Interactive Plot Manipulation using Natural Language

Yihan Wang, Yutong Shao and Ndapa Nakashole
Computer Science and Engineering
University of California, San Diego
La Jolla, CA 92093
yiw007Qucsd.edu, {yshao, nnakashole}@Reng.ucsd.edu

Abstract

We present an interactive Plotting Agent, a
system that enables users to directly manipu-
late plots using natural language instructions
within an interactive programming environ-
ment. The Plotting Agent maps language
to plot updates. We formulate this problem
as a slot-based task-oriented dialog problem,
which we tackle with a sequence-to-sequence
model. This plotting model while accurate in
most cases, still makes errors, therefore, the
system allows a feedback mode, wherein the
user is presented with a top-k list of plots,
among which the user can pick the desired
one. From this kind of feedback, we can
then, in principle, continuously learn and im-
prove the system. Given that plotting is widely
used across data-driven fields, we believe our
demonstration will be of interest to both practi-
tioners such as data scientists broadly defined,
and researchers interested in natural language
interfaces.

1 Introduction

Motivation. Data can be utilized to improve out-
comes in many sectors, for example healthcare,
education, and business. However, when presented
in its raw form, it is difficult to derive insights from
data. Plotting is a simple yet powerful technique
for making raw data readable, and exposing trends.
Data plotting libraries, such as matplotlib, pro-
vide operations that enable users to visualize their
data. Such libraries support functionalities at dif-
ferent levels, from high-level, “change the X-axis
from linear to log scale”; to low-level “color this
screen pixel red”. However, novice users and
expert programmers alike may still find it time-
consuming to create plots of interest using these
libraries. We therefore propose an interactive nat-
ural language interface (NLI) for plotting, that en-
ables users to manipulate plots using natural lan-
guage. The interactive aspect allows complex plot-

92

% Wolfram

plot tangent to x*2 at x=3
Result:
6x-9

Plot:

Figure 1: Related to our work is a commercial product,
wolframalpha.com, which enables users to describe the
function they would like to visualize, in this example,
“plot the tangent to 22 at x = 3”. However, the user
has no control over the plotting details. In contrast, we
allow the user to use natural language to manipulate the
plot.

ting needs to be specified and refined in multiple
steps.

Prior Work. Previous work on NLIs for plotting
focused on enabling users to describe the data or
the mathematical function of interest. In contrast,
our approach enables users to directly manipulate
a plot. NLIs that focus on describing the data have
emerged from Human Computer Interaction (HCI)
and related areas (Gao et al., 2015; Setlur et al.,
2016; Srinivasan and Stasko, 2017; Yu and Silva,
2019; Sun et al., 2010). Thus the user poses queries
such as: “Show me medals for hockey and skat-
ing by country.” or “Is there a seasonal trend for
bike usage?”’. The system retrieves the relevant
data, performs simple data analysis, and produces a
visualization. Commercial products such as wolfra-
malpha.com enable users to describe the function

Proceedings of NAACL-HLT 2021: Demonstrations, pages 92-98
June 6-11, 2021. ©2021 Association for Computational Linguistics

they would like to visualize. By leveraging knowl-
edge of functions and mathematical procedures,
the system produces meaningful results for queries
such as: “plot the tangent to 2% at z = 3”, as shown
in Figure 1.

Our work is also related to conversational image
editing (Manuvinakurike et al., 2018b,a), which
yields results for queries such as “Can you fix the
glare on my dog’s eyes”. The key difference is that
our images are plots, and thus the manipulations
are different from those involving photo images.

Contributions and Demonstration Overview.
We present a Plotting Agent for matplotlib, a
popular Python plotting library. The Plotting Agent
provides users with various ways to manipulate
plots in an interactive programming environment,
Jupyter Notebooks.

Our demonstration allows the user to explore
the Plotting Agent in various ways: (1) Upload
custom data and interactively manipulating plots
on the uploaded data. (2) Work in a feedback mode,
wherein the user is presented with a top-k list of
plots, among which the user can pick the desired
one. (3) Operate in batch mode where a series of
instructions written in a file are loaded and executed
sequentially by the system.

(4) Have a personalized experience, wherein the
system learns user preferences, enabling them to
perform certain tasks faster.

In addition to the novel functionality, we also
build on ChartDialogs (Shao and Nakashole, 2020)
to enable other functionality.

(5) Generate synthetic data using on pre-defined
random data samplers from ChartDialogs , and
interactively manipulate plots on the synthetic data.

(6) Load existing dialogs from the ChartDialogs
dataset to observe the plot updates for each dialog
turn. The user can make further changes to the plot.

