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Abstract
We present an end-to-end neural approach to
generate English sentences from formal mean-
ing representations, Discourse Representation
Structures (DRSs). We use a rather standard
bi-LSTM sequence-to-sequence model, work
with a linearized DRS input representation,
and evaluate character-level and word-level de-
coders. We obtain very encouraging results
in terms of reference-based automatic metrics
such as BLEU. But because such metrics only
evaluate the surface level of generated out-
put, we develop a new metric, ROSE, that tar-
gets specific semantic phenomena. We do this
with five DRS generation challenge sets fo-
cusing on tense, grammatical number, polar-
ity, named entities and quantities. The aim of
these challenge sets is to assess the neural gen-
erator’s systematicity and generalization to un-
seen inputs.

1 Introduction

Faithfully generating text from structured repre-
sentations is an important task in NLP. Common
tasks include generations from tables (Parikh et al.,
2020), knowledge graphs (Gardent et al., 2017) and
meaning representations (Horvat et al., 2015; Flani-
gan et al., 2016; Dušek and Jurčı́ček, 2019). Re-
cently, many research efforts have focused on the
graph-based semantic formalism Abstract Mean-
ing Representation (AMR, Banarescu et al., 2013),
with approaches based on machine translation
(Pourdamghani et al., 2016; Konstas et al., 2017),
specialized graph encoders (Song et al., 2018; Zhu
et al., 2019; Cai and Lam, 2020; Zhao et al., 2020;
Jin and Gildea, 2020) and pre-trained language
models (Mager et al., 2020; Ribeiro et al., 2020).

However, far less attention has been given to
generating text from formal meaning representa-
tion, such as Discourse Representation Structures
(DRSs). DRSs are proposed in Discourse Repre-
sentation Theory (Kamp and Reyle, 1993; Kadmon,

2001; Geurts et al., 2020), a well-studied semantic
formalism, covering a wide range of linguistic phe-
nomena. Differently from AMR, DRSs explicitly
model scope, tense and definiteness. The lack of
this information makes AMR-to-text challenging
(Wang et al., 2020), but their inclusion presents a
challenge for the generation methods as well, as
they, for example, have to deal with a lot more vari-
ables in the representation (van Noord et al., 2018a).
Another difference with AMR is that DRSs are in
principle language neutral (at least the version of
DRS that we use in this paper), with gold standard
annotations publicly available in four languages
(Abzianidze et al., 2017). For these reasons, devel-
oping portable and high-quality generation systems
for DRSs is a promising research direction.

While there has been some initial work on DRS-
to-text generation (Basile and Bos, 2011; Narayan
and Gardent, 2014; Basile, 2015), most DRS-based
work has focused on semantic parsing, that is map-
ping text to DRS (Liu et al., 2018; van Noord et al.,
2018b, 2019; Liu et al., 2019b; Evang, 2019; van
Noord et al., 2020; Fancellu et al., 2020). Our work
has two main contributions. The first is on the mod-
elling side, as we take the first step in DRS-to-text
generation with neural networks.1 Specifically, we
use a bi-LSTM sequence-to-sequence model that
processes linearized DRSs representations and pro-
duces English texts using a character-level decoder
(see pipeline in Figure 1).

Our second contribution regards the evaluation
of the produced text. Given the known limita-
tions of reference-based automatic metrics for nat-
ural language generation (Reiter and Belz, 2009;
Novikova et al., 2017a) and in particular for AMR-
to-text (May and Priyadarshi, 2017; Manning et al.,
2020), we design five DRS-specific challenge sets
(Popović and Castilho, 2019) and use them to per-

1Concurrently to this work, Liu et al. (2021) published a
DRS-to-text model that is based on tree-LSTMs.
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Figure 1: An example of the DRS data and a corresponding reference text with their processing procedures.

form a fine-grained manual evaluation. The general
goal of these challenge sets is to assess the robust-
ness of a DRS generator with respect to a number
of linguistic phenomena. More specifically, we
assess (i) generation systematicity with respect to
three semantic phenomena (tense change, polarity
change, singular↔plural switch), and (ii) gener-
alization to unseen input literals (named entities
and quantities). The idea is that by changing the
meaning of a DRS in a controlled way, robustness
of systems can be monitored in detail and assessed
accordingly. Besides assessing the quality of a
generator, these challenge sets also showcase the
ease to which DRSs can be manipulated to express
novel meaning combinations. All challenge sets
are publicly available.2

2 Data and Methodology

In this section we describe the data and methodol-
ogy we use for DRS generation. First we explain
and motivate our representation of DRSs (input to
the NLG system) and the generated text (see Fig-
ure 1 for a full overview of our source and target
representations). Then we provide details of our
NLG system, which is based on a recurrent neural
network, and show how it is trained.

