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Abstract

Virtual Adversarial Training (VAT) has been
effective in learning robust models under su-
pervised and semi-supervised settings for both
computer vision and NLP tasks. However, the
efficacy of VAT for multilingual and multilabel
text classification has not been explored before.
In this work, we explore VAT for multilabel
emotion recognition with a focus on leverag-
ing unlabelled data from different languages to
improve the model performance. We perform
extensive semi-supervised experiments on Se-
mEval2018 multilabel and multilingual emo-
tion recognition dataset and show performance
gains of 6.2% (Arabic), 3.8% (Spanish) and
1.8% (English) over supervised learning with
same amount of labelled data (10% of training
data). We also improve the existing state-of-
the-art by 7%, 4.5% and 1% (Jaccard Index)
for Spanish, Arabic and English respectively
and perform probing experiments for under-
standing the impact of different layers of the
contextual models.

1 Introduction

Emotion recognition is an active and crucial area of
research, especially for social media platforms. Un-
derstanding the emotional state of the users from
textual data forms an important problem as it helps
in discovering signs of fear, anxiety, bullying, ha-
tred etc. and maintaining the emotional health of
the people and platform. With the advent of deep
neural networks and contextual models, text under-
standing has advanced dramatically by leveraging
huge amount of unlabelled data freely available on
web. However, even with these advancements, an-
notating emotion categories is expensive and time
consuming as emotion categories are highly cor-
related and subjective in nature and can co-occur
in the same text. Psychological studies suggest
that emotions like "anger" and "sadness" are co-
related and co-occur more frequently than "anger"
and "happiness" (Plutchik, 1980). In a multilingual

74

setup, the annotation becomes even more challeng-
ing as annotator team are expected to be familiar
with different languages and culture for understand-
ing the emotions accurately. Imbalance in availabil-
ity of the data across languages further creates prob-
lems, especially in case of resource impoverished
languages. In this work, we investigate the follow-
ing key points; a) Can unlabelled data from other
languages improve recognition performance of tar-
get language and help in reducing requirement of
labelled data? b) Efficacy of VAT for multilingual
and multilabel setup.

To address the aforementioned questions, we fo-
cus our experiments towards semi-supervised learn-
ing in a multilingual and multilabel emotion classi-
fication framework. We formulate semi-supervised
Virtual Adversarial Training (VAT) (Miyato et al.,
2018) for multilabel emotion classification using
contextual models and perform extensive exper-
iments to demonstrate that unlabelled data from
other languages L,; = {L1, Lo, ..., L, } improves
the classification on the target language L;q;. We
obtain competitive performance by reducing the
amount of annotated data demonstrating cross-
language learning. To effectively leverage the
multilingual content, we use multilingual contex-
tual models for representing the text across lan-
guages. We also evaluate monolingual contextual
models to understand the performance differences
between multilingual and monolingual models and
explore the advantages of domain-adaptive and
task-adaptive pretraining of models for our task
and observe substantial gains.

We perform extensive experiments on the
SemEval2018 (Affect in Tweets: Task E-c!)
dataset (Mohammad et al., 2018) which contains
tweets from Twitter annotated with 11 emotion cat-
egories across three languages - English, Spanish
and Arabic and demonstrate the effectiveness of
semi-supervised learning across languages. To the
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best of our knowledge, our study is the first one to
explore semi-supervised adversarial learning across
different languages for multilabel classification. In
summary, the main contributions of our work are
the following:

* We explore Virtual Adversarial Training
(VAT) for semi-supervised multilabel classifi-
cation on multilingual corpus

Experiments demonstrating 6.2%, 3.8% and
1.8 % improvements (Jaccard Index) on Ara-
bic, Spanish and English by leveraging un-
labelled data of other languages while using
10% of labelled samples.

Improve state-of-the-art of multilabel emotion
recognition by 7%, 4.5% and 1% (Jaccard
Index) for Spanish, Arabic and English respec-
tively.

