
Proceedings of NAACL-HLT 2021: Demonstrations, pages 78–83
June 6–11, 2021. ©2021 Association for Computational Linguistics

78

Multifaceted Domain-Specific Document Embeddings

Julian Risch and Philipp Hager and Ralf Krestel
Hasso Plattner Institute, University of Potsdam

Potsdam, Germany
firstname.lastname@hpi.de

Abstract
Current document embeddings require large
training corpora but fail to learn high-quality
representations when confronted with a small
number of domain-specific documents and
rare terms. Further, they transform each doc-
ument into a single embedding vector, mak-
ing it hard to capture different notions of docu-
ment similarity or explain why two documents
are considered similar. In this work, we pro-
pose our Faceted Domain Encoder, a novel ap-
proach to learn multifaceted embeddings for
domain-specific documents. It is based on a
Siamese neural network architecture and lever-
ages knowledge graphs to further enhance the
embeddings even if only a few training sam-
ples are available. The model identifies differ-
ent types of domain knowledge and encodes
them into separate dimensions of the embed-
ding, thereby enabling multiple ways of find-
ing and comparing related documents in the
vector space. We evaluate our approach on two
benchmark datasets and find that it achieves
the same embedding quality as state-of-the-art
models while requiring only a tiny fraction of
their training data.

1 Introduction

Many documents have an inherently multifaceted
nature, a characteristic that domain experts could
exploit when searching through large document
collections. For example, doctors could search
through medical archives for documents containing
similar disease descriptions or related uses of a spe-
cific drug. However, one of the major challenges of
information retrieval in such document collections
is domain-specific language use:

1. Training datasets to learn document represen-
tations are limited in size,

2. documents might express the same informa-
tion by using completely different terms (vo-
cabulary mismatch) or different levels of gran-
ularity (granularity mismatch),

3. and the lack of context knowledge prevents
drawing even simple logical conclusions.

Domain-specific embeddings are available for a
variety of domains, including scientific litera-
ture (Beltagy et al., 2019), patents (Risch and Kres-
tel, 2019), and the biomedical domain (Kalyan and
Sangeetha, 2020). However, these approaches re-
quire large amounts of training data and computing
resources. In this paper, we introduce and demon-
strate our Faceted Domain Encoder, a document
embedding approach that produces comparative
results on considerably smaller document collec-
tions and requires fewer computing resources. Fur-
ther, it provides a multifaceted view of texts while
also addressing the challenges of domain-specific
language use. To this end, we introduce external
domain knowledge to the embedding process, tack-
ling the problem of vocabulary and granularity mis-
matches. A screenshot of the demo is shown in Fig-
ure 1. The interactive demo, our source code, and
the evaluation datasets are available online: https:
//hpi.de/naumann/s/multifaceted-embeddings and
a screencast is available on YouTube: https://youtu.
be/HHcsX2clEwg.

2 Related Work

A popular approach for introducing external do-
main knowledge to the embedding process uses
retrofitting of word vectors based on a graph
of semantic relationships as a post-processing
step (Faruqui et al., 2015). Similarly, Zhang et al.
(2019) train fastText embeddings on biomedical
journal articles and additionally on sequences of
medical terms sampled from a knowledge graph.
Dis2Vec uses a lexicon of medical terms to bring
Word2Vec vectors of domain terms closer to-
gether and to push out-of-domain vectors further
away (Ghosh et al., 2016). Unlike Dis2Vec, which
concerns only whether a word is in the domain vo-
cabulary or not, our approach handles diverse types

https://hpi.de/naumann/s/multifaceted-embeddings
https://hpi.de/naumann/s/multifaceted-embeddings
https://youtu.be/HHcsX2clEwg
https://youtu.be/HHcsX2clEwg
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Figure 1: The demo shows nearest neighbor documents and highlights entities within the same categories (“facets”).
Stop word removal and lemmatization can be turned off for increased readability. The user interface allows to adjust
the weights of the facets of the document embeddings.

of relationships between domain terms. Nguyen
et al. (2017) propose an extension of Doc2Vec,
adding vectors for domain concepts as input for
learning medical document embeddings. Roy et al.
(2017) annotate words in the input text with a list of
matching entities and relationships from a knowl-
edge graph and extend Word2Vec to jointly learn
embeddings for words and annotations. Their ab-
straction of the graph structure as text annotations
enables the inclusion of different node types and
edge connections into word embeddings. Another
work (Liu et al., 2020) proposed K-BERT, which
extends BERT (Devlin et al., 2019) by expanding
input sentences with entities from a knowledge
graph.