2.1 Input/Source Representation: DRSs

Discourse Representation Structures model the
meaning of an entire text, ranging from isolated
sentences to entire documents. A large repertoire

2https://github.com/wangchunliu/
DRS-generation

of semantic phenomena is covered by DRSs, in-
cluding quantification, negation, pronouns, com-
paratives, discourse relations, and presupposition.
There are several variants of DRS; we use the fully
interpretable version as employed in the Parallel
Meaning Bank (Abzianidze et al., 2017), where
concepts (triggered by nouns, verbs, adjectives and
adverbs) are represented by WordNet synsets (Fell-
baum, 1998), and semantic relations by Verbnet
roles (Kipper et al., 2008).

DRS can be represented in box format or clause
format (see Figure 1), where the letters x, e, s, and
t are used for discourse referents denoting individ-
uals, events, states, and time, respectively, and b
is used for variables denoting DRSs. The clause
format is a flat version of the standard box format,
which represents DRS as a set of clauses. Due to its
simple and flat structure, it has proven to be more
suitable for machine learning tasks (van Noord
et al., 2018a). The variables that occur in a DRS are
rewritten using the relative naming method based
on de Bruijn-indexing (Bruijn, de, 1972)).

We mostly follow van Noord et al. (2018b) in
how to represent DRSs for neural processing, but
make some important improvements. The idea
is to represent meaningful units as atomic entites.
These include the variable indices ($0, @1), the
DRS operators (REF, NOT), the semantic relations
(e.g., Agent, Patient, Theme), the deictic con-
stants (now, speaker, hearer), and the con-
cepts (e.g., touch.v.01).

The latter is a notable exception to van No-
ord et al. (2018b). By representing concepts, that
correspond to WordNet-synsets, as single entities,

https://github.com/wangchunliu/DRS-generation
https://github.com/wangchunliu/DRS-generation
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we make sure that each concept is mapped to a
language-independent embedding, even though its
surface form may resemble the corresponding En-
glish word. This prevents the model from learning
to predict target words (e.g., touch) by copying
(part of) the characters that compose the Wordnet-
synset (e.g., touch.v.01) in the input DRS.

The remaining parts of the DRSs are represented
at the character-level. These include time/date
expressions (e.g., " 1 9 6 8 "), value expres-
sions such as scores (e.g., " 2 - 0 "), quan-
tities (e.g., " 2 6 0 0 ") , and proper names
(e.g., " b r a d ∼ p i t t "). They are
all enclosed in quotation marks in the DRS rep-
resentation. It would not make sense to repre-
sent these entities as words because times, dates,
and quantities are clearly of compositional nature.
Names are literal expressions, and therefore also
are best represented by separate characters. More-
over, this representation reduces the size of the
vocabulary, which in turn could reduce the learning
difficulty of the model.

2.2 Output/Target Representation: Text

The spectrum to represent text ranges from sin-
gle characters on one end till (tokenised) words or
multi-word expressions on the other end, and there
are many possibilities in between too, for instance
using byte-pair encodings to combine characters
into sub-words. As our aim is to get a relatively
straightforward baseline NLG system, rather than
exploring the full range of text representation pos-
sibilities, we considered just two ways to repre-
sent text: character-based, where raw characters
are separate entities and spaces are indicated by a
special symbol (three vertical bars); or (tokenised)
word-based, where tokenised words form the ba-
sic entities. The character-based approach has the
advantage that post-processing is straightforward.
The use of word-level representations is the clas-
sical approach in natural language processing, but
requires a de-tokenisation step after generating. To-
kenisation and de-tokenisation is carried out with
the Moses tokenizer (Koehn et al., 2007).

2.3 Neural Generation Model

We use a standard recurrent encoder-decoder ar-
chitecture with attention as implemented in the
Marian toolkit (Junczys-Dowmunt et al., 2018), us-
ing two bi-directional LSTM layers (Hochreiter
and Schmidhuber, 1997). In particular, we use an
embedding size of 300 for both the encoder and

Parameter Value Parameter Value

dim-emb 300 dim-rnn 300
dec-cell lstm enc-depth 2
enc-cell lstm dec-depth 2
mini-batch 48 lr-decay 0.5
lr-decay-strategy epoch normalize 0.9
beam-size 10 learn-rate 0.002
dropout-rnn 0.2 cost-type ce-mean
label-smoothing 0.1 optim adam
early-stop 3 valid-metric cross-entropy

Table 1: Hyperparameter settings of our experiments.
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Figure 2: The correlation between the vocabulary size
and the frequency threshold, along with the correla-
tion between metric scores and the frequency threshold.
Threshold set to 0 means using the full vocabulary.

decoder, a mini-batch size of 48 and the Adam
optimizer (Kingma and Ba, 2015) with a learning
rate of 0.002. All hyper-parameters are shown in
Table1. We use the English gold standard train-
ing, dev and test data of PMB 3.0.03, containing
6,620, 885 and 898 instances, respectively. Dur-
ing training, we merge the gold standard with the
only partially manually annotated silver standard
of 97,598 instances. Differently from van Noord
et al. (2018b), we do not fine-tune on the gold stan-
dard data in a second step, as this did not lead to
improved performance.