Experiments showcasing the advantages
of domain-adaptive and task-adaptive pre-
training

2 Related Work

Semi-supervised learning is an important paradigm
for tackling the scarcity of labelled data as it
marries the advantages of supervised and un-
supervised learning by leveraging the informa-
tion hidden in large amount of unlabelled data
along with small amount of labelled data (Yang
et al.,, 2021), (Van Engelen and Hoos, 2020).
Early approaches used self-training for leveraging
the model’s own predictions on unlabelled data
to obtain additional information during training
(Yarowsky, 1995) (McClosky et al., 2006). Clark
et al. (2018) proposed cross-view training (CVT)
for various tasks like chunking, dependency pars-
ing, machine translation and reported state-of-the-
art results. CVT forces the model to make consis-
tent predictions when using the full input or partial
input. Ladder networks (Laine and Aila, 2016),
Mean Teacher networks (Tarvainen and Valpola,
2017) are another way for semi-supervised learn-
ing where temporal and model-weights are ensem-
bled. Another popular direction towards semi-
supervised learning is adversarial training where
the data point is perturbed with random or care-
fully tuned perturbations to create an adversarial
sample. The model is then encouraged to main-
tain consistent predictions for the original sample
and the adversarial sample. Adversarial training
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was initially explored for developing secure and
robust models (Goodfellow et al., 2014), (Xiao
et al., 2018), (Saadatpanah et al., 2020) to pre-
vent attacks. Miyato et al. (2016), Cheng et al.
(2019), Zhu et al. (2019) showed that adversarial
training can improve both robustness and gener-
alization for classification tasks, machine transla-
tion and GLUE benchmark respectively. Miyato
et al. (2016), Sachan et al. (2019), Miyato et al.
(2018) then applied the adversarial training for
semi-supervised image and text classification show-
ing substantial improvements.

Emotion recognition is an important problem
and has received lot of attention from the com-
munity (Yadollahi et al., 2017), (Sailunaz et al.,
2018). The taxonomies of emotions suggested
by Plutchik wheel of emotions (Plutchik, 1980)
and (Ekman, 1984) have been used by the majority
of the previous work in emotion recognition. Emo-
tion recognition can be formulated as a multiclass
problem (Scherer and Wallbott, 1994), (Moham-
mad, 2012) or a multilabel problem (Mohammad
et al., 2018), (Demszky et al., 2020). In the multi-
class formulation, the objective is to identify the
presence of one of the emotion from the taxonomy
whereas in a multilabel setting, more than one emo-
tion can be present in the text instance. Binary
relevance approach (Godbole and Sarawagi, 2004)
is another way to break multilabel problem into
multiple binary classification problems. However,
this approach does not model the co-relation be-
tween emotions. Seq2Seq approaches (Yang et al.,
2018), (Huang et al., 2021) solve this problem by
modelling the relationship between emotions by
inferring emotion in an incremental manner. An
interesting direction for handling data scarcity in
emotion recognition is to use distant supervision
by exploiting emojis (Felbo et al., 2017), hash-
tags (Mohammad, 2012) or pretraining emotion
specific embeddings and language models (Barbi-
eri et al., 2021), (Ghosh et al., 2017).

With the emergence of contextual models like
BERT (Devlin et al., 2018), Roberta (Liu et al.,
2019) etc., the field of NLP and text classifi-
cation has been revolutionized as these models
are able to learn efficient representations from a
huge corpus of unlabelled data across different lan-
guages and domains (Hassan et al., 2021), (Bar-
bieri et al., 2021). Social media content contains
linguistic errors, idiosyncratic styles, spelling mis-
takes, grammatical inconsistency, slangs, hashtags,



emoticons etc. (Barbieri et al., 2018), (Derczynski
et al., 2013) due to which off-the-shelf contextual
models may not be optimum. We use language-
adaptive, domain-adaptive and task-adaptive pre-
training which has shown performance gains (Pe-
ters et al., 2019), (Gururangan et al., 2020), (Barbi-
eri et al., 2021), (Howard and Ruder, 2018), (Lee
et al., 2020) for different tasks and domains.

3 Methodology

We consider the task of multilabel emotion clas-
sification, where given a text ¢ € 7" and ¢
{wy,wa,...,w;}, we predict the presence of y
emotion categories denoted by {1,2,...,y}. T
represents the corpus of all the sentences across
the different languages and w; represent the tokens
in the sentence. We leverage contextual models as
feature extractors ¢ : t; — x;, where z; € R? and
d is the dimension of the text representations and
train a classifier over these representations.