Multifaceted embeddings capture more than one
view of a document. Yang et al. (2018) propose a
multifaceted network embedding and apply com-
munity detection algorithms to learn separate em-
beddings for each community. Liu et al. (2019)
suggest an extension to the deepwalk graph em-
bedding, which learns separate node embeddings
for different facets of nodes in a knowledge graph.
Similar to our approach, they propose to concate-
nate the obtained facet embeddings into a single
representation. We learn separate embeddings for
types of domain knowledge and concatenate them
into an overall document representation.

3 Faceted Domain Encoder

Our Faceted Domain Encoder is a supervised learn-
ing approach using a Siamese neural network to
encode documents and a knowledge graph as a
source for additional domain information. The ar-
chitecture is visualized in Figure 2.

3.1 Overview

The network encodes two documents at-a-time with
a bidirectional GRU layer and predicts a similarity
score for each pair. By computing the pair’s tar-
get similarity score based on our knowledge graph,
we train the network to adjust its document rep-
resentations to the relationships between domain
terms in the graph. We introduce multiple facets
in this process by grouping nodes in the graph into
multiple categories. Our model represents different
aspects of domain knowledge in different category
embeddings by learning not a single embedding
vector but an embedding per graph category. We
train one embedding for each graph category per
document and concatenate them into a single em-
bedding vector to represent the entire document.
This representation enables the fast discovery of
related documents by performing a conventional
nearest neighbor search either based on the whole
document or specific category embeddings. To con-
trol which category contributes the most to the doc-
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Figure 2: Our model is based on a Siamese network
architecture, which encodes two documents in parallel
and compares them in the last (top) layer. It is trained
to minimize the difference between the documents’ co-
sine distance in the embedding space and their graph-
based ground-truth distance. Colors symbolize differ-
ent facets of the embeddings, which are learned based
on node categories in the knowledge graph.

ument vector’s overall direction, we apply corpus
normalization inspired by Liu et al. (2019).

To cope with limited amounts of training data,
our approach leverages external domain knowledge
during the training process. We represent this exter-
nal domain knowledge in the form of a knowledge
graph. Each node in the graph represents an entity,
e.g., the name of a disease. Each entity belongs
to a category, modeled as a node attribute. For
example, entities in a medical graph are grouped
into diseases, chemicals, or body parts. Categories
define the different types of domain knowledge that
the model learns to embed into different subparts
of the document embedding. Edges between nodes
represent relationships, e.g., chemicals in the same
group in the periodic table. The entity linking re-
quires a dictionary mapping from words to entities
and handles synonyms mapping to the same entity.
For the demo, we created a knowledge graph from
the taxonomy underlying Medical Subject Head-
ings (MeSH). Figure 3 shows a small excerpt of
the graph.

After parsing and deduplicating the official
dataset, MeSH comprises 29,641 concepts (enti-
ties) and 271,846 synonyms, which are organized
in a hierarchy ranging from broad concepts to spe-
cific sub-concepts. Following previous work (Guo
et al., 2020), we transform the hierarchy into a net-
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Figure 3: This excerpt of our graph representation of
the Medical Subject Headings (MeSH) hierarchy vi-
sualizes entities as nodes with their color correspond-
ing to categories (“facets”). The edges and the node
numbers reveal the hierarchical relationships, e.g., the
broader concept of “Behavior” and the specific mental
illness “Depression”.

work graph prevailing the relationships between
concepts.

