∑

η∈VL
P (γ

V
==⇒ η)P (V η ?−→ ωi)

(4)

P (V γπ 4−→ λ) = P (V γ → Xγ
1 . . . X

γ
n)

P (Xγ
1
4−→ λ) . . . P (Xγ

n
4−→ λ) (5)

The beam search works in the same way as
(Roark, 2001). For each word position i, we have a
separate priority queue Hi of analyses with look-
ahead ωi+1. When there are enough analyses on pri-
ority queue Hi+1, all candidate analyses remaining
on Hi are discarded. The parse on Hi+1 with the
highest probability is returned for evaluation. The
beam threshold at word ωi is the same as that of the
CFG. If p̃ is the probability of the highest-ranked
analysis on Hi+1, then another analysis is dis-
carded if its probability falls below p̃f(t, |Hi+1|),
where t is an initial parameter.

376

Stack ωi+1 Derivation Edges
Sαs$ John ∅
NPαsV Pαs$ John ∅
NPαnαsV Pαs$ John {〈αs, αn〉}
V Pαs$ seems {〈αs, αn〉}
V P βαs$ seems {〈αs, αn〉, 〈αs, β〉}
V βαsV P βαs$ seems {〈αs, αn〉, 〈αs, β〉}
V P βαs$ to sleep {〈αs, αn〉, 〈αs, β〉}
V αs$ to sleep {〈αs, αn〉, 〈αs, β〉}
$ 〈/s〉 {〈αs, αn〉, 〈αs, β〉}

Table 1: Stack trace for top-down parsing of John
seems to sleep 〈/s〉 (ωi+1: look-ahead word).

4 Parsing Efficiency with Standard and
Alternative Derivations

For a top-down CFG parser, left recursion can force
it to enter an infinite loop of top-down predictions.
It is the same for top-down parsing of TAG. How-
ever, when the root node is the adjunction node,
both the left and right-branching structure can re-
sult in an infinite loop of top-down prediction. A
top-down parser with a beam threshold can avoid
the infinite loop, but it cannot make a distinction
between left and right recursion concerning mem-
ory load. From the psychological point of view,
only left recursion leads to process difficulty. This
section tries to tackle this issue with the alternative
conception of adjunction instead of the standard
one and compare the parsing efficiency with the
probabilistic top-down parser.

The standard definition of derivation, attributable
to (Vijayashanker and Joshi, 1988), requires that
auxiliary trees be adjoined at distinct nodes in ele-
mentary trees. However, considering the difference
between modification and predication, (Schabes
and Shieber, 1994) proposed a redefinition of TAG
derivation, whereby multiple auxiliary tree modifi-
cation can be adjoined at a single node. For exam-
ple, given an input string S1 = Mary has a nice big
new red table 〈/s〉 with elementary trees shown in
A(a)-(h), its standard and alternative derivation of
the sentence are depicted in Figure A(i)-(j).

The definition of top-down parser in section 3 is
based on the standard conception of derivation. In
order to allow multiple adjunction at the same node,
the analysis of Condition 2 can be modified as fol-
lows. (E,S, PE , F, ω

n
i) 7→ (E′, S′, PE′ , F ′, ωnj)

where
• E′ = E
• S = V γηπχ$
• S′ = V ηπχ$

• P ′E = PE
• F ′ = PE′LAP (S′, ωj+1)

For the top-down parser with a beam search,
the following analysis shows that the alternative
adjunction is more efficient than the standard ad-
junction.

Assume that there is no empty leaf in
the trees. Both ways of parsing result in
the same analyses from the start to C0 =
({〈αs, αn1〉, 〈αs, αn2〉}, NPαn2αs$, P0, F0, a nice
big new red table 〈/s〉). The remaining stack are
shown in Table 2.

It can be seen that in terms of the number of
steps, standard parsing (SP) is less than alternative
parsing (AP). In terms of the probability of each
step, the analyses with continuous adjunction in
SP can result in tiny probabilities. For example, in
order to make prediction of the word a, SP needs
five successive adjunction from C0 to CSP =

(ESP , NP
βdβa1βa2βa3βa4αn2αs$, PSP , FSP ,

a nice big new red table 〈/s〉), while
AP requires only one adjunction to
CAP = (EAP , NP

βdαn2αs$, PAP , FAP , a
nice big new red table 〈/s〉). According to the
equations in Section 3,
FAP = P0P (αn2

NP
==⇒ βd)LAP (NP

βdαn2αs$, a)

Since fSA(βd, ε) = ∅, LAP (NP βdαn2αs$, a) =

1. Thus, FAP = P0P (αn2
NP
==⇒ βd).

Likewise,

FSP = P0P (αn2
NP
==⇒ βa4)P (βa4

NP
==⇒ βa3)

P (βa3
NP
==⇒ βa2)P (βa2

NP
==⇒ βa1)P (βa1

NP
==⇒ βd)

Suppose all the rules for each node have
equivalent probabilities. Since fSA(αn2, ε) =
{βa1, βa2, βa3, βa4, βd} and fOA(αn2, ε) = true,

FAP = P0P (αn2
NP
==⇒ βd) =

1
5P0.