3.1 Virtual Adversarial Training (VAT)

Virtual Adversarial Training (VAT) (Miyato et al.,
2018) is a regularization method for learning ro-
bust representations by encouraging the models to
produce similar outputs for the input data points
and local perturbations. VAT creates the adversary
by perturbing the input in the direction which max-
imizes the change in the output of the model. Since
VAT does not require labels it is well suited for
semi-supervised applications. Consider z € R?
as the d dimensional representation of the text and
y as the ground truth. Objective function of VAT
(Lyadv) 1s represented as,

Lvadv(ma 0) = D[p(y’l’, é),p(y\ﬂf + Tvadvs 9)]
(1)

where,
Tvadv = aTg maxD[p(y\m, é),p(y|x+r, 0)] (2)

and ||r|| < € and ryqq, € R%. D[p, p‘] measures
the divergence between the two probability distri-
butions and 7,44, 1 the virtual adversarial pertur-
bation that maximizes this divergence. In order to
leverage the unlabelled data, the predictions from
the current estimate of the model 6 are used as the
target. However, it is not possible to exactly com-
pute 7,44, by a closed form solution or linear ap-
proximation as gradient g (Equation 4) with respect
to r is always zero at r = 0. Miyato et al. (2018)
propose fast approximation method to formulate
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Tadv aS:

3)

Tvadv = €77 77
llgll2

where,

g = vrD[p(ylz,0),plylz +7.0)] @

and r = € * g, where ¢ is a randomly sampled unit
vector. With this approximation, we can use back-
propagation to compute the gradients g in Equation
4. The overall training objective, Ly 4T becomes:

&)

where L. is the multiclass classification loss and
Lgg, is the adversarial loss. « is the balancing
hyperparameter between the two losses.

LVAT = Lce + o Lvadv

3.2 Multilabel Virtual Adversarial Training
(m1VAT)

We explore VAT for multilingual contextual models
and multilabel classification. For computer vision
tasks, perturbing the raw pixel values to generate
adversarial examples is intuitive as the input space
is continuous. However, contextual models use the
indices of the words as input which are not present
in the continuous domain and thus perturbing them
is not optimal. Perturbing an index k of a word
wy, to k + 7404, Would not result in a word closer
to wg. To overcome this problem, instead of per-
turbing the input, we perturb the intermediate layer
of the contextual models which form a continuous
representation space and allows us to use VAT with
contextual models. Similar strategy for text classi-
fication was also explored by Miyato et al. (2016).
For modelling multilabel classification, we mea-
sure the divergence of multilabel outputs by Mean
Square Error (MSE),

LUCLd’U (1’, 0) = MSE[p(y’JZ, 0)7p(y‘$+rvadvv 0)]

(6)
MSE is calculated over the logits normalized by
sigmoid. This is important as the outputs in case of
multilabel classification are not probability distribu-
tions across classes which renders the usage of KL-
Divergence incompatible for this scenario. We also
experiment by treating the probability for each emo-
tion separately but our results demonstrate the effec-
tiveness of Mean Square Error (MSE) for our task
(Table 4). The overall training objective, L1 vaT
is:

(M
where, Ly, is the multilabel binary cross entropy
loss. We represent the text instances using mono-
lingual/multilingual contextual representations.

LleAT = Lpce + a * Lyadn



3.3 Multilingual Semi-Supervised Setup

mlVAT: For each target language L4, we ran-
domly select a percentage of samples from the
training set of this language and use them as la-
belled examples for training. We use the remaining
data of the same language and the complete dataset
of the other languages L,; as the unlabelled set.
Each training batch is created by maintaining a ra-
tio between labelled and unlabelled examples for
stable training. For the labelled set, both multilabel
classification loss L. and adversarial 10ss L4,
is applied. For the unlabelled examples, only the
adversarial loss L, 4, 1s used.

Sup: We also train supervised classifiers (Sup) by
using the same amount of labelled data for target
language L;4:. Supervised classifiers (Sup) act as
baseline and help in measuring the gains obtained
by semi-supervised learning. We vary the ratio
of sampled labelled examples as 10%, 25%, 50%
and 100% to study the progression of our frame-
work across different amount of labelled data of
the target language.

3.4 Multilingual Representation

For leveraging cross-learning between multiple
languages in a semi-supervised setup, we exper-
iment with different multilingual models. We
experiment with off-the-shelf multilingual BERT,
mBERT (Devlin et al., 2018) and XLM-R (Conneau
et al., 2019) models which have been trained with
corpus from multiple languages. Since we are
performing emotion recognition on multilingual
tweets, we evaluate the domain-adaptive multilin-
gual model XLM-Tw (Barbieri et al., 2021) trained
using a 198M tweet corpus across 30 languages
over the XLM-R checkpoint. For exploring the
effect of rask-adaptive pretraining, we evaluate
XLM-Tw-S, which is finetuned for sentiment anal-
ysis over tweets which is arguably a task related to
emotion recognition.