In all the above cases, the user can use differ-
ent lexical items and paraphrases to express the
same intent. This demonstrates the advantage of
our neural-based model compared to a system that
might rely on rules and dictionaries. We have pub-
licly released a live demo system' and a screencast
showcasing the demo?.

"https://github.com/Bawerlacher/
Plotting_Agent
https://youtu.be/a2D77JITRVs

93

T —

Updated plot

| Attention Memory Bank ‘
T T

+ t
l Hidden states } Final state

i ; —

l Text Encoder LSTM |lmage Encoder LSTM ‘

TR

State

Utte
Text input
u

I it
(state + user utteranc mage inpu

)

Figure 2: Model for mapping natural laflgﬁage inputs
to plot updates.

2 The Plotting Agent System

We cast the Plotting Agent problem as a slot-based,
task-oriented dialog problem. Each slot represents
a plot property, such as line color, marker size,
etc. Each plot type has different slots. However,
some slots are shared and apply to multiple plot
types. Consider the slot “X-axis scale”, which takes
the value “X-axis scale = log”, from the request
“change the x-axis scale from linear to log”. Since
the “X-axis scale” slot applies to the x-axis, it is
applicable to any plot type with an x-axis, such
as line chart, bar plot, or contour plot. Given the
slots and their values, we can generate a plot image
using matplotlib.

Model for Predicting Updates. Our model, de-
picted in Figure 2, for mapping natural language to
plot slots and slot values builds on the sequence-to-
sequence (seq2seq) framework (Sutskever et al.,
2014; Vinyals and Le, 2015). The input to
the model is a natural language request, a text-
representation of the current plot, the dialog his-
tory, formulated as a set of slot-value pairs, and
the current plot image?. The dialog history con-
sists of prior utterances, which are concatenated
and treated as the dialog history.

The model outputs the update needed to go
from the current set of slot-value pairs to the
new slot-value pairs. For example, if the cur-
rent slot-value pairs are {(‘line_width’: ‘thin’),
(‘line_color’: ‘black’)} and the new slot-value pairs
are {(‘line_width’: ‘thin’), (‘line_color’: ‘red’)}
after the user utterance that says “change the
line color to red”, then the corresponding update

3Our experiments showed that incorporating the plot image
did not improve model performance, thus plot images are
omitted in the model we present in this demo.

https://github.com/Bawerlacher/Plotting_Agent
https://github.com/Bawerlacher/Plotting_Agent
https://youtu.be/a2D77JI7RVs

Top-k | Exact Match

@1 0.61
@2 0.71
@3 0.74
@5 0.78
@10 0.78
@20 0.79

Table 1: Top-K exact match (EM) performance

(A) that the model must predict is {(‘line_color’:
‘red’)}. We output decoder predicts A as a se-
quence.

Implementation and Training. The system is
implemented in Python and makes use of the Py-
torch library for neural network models. We use
a 2-layer Bi-LSTM for the text encoder and an-
other 2-layer Bi-LSTM for the decoder. We trained
the model on the ChartDialogs (Shao and Nakas-
hole, 2020) dataset which contains dialogs about
plots. The dataset was generated by pairs of hu-
mans, where one human plays the role of the user,
and the other plays the role of the agent. We use
the train/dev/test split provided.

3 System Evaluation

Exact Match. Table 1 shows performance in
terms of Exact Match (EM), a measure that re-
flects how accurate the model is at updating the
plots exactly as requested by the natural language
utterance. We show performance at top-k ranked
predictions, which are obtained from Beam Search.
Beam Search keeps track of the k¥ most probable
partial predictions (hypotheses). A hypothesis has
a score which is its log probability. As can be seen
in Table 1, At kK = 1, EM accuracy is only 61%.
However, for k£ = 5, EM accuracy is much higher
at 78%. We leveraged this fact, in the feedback
mode of our demo, where instead of just showing
the highest ranked plot, the top-k plots are shown,
and the user selects the one that best corresponds
to the intent of their utterance.

Runtime. Response times to utterances are on
average 0.3s on modest hardware. This is much
faster than using a Web search engine which might
involve time consuming tasks such as refining the
query multiple times and visiting community tuto-
rial websites such as StackOverflow to search for
similar questions that might have been answered.

94

4 Plotting Agent Demonstration

Interactive functionality is showcased within
Jupyter Notebooks.

Data points and Instructions. To generate a
plot, the following information must specified: the
data points to plot and the slot-value assignments
of the plot. The system therefore consists of two
parts: data loading and instruction delivery. For
data loading, the system supports uploading data
files or randomly sampling synthetic data using our
pre-defined data samplers. For instruction deliv-
ery, the system allows users to instruct the agent
interactively or to load instructions from existing
dialogs from our ChartDialogs dataset. In both
cases, the natural language input and the current
plot slot-value assignments (states) are fed into the
back-end model to predict a set of slot-value pairs
for plot updates.

