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Abstract

We describe work in progress for training a hu-
manoid robot to produce iconic arm and head
gestures as part of task-oriented dialogic in-
teraction. This involves the development of a
multimodal dialogue manager and correspond-
ing system architecture for non-experts to ‘pro-
gram’ the robot through speech and vision. Us-
ing this system, videos of gesture demonstra-
tions are collected. Motor positions are ex-
tracted from the videos to specify motor tra-
jectories, where collections of motor trajecto-
ries are used to produce robot gestures follow-
ing a Gaussian mixtures approach. Conclud-
ing discussion considers how learned represen-
tations may be used for gesture recognition by
the robot, and how the core system may ma-
ture into a robust system to address language
grounding and semantic representation.

1 Introduction

A conventional way of programming robots to
make iconic gestural movements is to animate
movements as sequences of static motor positions.
This method is slow and tedious and an easier
method is sought. Ideally, people should be able to
teach a robot how to make new gestures through
visual demonstration and verbal instruction, as they
might teach another person how to make a new arm
and head gesture. Such a multimodal interactive
approach is one of today’s current challenges in
robotics. Perhaps one reason that multimodal inter-
action with robots is problematic relates to the com-
partmentalization of research specialties. Speech
engineers are generally not experts at computer
vision and motor control. Likewise, robotics engi-
neers and computer vision engineers tend to treat
speech and language as a ‘black box’ problem best
left to speech and language technologists. The re-
sult is that language, vision, and motor control tend
to be segregated during software planning and im-
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plementation. It is left to the robot interaction engi-
neer to cobble these segregated modalities together
into a cohesive software framework. The broad
aim of our project is to pragmatically address this
challenge by developing a processing architecture
where communicative information across modali-
ties can be more integrated. Teaching a robot how
to produce gestures through visual demonstration
and spoken dialogue is a task that is well suited for
addressing the challenge.

Robot Learning from Demonstration (LfD),
sometimes also referred to as “robot programming
by demonstration,” “teaching by example,” or “imi-
tation learning” is an established approach for train-
ing robots through vision. As alluded to above how-
ever, one issue with LfD is that LfD practitioners
generally fail to incorporate the power of verbal in-
struction, see (Ravichandar et al., 2020). We posit
that with the relatively recent advent of Deep learn-
ing and related breakthroughs in computer vision,
artificial speech recognition, and related technolo-
gies, the time is ripe to integrate natural verbal
instruction with LfD.

LfD and training by example has a rich history
and is a popular research area in modern robotics,
for example see: (Calinon and Billard, 2007; Ar-
gall et al., 2009; Koenig et al., 2010; Calinon et al.,
2010; Lee, 2017; Zhu and Hu, 2018; Ravichan-
dar et al., 2020). LfD sidesteps more traditional
and tedious methods of manually specifying motor
control or where math and computer programing
expertise is required. The essence of LfD is that
robot movements may be acquired by having a
person act out the movements to be learned (ei-
ther through telepresence, kinetically, or visually),
and transposing those movements into represen-
tations that a robot may use in combination with
the robot’s knowledge and internal processing to
then produce the movement. It is important to
note that LfD is not merely a ‘record and replay’
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Figure 1: “VoxHead’ 3D printed humanoid robot

technique. Generalization is required so that, for
example, starting and ending positions of the move-
ments are not pre-determined. Exact trajectories as
well as amplitudes of movements may vary inso-
far as the task demands, and resulting movements
should be robust in the face of changing environ-
mental conditions and actuator imprecisions. For
our present purpose, the idea is also to avoid exact
monotonous repetitions, and to develop robust rep-
resentations that may also be used for perceiving
learned gestures.

Interacting with robots through natural language
is another popular area of research. E.g. see:
(Cantrell et al., 2010; She et al., 2014; Gemignani
et al., 2015; Misra et al., 2018; Liu and Zhang,
2019; Kruijff-Korbayova et al., 2020). Perhaps
the most popular domain for linguistic informa-
tion transfer between people and robots is in giving
travel or route instructions, such as in the spoken
guidance of robotic wheelchairs, for a review see:
(Williams and Scheutz, 2017).