3.5 Monolingual Representation

We also experiment with monolingual models
trained over the corpus from the same language
for comparison with multilingual models and set-
ting up the baselines for each language: English
BERT (E-BERT) (Devlin et al., 2018) for English,
BetoBERT (Caiete et al., 2020) for Spanish and
AraBERT (Antoun et al., 2020) for Arabic. We
experiment with and without finetuning the rep-
resentations to evaluate the performance of these
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representations out-of-the box and finetuning over
our task.

% Method JI MiF1l | MaF1
10 Sup 44.05 | 57.86 | 40.91
mlVAT | 46.79 | 60.36 | 44.41
75 Sup 49.69 | 62.80 | 44.19
mlVAT | 51.08 | 63.96 | 47.31
50 Sup 53.95 | 66.26 | 48.57
mlVAT | 55.11 | 66.79 | 52.52
100 Sup 55.78 | 67.41 | 50.12
mlVAT | 57.31 | 68.18 | 52.15

Table 1: m1VAT and Supervised (Sup) experiments on Ara-
bic across different ratios of labelled examples

Y% Method JI MiF1l | MaF1l
10 Sup 54.15 | 66.33 | 48.94
mlVAT | 55.15 | 67.01 | 50.57
75 Sup 55.11 | 66.99 | 47.83
mlVAT | 56.54 | 68.52 | 51.18
50 Sup 57.20 | 69.14 | 54.14
mlVAT | 58.67 | 70.03 | 51.55
100 Sup 59.78 | 71.19 | 53.43
mlVAT | 60.70 | 71.90 | 56.10

Table 2: m1VAT and Supervised (Sup) experiments on En-
glish across different ratios of labelled examples

% Method | JI | MiF1l | MaF1
10 Sup 4436 | 53.17 | 38.28
mlVAT | 46.05 | 54.83 | 42.49
75 Sup 52.89 | 61.30 | 48.99
mlVAT | 52.05 | 60.17 | 49.15
50 Sup 55.17 | 63.20 | 51.70
mlVAT | 55.70 | 63.39 | 54.19
100 Sup 57.04 | 65.31 | 51.53
mlVAT | 56.89 | 64.89 | 51.77

Table 3: m1VAT and Supervised (Sup) experiments on Span-
ish across different ratios of labelled examples

3.6 Dataset and Evaluation

We evaluate on the SemEval2018 dataset (Affect in
Tweets: Task E-c) (Mohammad et al., 2018) dataset.
The dataset consists of tweets scraped from twit-
ter in English, Spanish and Arabic. Each tweet is
annotated with the presence of 11 emotions anger,
anticipation, disgust, fear, joy, love, optimism, pes-
simism, sadness, surprise and trust. Some tweets
are neutral and do not have the presence of any emo-
tion. The dataset has 3 splits - train, dev and test



(Table 15). Following Mohammad et al. (2018), we
measure the multilabel accuracy using Jaccard In-
dex (JI), Macro F1 (MaF1) and Micro F1 (MiF1)
scores (Chinchor, 1992) over the test set of these
languages.

4 Semi-Supervised Experiments

We select a percentage (10%, 25%, 50%, 100%)
of the data from the target language as labelled
data and use the remaining data from same lan-
guage along with data of other languages as the
unlabelled data. In Table 1 for Arabic, we see that
by using 10%, 25%, 50% and 100% of the labelled
data, m1 VAT improves upon the results of training
over the same amount of supervised data by 6.2%,
2.8%,2.2% and 2.7% (Jaccard Index;JI) respec-
tively. Similar improvements are also observed on
the micro F1 (MiF1) and macro F1 (MaFr1). It
is interesting to note that by using only 50% of
the labelled data with unlabelled data, we are able
to match the performance of supervised learning
with 100% of the data for Spanish. This shows
that m1 VAT is able to leverage the unlabelled data
of Spanish and English for improving the perfor-
mance over Arabic language.