3.2 Equally Weighted Categories
Our approach learns separate embeddings for dif-
ferent categories of domain terms. However, not
all categories might be useful when it comes to rep-
resenting the overall document. We illustrate this
problem with a fictional example from the medical
domain. Our approach might learn that an article
covers a seldom form of cancer (disease category)
in the lung and stomach (anatomy category), and
the study originates in the United States (location
category). Concatenating these three embeddings
gives equal weight to each category. The closest
document in embedding space needs to be similar
in all of the three categories. This might lead to
counterintuitive results with the most relating ar-
ticle covering a stomach disease in a small town
in Ohio, instead of a document just covering lung
cancer. When reading the text again, we might
weigh the given information differently based on
its specificity and expect the form of cancer to be
more important than the geographic location of the
study. Note that this problem is magnified when
combining up to sixteen categories in the case of
our medical dataset. We illustrate the problem with
an actual example from our demo in Figure 4.

A second problem can arise when a single, seem-
ingly unimportant category dominates the docu-
ment embedding. Some documents mention a sin-
gle term very often, e.g., the word “patient”. A high
frequency of less-informative words can lead to in-
dividual categories collecting vastly more word
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embeddings than others and taking over the entire
document embedding.

The root cause of both issues is an unintended
difference in magnitude between the category em-
beddings. When concatenating multiple embed-
dings into a new vector, the category embeddings
with the highest magnitude will decide the over-
all direction of the embedding vector. We address
this issue with a simple normalization and weight-
ing process to control which category embeddings
contribute the most to the overall direction of the
document vector. This approach is similar to what
Liu et al. proposed in their work on multifaceted
graph embeddings but differs in that we also apply
normalization and propose new weighting strate-
gies.

3.3 Category Normalization Strategies

We propose two strategies to compute category
weights: corpus-idf and document-tfidf. The first
strategy, corpus-idf, sums the inverse-document-
frequency of all terms in the category across the
entire vocabulary. We normalize the resulting val-
ues for all categories to sum to one. This strategy
applies the same category weights to all documents
in the entire corpus. The motivation is to identify
categories that contain the most important words in
a collection of documents. This strategy is closely
related to the number of unique mentioned tokens
in each category.

The second strategy, document-tfidf, computes
category weights for individual documents by sum-
ming the inverse-document-frequency value of all
category terms in the document. Since terms can
occur multiple times, the result is similar to the
tf-idf value when computed for each category. Ad-
ditionally, we sum the idf of all words without a
category and split the weight equally among all
categories. Thereby, we avoid zero weights for cat-
egories in the overall embedding. The idea behind
this weighting scheme is to have a document-level
proxy metric to indicate which categories are im-
portant for the document.

4 Experiments

For our experiments, we use two Semantic Textual
Similarity (STS) benchmarks from the biomedical
domain, BIOSSES (Soğancıoğlu et al., 2017) and
Med-STS (Wang et al., 2020). The benchmarks
comprise sentence pairs with relatedness scores
assigned by domain experts. They measure embed-

ding quality by comparing the annotator score with
the embedding similarity of both sentences based
on Pearson correlation.

To this end, BIOSSES contains 100 sentence
pairs collected from medical articles and judged by
five domain experts at a scale of 0 to 4. We perform
stratified 10-fold cross-validation as proposed by
the benchmark authors. We divide the dataset into
ten equally-sized subsets using the annotator scores
for stratification. Stratification ensures that each
split has a similar distribution of related and unre-
lated sentence pairs. We train ten separate models
on the subsets, always using one subset for test-
ing and the remaining nine for training. Note that
we still use 30 percent of the training dataset for
validation and early stopping: we stop the training
process after the first epoch in which the loss on the
validation set stops decreasing. Med-STS contains
1,068 sentence pairs from medical records collected
internally in the U.S. Mayo Clinics. Two domain
experts judged each sentence pair on a scale from
0 to 5. The dataset authors proposed a train-test
split of 750 to 350 sentence pairs. Additionally, we
use 30 percent, or 225 pairs, of our training set for
validation and early stopping.

The experiment results listed in Table 1 show
that our Faceted Domain Encoder outperforms the
domain-agnostic embeddings from fastText (Bo-
janowski et al., 2017) and Universal Sentence
Encoder (Cer et al., 2018) on both benchmarks.
The corpus-idf normalization is better than the
document-tfidf normalization strategy on the
BIOSSES dataset but not on the Med-STS dataset.
In comparison with the domain-specific embed-
dings from BioWordVec (Zhang et al., 2019) and
BioSentVec (Chen et al., 2019), our approach
achieves almost the same performance on Med-
STS, which is remarkable given that our Faceted
Domain Encoder requires no pre-training on large
corpora in contrast to the other presented models.
For BIOSSES, only BioSentVec outperforms our
approach by a large margin.