It is important to note that speech communica-
tion also contains non-linguistic cues, both vocal
(e.g. laughter, affect, tone) and non-vocal (e.g. ges-
tures, eye gaze, face expressions, environmental
context). For related review, see: (Mavridis, 2015;
Devillers et al., 2020). In addition to the linguis-
tic signal, these and related cues should be readily
available for incorporation into interaction designs.
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2 Method

The robot this work uses is “VoxHead,” a 3D
printed humanoid robot (Brady, 2016; Devillers
et al., 2020). Figure 1 displays the robot. The robot
serves as a life-sized and relatively low cost plat-
form for interactive social robotics research. The
robot has motors for mouth, eye cameras, and facial
expressions. For the present work we do not con-
cern ourselves with facial motors. Instead, focus is
on general head, neck, and arm movements. In to-
tal there are sixteen degrees of freedom in the head,
neck, and arms that we work with. Specifically we
use: head tilt, head turn, neck tilt, neck turn, and
for each arm: arm raise-lower, arm left-right, arm
rotate, elbow bend, wrist rotate, and wrist bend.
Hands with individual fingers or grippers are also
not used here.

2.1 Control Architecture

Figure 2 depicts the general software plan. Sensory
input to the robot is handled by a series of percep-
tion modules. A perception module may run on it’s
own mini-computer as e.g. an end-to-end DNN, or
may run on a remote server, such as with an ASR
engine. A countless number of perceptual process-
ing modules may in theory be included, a few of
which are portrayed here. For the present purpose
of simplicity, only a speech-to-text ASR percep-
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Figure 2: system architecture

tion module (Amazon Transcribe), and a skeletal
tracking perceptual module (to be described in Sec-
tion 2.2) are used. Input from these two sources
is received by an Interaction Manager (IM). The
IM collects sensory input based on a control signal
from the Core Cognitive Architecture (CCA). Sen-
sory input that is requested by the CCA feeds to
an Information Store (1S), for cognitive processing.
The IM also relays commands from the CCA to
be executed by various production modules. Like
with the perception modules, a countless number
of production modules may be included, a few are
portrayed, and for the present purpose only the two
highlighted modules (speech synthesizer, and head
and arms motors controller) are considered here.

The CCA is very much a work in progress. Skele-
tal tracking information is read by a Task Manager
(TM), within the CCA for data processing (see
Section 2.2), while linguistic representations and
semantic gestures are read in by the Multimodal
Dialogue Manager (MDM). Some multimodal dia-
logue managers have been proposed over the years,
e.g.: (Wahlster, 2006; Sanders and Holzapfel, 2008;
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Peternel et al., 2014; Ondas and Juhar, 2015). In de-
veloping the MDM, there are a variety of topics in
human-robot communication to address. For a re-
view, see: (Breazeal et al., 2004; Tellex et al., 2011;
Ajoudani et al., 2018; Gluck and Laird, 2019).

We take inspiration from the above cited multi-
modal dialogue managers in combination with a
more recently implemented open-source dialogue
manager called VOnDa, (Kiefer et al., 2019). Di-
alogue management using VOnDa is founded on
the information state based approach (Traum and
Larsson, 2003). The information state contains
the robot’s state, including dialogue as well as do-
main specific information. Here, the information
state may be extended by additional [multimodal]
contextual knowledge. VOnDa’s information state
is represented as extended OWL ontologies and
managed using a semantic repository and reasoner
called HFC (Krieger and Willms, 2015). With
VOnDa, changes in the robot’s information state
trigger a declarative rule system with statistical
selection to generate a dialog act in response to
the situation. A dialogue act generally results in



the output of text (to be converted to speech), but
may also be realized as motor control directives,
and other modalities, such as affective cues for a
text-to-speech synthesizer. For the MDM we are
also pursuing how to incorporate a construction
grammar approach with ontologies for language
learning. See: (Steels, 2004; Oliva et al., 2012; Lin-
des and Laird, 2017). We are also considering how
our MDM may integrate with a VoxML approach
(Pustejovsky and Krishnaswamy, 2016).