Similar observations on English can be made
from Table 2 also where we notice an improvement
of 1.8%, 2.6%, 2.6% and 2% on the Jaccard In-
dex and proportional improvements on other met-
rices also. For English also, we note that by using
10% of labelled data, m1VAT is able to improve
on supervised results with 25% of the data. For
Spanish, m1VAT helps for the 10% and 50% split
as reported in Table 3 but is not able to improve
all the metrics for the other splits. Overall, for
majority of the languages and splits, we see that
by adding unlabelled data, m1 VAT improves upon
the performance over supervised learning consis-
tently and helps in decreasing the requirements for
annotated data.

Frozen backbone: We perform semi-supervised
experiments with frozen backbone to investigate
the effect of m1 VAT on the backbone and classifica-
tion head. We repeat similar experiments as in pre-
vious sections for Spanish and English, but freeze
the backbone and only train the classification head.
From the Figure 1, we can observe that m1VAT
consistently improves the performance for both
languages over all the splits. This demonstrates
that the performance gains are backbone-agnostic
allowing for application of m1VAT on other back-
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Figure 1: Comparison of Jaccard Index for English and Span-
ish across different ratio of labelled examples with frozen
backbone. m1VAT (orange) improves upon supervised set-
tings (Sup) (blue) for both languages.

bones also.
Loss JI | MiF1l | MaF1
mlVAT 552 | 67.1 50.6
mlVAT (w/o sig) | 50.7 | 63.5 41.6
KLDivergence 219 | 359 34.1

Table 4: Comparison of loss functions on English with 10%
labelled data

Loss Function: We evaluate Mean Square
Loss (m1VAT), MSE without sigmoid and KL-
divergence (KLDivergence) loss in Table 4.
MSE in presence of sigmoid shows superior perfor-
mance than the other loss functions. The superior
performance can be attributed to the normalization
of the logits which encourages more stable acti-
vations and training. For experimenting with KL-
divergence, we interpreted the normalized logits
as probabilities but observed substantially poorer
performance. We used English language with 10%
of labelled examples and XLM—-Tw model for these
experiments.

Ratio 1 2 3 4 5
JI 55.1 | 544 | 55.2 | 53.6 | 52.9

MiF1 | 669 | 66.4 | 67.0 | 65.8 | 65.3

MaF1 | 50.0 | 50.9 | 50.8 | 50.5 | 47.0

Table 5: Comparison of batch ratios on English with 10%
labelled data

Unlabelled Batch Ratio: In Table 5, we study the
impact of ratio of the batch size of the unlabelled
examples while keeping the batch size of the la-
belled data fixed. At higher ratios, the adversarial
loss overpowers the supervised learning resulting
in a performance drop. However, for the lower
ratios, the we did not observe a consistent trend.

Epsilon: We study the impact of epsilon (¢) on the
performance in Table 6. Higher values create more
aggressive adversarial samples with high pertur-



€ 0.1 {025 | 0.5 |0.75 1
JI | 549|549 | 552 | 547 | 54.6
MiF1l | 66.7 | 66.8 | 67.0 | 66.6 | 66.8
MaF1l | 50.4 | 50.3 | 50.8 | 50.3 | 49.9

Table 6: Comparison of epsilon (¢) values on English with
10% labelled data

bation while lower values may create insufficient
perturbation. From our empirical experiments, we
note that 0.5 works better than the other values and
we use this for all our semi-supervised experiments.

5 Domain and Task Adaptive Pretraining

In this section, we perform supervised learning
experiments with frozen and finetuned represen-
tations by using the labelled data of each lan-
guage for evaluating the performance of domain-
adaptive, task-adaptive, monolingual and multilin-
gual contextual models. In Table 8, 9 and 7, we
present the results for different monolingual and
multilingual contextual models for the three lan-
guages with frozen backbones. We use English
BERT (E-BERT), BetoBERT and AraBERT as
monolingual models for English, Spanish and Ara-
bic respectively. We note that for all the lan-
guages, mBERT performs substantially poorer than
the monolingual contextual models of the respec-
tive languages. However, XLM—-R which is another
multilingual model performs competitive with the
monolingual models which is not surprising as
XLM-R has shown improvements over mBERT in
other language tasks also (Conneau et al., 2019).
We further evaluate Domain-adaptive
(XLM-Tw) and Task-adaptive (XLM-Tw-S)
versions of the XILM-R multilingual model and
observe substantial improvements. XLM-Tw—S
improves the Jaccard Index (JI) by 5.5%, 6.5%
and 8.4% for Arabic, English and Spanish
respectively, highlighting the advantages of
task-specific pretraining for contextual models.
XLM-Tw also improves upon XLM-R for all the
languages reiterating the importance of pretraining
the contextual models with domain specific data.
We study the impact of finetuning the monolin-
gual and best performing multilingual model on
our task to compare the capabilities of multilingual
models with monolingual after finetuning on the
task. We notice that finetuning bridges the gap to
some extent but still the domain adaptive multi-
lingual XILM-Tw works better than the finetuned
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Model JI | MiF1l | MaF1l
XILM-Tw-S | 52.0 | 64.4 | 479
XLM-Tw 493 | 622 | 47.1
XLM-R 452 | 584 | 429
mMBERT 37.5 | 51.2 36.2
AraBERT | 464 | 59.7 | 437