4.1 Data Specification

Custom Data Upload. The user can upload a
csv file containing the data to visualize. For “clean”
csv files in which all the columns are to be plotted,
e.g. using the first column for X axis, the second
column for Y axis, etc., the data can be automat-
ically loaded without further specifications. For
more complex csv files, we also provide a more
detailed and customized data specification process.
If data loading is successful, the system will output
“Data loaded from the csv file!” Figure 3 shows
an example of uploading a csv file containing the
cumulative COVID-19 daily confirmed cases in the
United States until mid June 2020.

Synthetic Data. The user can generate data us-
ing our pre-defined data samplers for each plot type.
After the user specifies the plot type, the system
will invoke the corresponding data sampler to gen-
erate a group of data suitable for the given plot
type. An example of plotting with generated data
is shown in the Figure 4.

4.2 Plotting Intent Specification

Interactive Mode. The user can send instruc-
tions directly to the system using the interactive
interface. There are two kinds of instructions: spe-
cial commands and plot descriptions. Special com-
mands are instructions that refer to specific system
functionalities, such as “undo”, “redo”, “load csv”,

“plot”, etc. For example, “plot” will show the plot

line chart
load csv

>
>

Please tell me the path of your csv file:

plified.csv
Data loaded from the csv file!

time_series_covid19_confirmed_us_simplified

le6

time_series_covidl9_confirmed_us_sim

20

Confirmed Cases

0s

0o

W

time_series_covid19_confirmed_us_simplified

: color the line red, increase the font size and show gridlines

20

15

Confirmed Cases
10

05

0.0

e OO OO DO D

oo

Figure 3: Custom Data with Interactive Instruction Delivery: upload of COVID-19 USA confirmed cases, and one

instance of an interactive plot update.

image and “undo” will undo the last change to the
plot.

Any other natural language instructions that are
not in the special commands set are treated as plot
descriptions. A plot description will be fed to the
back-end model to predict the plot update, as de-
scribed above. An example of interactive instruc-
tion delivery is shown on the COVID-19 US daily
confirmed cases data, in Figure 3.

Prior Dialog Mode. In order to get a quick idea
of how the system works, the user can choose
to load a random dialog from the ChartDialogs
dataset. The system treats the utterances in each
dialog turn as a natural language instruction and
predicts the plot update. The user chooses if they
wish to view the updated plot step-by-step or only
to obtain the final resulting plot. After the system
processes all the dialog turns and shows the re-

95

sult, the user can continue to make further changes
to the plot properties through natural language in-
structions. An example of this use case is shown in
Figure 5.

Batch Mode. The user can also write their own
instructions in a file and send the file path to the
system. The system will read the instructions one
by one, update the plot correspondingly, and show
the final result.

4.3 User Feedback

Our plotting model while accurate inmost cases,
still makes errors, therefore, the system allows a
feedback mode, wherein the user is presented with
a top-k list of plots, among which the user can pick
the desired one. The top-k results are obtained from
Beam search used in our decoder in the architec-
ture shown in 2. At each step of the decoder, Beam

: agt = pa.plet_agent(model_address_1, model_address_2, model_address_3, src_address)
agt.interface()

»>: pie chart

Pie chart

Bike

Walk

Skateboard

The execution of the instruction takes ©.89587128088834774 seconds

>l I

Figure 4: Synthetic Data: example plot of type pie chart generated from our pre-defined data samplers.

agt = pa.plot_agent(model_address_1, model address_2, model_address_3, src_address)
agt.interface()

»>: load source dialog

Do you want to specify plot type? [bar plot/line chart/pie chart/streamline plot/contour plot/histogr
am/scatter plot/3d surface/matrix display/NO]contour plot

Do you want to see the update on the plot after each turn in the dialog? [y/N]N

Loading source file...

Source file loading done.