Output from the MDM is combined with out-
put from the TM to assemble a control signal by
the Interaction Planner (IP), to be interpreted and
executed by the IM. This signal is implemented
using an extensible markup protocol. The IM runs
locally on the robot and is designed to be very fast,
mainly handling interrupts and conflict resolution.
Meanwhile, the CCA may be hosted on a super
machine or distributed across machines with unlim-
ited processing power. Though the control signal
from the CCA via the IP is dynamically generated,
stand-alone or static control scripts may be used
in place of the CCA. This allows the IM and its
processing modules to be tested in the absence of
the CCA. This also allows the IM to be developed
as a stand-alone Robot Operating System (ROS)
package, to be used with other cognitive architec-
tures. The use of static control scripts in place of
the CCA converts our system architecture into a
menu-driven dialogue system. That is, with static
control scripts the IM may be regarded as some-
thing of a multimodal VoiceXML interpreter.

Consider the following scenario. A human
trainer named John begins a learning session by
saying something along the lines of “okay robot,
let’s learn a new gesture.” With this, the robot is
triggered to enter ‘gesture learning mode’ and when
the robot is ready with its front camera recording,
the robot responds with some variation of “okay,
John, I'm ready.” John then performs the body ges-
ture that he wants the robot to learn. For example,
let us consider a gesture to indicate ‘stop’ - the
gesture a police officer might use when directing
traffic and signaling a car to stop (as in Figure 1,
bottom left). While performing the gesture, John
may give a verbal description, such as “lift your
hand like this, palm up and fingers stretched, and
extend the arm forward.” Once John has finished
producing the gesture, he then says: “that’s it,” and
the robot acknowledges this by saying “okay,” or
something analogous. The video recording of the
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gesture is then saved and processed into a labeled
representation as described in Section 2.2.

After processing and maybe after multiple exam-
ples of the desired gesture have been recorded, the
robot should be ready to produce the gesture. In
this case, the robot says something amounting to:
“shall I perform the gesture now?” and John may
respond with feedback indicating “yes” or “no,”
prompting the robot to then execute the gesture or
not. If there was a problem during processing, the
robot may ask John to repeat the gesture. Once
the robot has performed the gesture, the robot then
asks: “was that okay?” and John may verbally re-
spond “yes, good” while nodding his head ‘yes’
and-or giving a ‘thumbs up’ gesture. Or John may
indicate ‘no, let’s try again’ while shaking his head
‘no’ and giving a ‘thumbs down’ hand gesture (as-
suming yes/no head and hand gestures have been
acquired by the robot). Either a verbal command or
a visual command should be enough for the inter-
action to proceed. The robot might then say ‘what
does this gesture mean?’ John would then explain
the meaning of the gesture and the robot would
store the gesture with a semantic label (e.g. ‘stop’).

2.2 Gesture Acquisition

When in ‘gesture recording mode,” the robot
records a video of the person’s complete motion.
Each motion or gesture is stored in a buffer as
a video example. The trainer (or multiple differ-
ent trainers) can record the same motion multiple
times, and the repetitions are stored as new ex-
amples under the same class. We use OpenPose
(Cao et al., 2019) for its current superior perfor-
mance in extracting 2D skeletal information from
the recorded video examples. For representing and
reconstructing 3D motions from the 2D poses, we
deploy a dilated fully convolutional model (Pavllo
et al., 2019) to estimate a 3D skeletal pose at each
sampled frame. Each pose is represented as a set
of Cartesian joint positions. Sequences of the ex-
tracted 3D positions are transformed into estimated
motor positions for a single video example, and
are saved as a motor trajectory. A motor trajectory
takes the form of a matrix. The columns of the
matrix correspond to motor channels of the robot,
and rows of the matrix correspond to the passage of
time. If a user is satisfied with a gesture reproduced
by the robot, the video sample of the gesture may
be discarded, and only the motor trajectory needs
to be saved.