Table 7: Performance of pretrained models on Arabic

Model JI | MiF1l | MaF1
XLM-Tw-S | 53.9 | 66.2 | 47.8
XLM-Tw 50.6 | 63.5 45.9
XLM-R 48.6 | 61.9 45.7
mBERT 447 | 57.6 39.2
E-BERT 482 | 614 | 429

Table 8: Performance of pretrained models on English

monolingual models for all the languages as shown
in Table 10, 11 and 12. For English, the improve-
ment is relatively moderate but for Spanish and
Arabic, XLM-Tw demonstrates substantial gains.

5.1 Comparison with existing methods

English: Alhuzali and Ananiadou (2021)
(SpanEmo) use sentences along with emotion
categories as input to the contextual model
and use label correlation aware loss (LCA)
to model correlation among emotions classes.
LVC-Seq2Emo (Huang et al., 2019) propose a
latent variable chain transformation and use it with
sequence to emotion for modelling correlation
between emotions. BinC (Jabreel and Moreno,
2019) transform the multilabel classification prob-
lem into binary classification problems and train
a recurrent neural network over this transformed
setting. (Baziotis et al., 2018) (NTUA) used a
Bi-LSTM architecture with self-attention models
over word2vec trained on large collection of twitter
tweets and were winner of the task. Huang et al.
(2021) trained a sequence to emotion (Seq2Emo)
encoder where the text is encoded using a
bi-directional recurrent network and emotions are
predicted by the decoder in an iterative fashion.
Seq2Emo architecture allows for understanding
the correlation between emotions. Yu et al. (2018)
(DATN) use sentiments to improve emotion
classification using bi-directional LSTM. Meisheri
and Dey (2018) (TCS) uses SVM on manually
engineered features.

Spanish: Mulki et al. (2018) (TW-StAR) used bi-
nary relevance transformation strategy over tweet



Model JI | MiFl | MaF1
XIM-Tw-S | 51.1 | 60.0 | 48.8
XLM-Tw 47.1 | 56.6 | 42.7
XLM-R 429 | 519 39.8
mBERT 37.0 | 448 31.2
BetoBERT | 41.3 | 50.3 37.0

Table 9: Performance of pretrained models on Spanish

features while Gonzélez et al. (2018) (ELiRF) ex-
plored preprocessing and adapted the tokeniser
for Spanish tweets. MILAB was the wining en-
try in the SemEval2018 task. Hassan et al. (2021)
(CER) finetuned the Spanish BERT representations
(Bet oBERT).

Arabic: For Arabic, Samy et al. (2018) (CA-GRU)
extract contextual information from the tweets
and uses them as context for emotion recogni-
tion using RNNs. Hassan et al. (2021) (CER) fine-
tuned BERT representations. Alswaidan and Menai
(2020) (HEF) proposed hybrid neural network us-
ing different embeddings. Badaro et al. (2018)
(EMA) used preprocessing techniques like normal-
isation, stemming etc.

Overall, our results improve upon the existing
approaches on Jaccard Index(JI) by 7% for Span-
ish, 4.5% for Arabic and around 1% for English
and setup a new state-of-the-art for all the three lan-
guages highlighting the efficacy of semi-supervised
learning and domain-adaptive multilingual models.

5.2 Crosslingual Experiments

We combine data of all the three languages and
train a combined model and test this model on the
test set of each language. We notice that the com-
bined model improves upon the performance of in-
dividual models for Arabic and Spanish (Table 13)
while the performance of English is comparable.