Considering the ordering hierarchy of
stacked adjectival modification (Scott, 2002)
with fSA(αa4, ε) = {βa1, βa2, βa3, βa4, βd},
fSA(αa3, ε) = {βa1, βa2, βa3, βd}, fSA(αa2, ε) =
{βa1, βa2, βd}, fSA(αa1, ε) = {βa1, βd},
FSP = 1

5 × 1
6 × 1

5 × 1
4 × 1

3P0, far less than FAP .
To generalize, if the stacked adjectives in a

nominal phrase are a1 . . . am generated from n
paradigms (m,n ≥ 1), the ratio of probabilities
for the first word of the nominal phrase will be
FAP
FSP

= (n+2)!
(n−m+2)! if a1 . . . am are distinct words

(m ≤ n). If there are repetitive words in the nomi-
nal phrase, in the worst case, the ratio of probabili-
ties can be FAP

FSP
= (n+ 2)m.

377

References
Aravind K Joshi. 1985. How much context sensitiv-

ity is necessary for characterizing structural descrip-
tions: Tree adjoining grammars. Natural language
parsing: Psychological, computational and theoreti-
cal perspectives, pages 206–250.

Aravind K Joshi, Leon S Levy, and Masako Takahashi.
1975. Tree adjunct grammars. Journal of computer
and system sciences, 10(1):136–163.

Aravind K Joshi and Yves Schabes. 1997. Tree-
adjoining grammars. In Handbook of formal lan-
guages, pages 69–123. Springer.

Laura Kallmeyer. 2010. Parsing beyond context-free
grammars. Springer Science & Business Media.

Jungo Kasai, Robert Frank, R Thomas McCoy, Owen
Rambow, and Alexis Nasr. 2017. Tag parsing with
neural networks and vector representations of su-
pertags.

Marco Kuhlmann and Giorgio Satta. 2012. Tree-
adjoining grammars are not closed under strong lex-
icalization. Computational Linguistics, 38(3):617–
629.

Mark-Jan Nederhof. 1999. The computational com-
plexity of the correct-prefix property for tags. Com-
putational Linguistics, 25(3):345–360.

Brian Roark. 2001. Probabilistic top-down parsing
and language modeling. Computational linguistics,
27(2):249–276.

Yves Schabes and Stuart M Shieber. 1994. An alterna-
tive conception of tree-adjoining derivation. Compu-
tational Linguistics, 20(1):91–124.

Gary-John Scott. 2002. Stacked adjectival modifica-
tion and the structure of nominal phrases. Func-
tional structure in DP and IP: The cartography of
syntactic structures, 1:91–120.

Edward P Stabler. 2013. Two models of minimalist,
incremental syntactic analysis. Topics in cognitive
science, 5(3):611–633.

K Vijay-Shankar and Aravind K Joshi. 1985. Some
computational properties of tree adjoining gram-
mars. In Proceedings of the 23rd annual meeting
on Association for Computational Linguistics, pages
82–93. Association for Computational Linguistics.

Krishnamurti Vijay-Shanker and David J Weir. 1994.
The equivalence of four extensions of context-
free grammars. Mathematical systems theory,
27(6):511–546.

K Vijayashanker and Aravind K Joshi. 1988. A study
of tree adjoining grammars. University of Pennsyl-
vania Philadelphia.

A Appendices

NP

Mary

(a) αn1

S

VP

NP↓V

has

NP↓

(b) αs

NPOA

N

table

(c) αn2

NPNA

NP ∗NAD

a

(d) βd

NP

NP ∗NAA

nice

(e) βa1

NP

NP ∗NAA

big

(f) βa2

NP

NP ∗NAA

new

(g) βa3

NP

NP ∗NAA

red

(h) βa4

αs

αn2

βa4

βa3

βa2

βa1

βd

ε

ε

ε

ε

ε

αn1

1 22

(i) standard

αs

αn2

βa4βa3βa2βa1βd

ε ε ε ε ε
αn1

1 22

(j) alternative

378

Step Standard ωi+1 Alternative ωi+1

1 NP βa4αn2αs$ a NP βdαn2αs$ a
2 NP βa3βa4αn2αs$ a Nβdαn2αs NP βdαn2αs$ a
3 NP βa2βa3βa4αn2αs$ a NP βdαn2αs$ nice
4 NP βa1βa2βa3βa4αn2αs$ a NPαn2αs$ nice
5 NP βdβa1βa2βa3βa4αn2αs$ a NP βa1αn2αs$ nice
6 Nβdβa1βa2βa3βa4αn2αs NP βdβa1βa2βa3βa4αn2αs$ a Nβa1αn2αs NP βa1αn2αs$ nice
7 NP βdβa1βa2βa3βa4αn2αs$ nice NP βa1αn2αs$ big
8 Nβa1βa2βa3βa4αn2αs NP βa1βa2βa3βa4αn2αs$ nice NPαn2αs$ big
9 NP βa1βa2βa3βa4αn2αs$ big NPαa2αn2αs$ big
10 Nβa2βa3βa4αn2αs NP βa2βa3βa4αn2αs$ big Nβa2αn2αs NP βa2αn2αs$ big
11 NP βa2βa3βa4αn2αs$ new NP βa2αn2αs$ new
12 Nβa3βa4αn2αs NP βa3βa4αn2αs$ new NPαn2αs$ new
13 NP βa3βa4αn2αs$ red NP βa3αn2αs$ new
14 Nβa4αn2αs NP βa4αn2αs$ red Nβa3αn2αs NP βa3αn2αs$ new
15 NP βa4αn2αs$ table NP βa3αn2αs$ red
16 Nαn2αs$ table NPαn2αs$ red
17 $ 〈/s〉 NP βa4αn2αs$ red
18 Nβa4αn2αs NP βa4αn2αs$ red
19 NP βa4αn2αs$ table
20 NPαn2αs$ table
21 Nαn2αs$ table
22 $ 〈/s〉

Table 2: Stack trace for standard and alternative top-down parsing of S1 (ωi+1: look-ahead word).

379