Input>: contour plot , lined , color is different { transparent to selid red) , dash-dot , thick , x
and y are both log , y is inverted , x is on top , color bar is long , levels are 18 , font size smal
1, grid line horizontal

Input>: color bar horizontal , grid line width is thicker

‘Contour plot
10 107 10" * 10° i 10"
V7 =R .7/‘-5_:_:.\-,\;}.
O 7 O N\ FE
.)\: (. \-. _)\. ////
P D
AN T 5N
NS TSN i

v

Figure 5: Prior Dialog: an example of executing a dialog taken from the ChartDialogs dataset.

search keeps track of the k£ most probable partial 4.4 Personalization

results, where k is the beam size. As shown in Ta-

ble 1, the higher the value of k, the more likely itis A useful system should be personalized to an indi-
to have the correct plot presented to the user. From vidual user. It should adapt to their unique goals,
this kind of feedback, we can then, in principle, ~context, or nuances of the types of visualizations

continuously learn and improve the system they like to produce. For example, the user can
request “change the font size to 16, and the line

96

agt = pa.plot_agent(model_address_1, model_address_2, model_address_3, src_address)

agt.interface()

>: load dialeg

that's the path of the dialeg file? dialog.txt
Input>:
Input>:
Input>:
Input>:
Input>:

grid lines both vert and horiz
marksr interval 3

larger interwal

grid line width -thin

Line chart

2

e

Position

.

700

line graph ; solid orange ; round magenta markers ; polarized ; name trajectory
, gray dash/dots ;

large markers

The exscution of the instruction takes 1.1884163800€81688 saconds

>t |

Figure 6: Batch mode: an example of loading instructions from a file.

color to cyan”. But in a personalized form, the
user may simply state “fix the fonts and colors”,
in which case the agent relies on the user prior
preferences. Our demo includes a basic notion of
personalization.

5 Discussion

Primitive to Complex Plotting Intents. Interac-
tions with our current plotting agent are limited to
manipulating slots preprogrammed by the API de-
velopers of the plotting library, such as changing
the font size or the color of a particular item. Our
goal is to expand commands understood by the
plotting agent to include complex slots beyond the
API slots (e.g., by teaching the system to “shift the
legend so that it does not obscure important parts
of the plot” or “make the text labels of a scatter plot
to be aesthatically optimized”, or “change colors
to be colorblind friendly”.).

Limitations of Slot-based Representation.
The current demo system also has limitations
due to design choices guided by the goal of
task simplification. For example, some plot
components that are not easily formulated as

97

slot-value pairs are not supported. This is a
research question of representation, while the slot
based representation facilitates quick learning,
more expressive representations can resolve these
limitations.

6 Conclusion

In this paper, we introduced an interactive Plotting
Agent for mapping natural language instructions to
plot updates. The system supports various modes
for specifying data and instructing the agent to up-
date plots. Our interactive Plotting Agent is under
further research and development to improve its
language understanding capabilities, and to expand
its functionality to other plot components, and plot-
ting libraries. We hope the demo will be of interest
to both practitioners such as data scientists, and re-
searchers interested in natural language interfaces.

References

Tong Gao, Mira Dontcheva, Eytan Adar, Zhicheng Liu,
and Karrie G Karahalios. 2015. Datatone: Manag-
ing ambiguity in natural language interfaces for data
visualization. In Proceedings of the 28th Annual

ACM Symposium on User Interface Software & Tech-
nology, pages 489-500. ACM.

Ramesh Manuvinakurike, Trung Bui, Walter Chang,
and Kallirroi Georgila. 2018a. Conversational im-
age editing: Incremental intent identification in a
new dialogue task. In Proceedings of the 19th An-
nual SIGdial Meeting on Discourse and Dialogue,
pages 284-295.

Ramesh R. Manuvinakurike, Jacqueline Brixey, Trung
Bui, Walter Chang, Doo Soon Kim, Ron Artstein,
and Kallirroi Georgila. 2018b. Edit me: A corpus
and a framework for understanding natural language
image editing. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation, LREC 2018, Miyazaki, Japan, May 7-12,
2018.

Vidya Setlur, Sarah E Battersby, Melanie Tory, Rich
Gossweiler, and Angel X Chang. 2016. Eviza: A
natural language interface for visual analysis. In
Proceedings of the 29th Annual Symposium on User
Interface Software and Technology, pages 365-377.
ACM.

Yutong Shao and Ndapa Nakashole. 2020. ChartDi-
alogs: Plotting from Natural Language Instructions.
In ACL. Association for Computational Linguistics.

Arjun Srinivasan and John Stasko. 2017. Natural lan-
guage interfaces for data analysis with visualization:
Considering what has and could be asked. In Pro-
ceedings of the Eurographics/IEEE VGTC Confer-
ence on Visualization: Short Papers, pages 55-59.
Eurographics Association.

Yiwen Sun, Jason Leigh, Andrew E. Johnson, and
Sangyoon Lee. 2010. Articulate: A semi-automated
model for translating natural language queries into
meaningful visualizations. In Smart Graphics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing sys-
tems, pages 3104-3112.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. arXiv preprint arXiv:1506.05869.

Bowen Yu and Claudio T Silva. 2019. Flowsense: A
natural language interface for visual data exploration
within a dataflow system. IEEE transactions on vi-
sualization and computer graphics.

98