In Table 14, we perform crosslingual experi-
ments to evaluate the performance of a model
trained on one language on another language. It is
interesting to note that for Arabic and Spanish, the
cross lingual performance is competitive with per-
formance using some of the pretrained networks
which is encouraging. We also observe that En-
glish demonstrates better crosslingual capability
than Arabic and Spanish. A possible reason might
be the large size of the English training dataset.
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Model JI | MiF1l | MaF1l
ml1VAT 60.7 | 71.9 56.1
XLM-Tw 59.8 | 71.2 534
E-BERT 59.1 | 704 53.3
SpanEmo 60.1 | 71.3 57.8
LVC-Seq2Emo | 59.2 | 70.9 -
BinC 59.0 | 69.2 56.4
NTUA 58.8 | 70.1 52.8
Seq2Emo 58.7 | 70.1 51.9
DATN 58.3 - 54.4
TCS 582 | 69.3 | 53.0
Table 10: Results on English
Model JI | MiF1l | MaFl1
ml1VAT 56.9 | 64.9 51.8
XLM-Tw 57.0 | 653 51.5
BetoBERT | 52.7 | 60.8 48.7
SpanEmo 532 | 64.1 53.2
CER 52.4 - 53.7
MILAB 469 | 55.8 40.7
ELiRF 45.8 | 535 44.0
TW-StAR 43.8 | 52.0 39.2
Table 11: Results on Spanish

6 Probing Experiments

We perform experiments to evaluate the contribu-
tion of different layers of the XLM-Tw~-S model.
We extract representation of the tokens of a sen-
tence from a particular layer of the contextual
model and take an average across tokens for ob-
taining the representation of the sentence. We train
a classifier over these sentence representations and
report the results. From Figure 2, we note that
higher layers provide better performance for all
the three languages showing that the higher-order
contextual information is useful for understanding
the emotions in the text. Refer Appendix A for
detailed results. Similar to Tenney et al. (2019), we
also compute the improvement due to incremen-
tally adding more layers to the previous layers and
calculate the expected layer:

_ ZZL:1 L+ AD
YA

where, A® is the change in the Jaccard Index met-
ric when adding layer [ to the previous layers. We
start from layer O and incrementally add higher
layers for representing the tokens of the sentence

Enll] ®)



Model JI MiF1l | MaF1l
mlVAT 573 | 68.2 | 52.2
XLM-Tw | 55.8 | 674 | 50.1
AraBERT | 543 | 659 | 49.0
SpanEmo | 54.8 | 66.6 52.1
CA-GRU | 532 | 64.8 | 495
CER 52.9 - 48.9
HEF 51.2 | 63.1 50.2
EMA 48.9 | 61.8 | 46.1

Table 12: Results on Arabic

Language | JI | MiF1l | MaF1
EN 594 | 70.6 | 55.7
ES 57.8 | 65.8 | 56.6
AR 57.8 | 68.6 | 555

Table 13: Experiments on the combination of languages

followed by averaging for representing the whole
sentence. The expected layer for English, Spanish
and Arabic computes to 6.9, 6.2 and 6.8 respec-
tively showing that higher layers are useful for the
task. This analysis is helpful to understand the
improvement achieved by adding layers to the pre-
vious layers. For all the three languages, we obtain
the best results on using the average of all the lay-
ers for representing the sentences which shows that
different layers encapsulate complementary infor-
mation about emotions.
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Figure 2: Performance metrices across different layers for
XLM-Tw-S. Circle, Triangle and Square represent JI, MiF1
and MaF1 respectively.
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Train/Eval | JI | MiF1l | MaF1
Es—En | 429 | 54.6 | 42.6
Ar—En | 392 | 51.7 | 42.0
En— Ar |49.7 | 623 45.3
Es— Ar | 464 | 572 | 449
En—Es |44.6| 559 | 415
Ar—Es |40.0| 51.1 41.9
Table 14: Crosslingual experiments between the languages
Language | Train | Dev | Test
English 6838 | 886 | 3259
Arabic 2278 | 585 | 1518
Spanish 3561 | 679 | 2854

Table 15: SemEval2018 dataset statistics

7 Training Details

We finetune the contextual models following hug-
gingface? with a batch size of 8, learning rate of
2e-5 and weight decay of 0.01 using AdamW op-
timizer for 30 epochs. The classifier is a two lay-
ered neural network with 768 hidden dimensions
and 11 output dimensions with 0.1 dropout. For
mlVAT experiments, the number of examples sam-
pled from the unlabelled set for each batch are 24,
e and « are set to 0.5 and 1 using cross validation.
We apply sigmoid over the logits and train using
binary cross entropy loss. We use validation set
for finding optimal hyperparameters and evaluate
on the test set using combination of training and
validation set for training.