Though the robot can produce a gesture based
on a single example, it is better to generalize the
motion under the same gesture label, assuming
there are multiple examples for the same class of
gesture. This is done to reflect naturalness that
real people perform the same motion with a rich
repertoire of variations. In order to capture these
variations, we apply a mixture of Gaussians (Min
and Chai, 2012) to generalize the distribution of
the motion examples P(x) for each gesture. This
is done following Equation 1.

K
P(x) =Y ¢eN(ui(x), ox(z))

k=1

(1)

One issue in combining multiple motor trajecto-
ries is that each motion example may have a dif-
ferent length, meaning the number of frames could
vary. To address this, we define a canonical time-
line and time normalize all motion examples in the
same class to this canonical timeline. The resulting
statistical motion model provides a compact way
to represent each gesture as a set of discrete exam-
ples. With statistical motion models, gestures can
be represented in a continuous manifold space. In
the gesture production phase, if the robot is asked
to perform a gesture (e,g. ‘stop’) without any addi-
tional constraints, our model can sample a random
motion to be close to the examples with high likeli-
hood. For the gestures with additional constraints,
for instance, if the direction of the robot arm is
specified, or the robot starts from an unusual initial
pose, our model can formulize it as an optimiza-
tion problem to find the best match in a continuous
motion space. Following Equation 2.

arg max P(x|c) ()
where c is a set of constraints, which can be tar-
get positions or orientations, and even some high
level constraints. Furthermore, if an end effector
position is specified, the statistical motion model
can be coupled with inverse kinematics and-or a
visual guidance system. Our system does not sim-
ply produce deterministic motions from examples,
but is enabled to produce similar motions with new
variations. In addition, our motion model can be
continuously tuned by adding new examples.

It should be noted that in estimating motor po-
sitions from Cartesian 3D joint data using inverse
kinematics, there is ‘motor bleed over.’ This re-
lates to how people’s skeletons differ in size and
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proportion to each other and to the robot’s skeleton.
It is thus difficult to isolate desired robot motor
movements for system calibration. An improved
method for motor position estimation from skeletal
data is desired and is a focus of current efforts.

3 Discussion

We have introduced the infrastructure of an interac-
tive speech-vision-motor system for training a life-
sized humanoid robot to produce desired arm and
head gestures. The system interfaces a rudimentary
cognitive architecture with an interaction manager
for robot control. We use an LfD technique com-
bined with spoken instructions and dialogue for
training a robot to produce gestures. We lastly turn
to consider the relationship between perception and
action, the language grounding problem, and se-
mantic representation.

There is an intimate relationship between percep-
tion and action. The research industry surrounding
the mirror neuron hypothesis reifies this (Hickok,
2014) In light of this, our current work also in-
cludes the development of a gesture recognition al-
gorithm that depends on production learning. The
time-normalized motor trajectories of a class from
Section 2.2 define a centroid motor trajectory for
the class. We call this centroid a gesture prototype.
In short, a motor trajectory to be categorized is
template-matched against the stored inventory of
gesture prototypes using a multidimensional dy-
namic time warping algorithm (Miiller, 2007). The
best match is taken as the gesture’s category.

Plans are to develop our system to addresses the
symbol grounding problem (Harnad, 1990; Steels,
2003; Cangelosi, 2010; Misra et al., 2016). Estab-
lishing a socially situated and embodied system
for interactive gesture learning was but a first step.
Semantic meaning must be grounded in experience,
where different modalities (speech, vision, motor
feedback) are integrated. Interactive audio-visual-
motor recordings from our system may be used for
machine learning approaches, e.g. (Santin et al.,
2020) to train multi-modal speech recognizers. In
order for meaning to emerge, the robot must ‘un-
derstand’ its own output. By pursuing a paradigm
where gesture recognition is based on the robot’s
representations for gesture production, our hope is
to depict representations to be one and the same
for perception and production. In viewing speech
as a problem of motor control, speech cognition
becomes grounded in the robot’s experience.
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