5 Interactive User Interface

The user interface comprises three main parts: top
center, bottom center, and sidebar. In the top center,
the user can select a source document and one or
all of the categories (“facets”). Further, either a
preprocessed (stop word removal, lemmatization)
or a raw document version can be selected for the
viewed documents and word highlighting can be
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Table 1: Pearson correlation on STS benchmarks (* marks results reported by Chen et al. (2019)).

Embedding Pre-Trained BIOSSES Med-STS

Avg. fastText English (Bojanowski et al., 2017) X 0.51 0.68
Universal Sentence Encoder (Cer et al., 2018) X 0.35* 0.71*

Avg. BioWordVec (Zhang et al., 2019) X 0.69* 0.75*

BioSentVec (Chen et al., 2019) X 0.82* 0.77*

Faceted Domain Encoder, Document Normalization 0.53 0.75
Faceted Domain Encoder, Corpus Normalization 0.62 0.72

switched between coloring by entities and color-
ing by attention scores. The bottom center shows
the selected document and the top ten documents
that are closest to the selected document in the em-
bedding space. Depending on the selected facet,
the documents’ distance is calculated based on one
specific facet or on the entire document embedding.
The sidebar at the left-hand side provides an option
to adjust the document embedding in detail. It al-
lows the user to specify what impact the individual
facets have on the document’s overall embedding.

6 Conclusion

Current document embeddings require large
amounts of training data and provide only a sin-
gle view of document similarity, which prevents
searches with different notions of similarity. In
this paper, we introduced and demonstrated an ap-
proach for multifaceted domain-specific document
embeddings. It is tailored to small document col-
lections of only a few hundred training samples
and leverages knowledge graphs to enhance the
learned embeddings. Experiments on two bench-
mark datasets show that our model outperforms
state-of-the-art domain-agnostic embeddings and
is on par with specialized biomedical document
embeddings trained on extensive document collec-
tions while only using a tiny fraction of their train-
ing data. Our demo provides a faceted view into
documents by learning to identify different types
of domain knowledge and encoding them into spe-
cific dimensions of the embeddings. Thereby, it
enables novel ways to compare documents and pro-
vides a comparatively high level of interpretabil-
ity of neural-network-based document similarity
measures. A promising path for future work is to
remove our neural networks’ reliance on ground
truth data by designing a semi-supervised approach
in which the model learns to update its training
goal while discovering new domain terms by itself.
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Figure 4: Different weighting of the categories (“facets”) changes the distances of the documents in the embedding
space and the nearest neighbors of the anchor document. Corpus-idf normalization allows to take into account the
frequency of the entities within the corpus. The impact of the most frequent words on the embeddings can thus be
reduced. Stop word removal and lemmatization can be turned off for increased readability.
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Gizem Soğancıoğlu, Hakime Öztürk, and Arzucan
Özgür. 2017. BIOSSES: A semantic sentence sim-
ilarity estimation system for the biomedical domain.
Bioinformatics, 33(14):49–58.

Yanshan Wang, Naveed Afzal, Sunyang Fu, Liwei
Wang, Feichen Shen, Majid Rastegar-Mojarad, and
Hongfang Liu. 2020. MedSTS: a resource for clini-
cal semantic textual similarity. Language Resources
and Evaluation, 54(1):57–72.

Liang Yang, Xiaochun Cao, and Guo Yuanfang. 2018.
Multi-facet Network Embedding: Beyond the Gen-
eral Solution of Detection and Representation. In
Proceedings of the Conference on Artificial Intelli-
gence (AAAI), pages 499–506.

Yijia Zhang, Qingyu Chen, Zhihao Yang, Hongfei Lin,
and Zhiyong Lu. 2019. BioWordVec, improving
biomedical word embeddings with subword infor-
mation and MeSH. Scientific Data, 6(1):1–9.