8 Conclusion

In this work, we explored semi-supervised learning
using Virtual Adversarial Training (VAT) for multi-
label emotion classification in a multilingual setup
and showed performance improvement by leverag-
ing unlabelled data from different languages. We
used Mean Square Error (MSE) as the divergence
measure for leveraging VAT for multilabel emotion
classification. We also evaluated the performance
of monolingual, multilingual and domain-adaptive
and task-adaptive multilingual contextual models
across three languages - English, Spanish and Ara-
bic for multilabel and multilingual emotion recog-
nition and obtained state-of-the-art results. We also
performed probing experiments for understanding
the impact of different layers of contextual models.

Zhttps://huggingface.co/



9 Broader Impact and Discussion of
Ethics

In recent years, deep learning approaches have
played an important role in state-of-the-art natural
language processing systems. However, obtaining
labelled data for training these models is expensive
and time consuming, especially for multilingual
and multilabel scenarios. In such case, multilin-
gual semi-supervised and unsupervised techniques
can play a pivotal role. Our work introduces a
semisupervised way for detecting and understand-
ing textual data across multiple languages. Our
methods could be used in sensitive contexts such
as legal or healthcare settings, and it is essential
that any work using our probe method undertake
extensive quality assurance and robustness testing
before using it in their setting. The datasets used in
our work do not contain any sensitive information
to the best of our knowledge.
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A Probing Experiments

’ Layers

‘ JI ‘ MiF1 ‘ MaF1

Layer 0
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

45.24
44.37
46.75
47.57
47.73
49.70
50.24
50.58
50.52
52.51
53.95
54.02
54.03

57.69
56.68
59.38
60.27
60.55
62.43
62.96
63.56
63.48
65.11
66.37
66.23
66.31

42.14
42.67
43.57
44.59
43.34
46.46
47.13
44.73
43.64
46.20
47.42
47.10
47.61

Table 16: Comparison of layer performance for English using

XLM-Tw—S model

Layers ‘ JI ‘ MiF1 ‘ MaF1 ‘
Layer 0 | 39.66 | 48.99 | 38.49
Layer 1 | 40.43 | 49.45 | 36.94
Layer2 | 42.19 | 50.57 | 37.20
Layer3 | 43.03 | 51.83 | 39.42
Layer4 | 43.94 | 53.11 | 40.99
Layer5 | 46.38 | 55.37 | 42.88
Layer 6 | 46.68 | 56.13 | 44.94
Layer7 | 47.51 | 57.24 | 45.78
Layer 8 | 48.21 | 57.70 | 46.32
Layer9 | 48.13 | 57.35 | 44.92
Layer 10 | 51.97 | 60.54 | 49.01
Layer 11 | 50.86 | 59.59 | 47.70
Layer 12 | 51.16 | 60.39 | 50.59

Table 17: Comparison of layer performance for Spanish using

XLM-Tw—-S model

Layers ‘ JI ‘ MiF1 ‘ MaF1 ‘
Layer 0 | 42.30 | 5545 | 41.04
Layer 1 | 43.42 | 56.48 | 41.20
Layer2 | 44.47 | 57.77 | 42.11
Layer3 | 45.80 | 58.93 | 43.32
Layer4 | 45.76 | 58.81 | 44.03
Layer 5 | 47.56 | 60.51 | 45.21
Layer 6 | 48.13 | 61.02 | 44.36
Layer 7 | 47.51 | 60.73 | 46.22
Layer 8 | 49.36 | 62.18 | 45.01
Layer9 | 49.57 | 62.27 | 46.51
Layer 10 | 51.05 | 63.42 | 46.01
Layer 11 | 50.94 | 63.56 | 48.30
Layer 12 | 50.32 | 62.71 | 45.82

Table 18: Comparison of layer performance for Arabic using

XLM-Tw—-S model

In Table 16, 17 and 18, we report the perfor-
mance of each layer of frozen XLM-Tw-S model.
We extract the layer representation of each token
of the sentence and average them for representing
the sentence. For all the languages, we note that
the higher layers show superior performance.
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