Vocabulary For a word-level model, it can be
beneficial to not include the full vocabulary. For
example, it might learn to handle unknown words
better if it was exposed to unknown word tokens
during training. We experimented with the vocabu-
lary size of the target representation on the devel-
opment set, as is shown in Figure 2. We find that
the we get best performance when including the
full vocabulary, with decreasing performance as we
decrease the vocabulary. We use this setting for our
word-level experiments.

3https://pmb.let.rug.nl/data.php
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3 Semantic Challenge Sets

Challenge sets are often used in Machine Transla-
tion to assess a model’s ability to systematically
deal with specific linguistic phenomena that may
be infrequent in standard test sets (Popović and
Castilho, 2019). Following this practice, we cre-
ated five challenge sets for DRSs generation that
focus on various semantic phenomena (see Table 2
and Figure 3). The variations are obtained by (man-
ually) applying a minimal modification to a DRS
and editing the corresponding text accordingly.

The resulting semantic challenge sets can be
viewed as stress tests: if the generator performs
well on these test suites it shows that it can deal
with specific semantic phenomena adequately in
unforeseen circumstances. We carry out these mod-
ifications on subsets of the PMB test data, and we
group them into those that assess systematic pre-
dictions (tense, polarity, and grammatical number)
and those that assess generalisation to unseen input
(names and quantities). The specific challenge sets
are described in detail below.

Original Tom has three thousand books.

Tense Tom had three thousand books.
Polarity Tom does not have three thousand books.
Number Tom has one book.
Names Kirk has three thousand books.
Quantity Tom has 3,200 books.

Table 2: Examples of how the challenge set DRSs are
created. We show the reference texts of the modified
DRSs here.

3.1 Tense Change

In English, tense is expressed by morphology and
the use of auxiliary verbs. It is therefore a challeng-
ing phenomenon for NLG. There are three types of
tense found in the DRSs of the Parallel Meaning
Bank: past (t < now), present (t = now), and future
tense (t > now). Aspect is not covered in detail in
the Parallel Meaning Bank, and therefore we won’t
address it in the paper and as a result it won’t be
part of the current semantic challenge sets.

For creating the challenge set, we used the fol-
lowing procedure. For the first 200 examples in the
test set that contained information about tense in
their corresponding DRSs, we changed the tense in
the DRS: past to present or future, present to past
or future, and future to past or present. The corre-
sponding text was changed to reflect the change in

tense. Example: She bought a vacuum cleaner at
the supermarket. → She will buy a vacuum cleaner
at the supermarket.

3.2 Polarity Change
As negation plays a crucial role to determine the
truth conditions of a sentence, there has been ample
interest in recognizing negation in text (Morante
and Blanco, 2012; Basile et al., 2012) and translat-
ing accurately (Sennrich, 2017; Tang, 2020). Here
we focus on generation, that is expressing negation
appropriately in a sentence given a meaning rep-
resentation. Negation is expressed in a DRS with
a unary operator, introducing an embedded DRS.
For the first 100 instances of the test set we re-
moved negation if it was already present, or, more
frequently, added it if it was not. Again, the corre-
sponding reference text was changed to reflect this
change in meaning. Example: I cooked dinner. →
I didn’t cook dinner.

3.3 Grammatical Number Change
Concrete quantities are expressed in DRSs with
the relation Quantity and a number. For the
first 100 examples that permitted this, we changed
the quantity from a number greater than one to
one, or vice versa. This set can be used to check
whether the model can recognize the number and
generate the correct plural form of nouns to get the
correct noun phrase (Sennrich, 2017). Example: It
currently employs 180 people. → It currently em-
ploys one person. As many languages (including
English) have a different surface realisation for sin-
gular and plural, an NLG system needs to handle
this correctly.

3.4 Names Change
The goal of this challenge set is to assess the be-
haviour of NLG systems that find unexpected (not
seen in training data) proper names in the meaning
representation input. We took the first 50 instances
of the test set with named entities (persons, lo-
cations, organisations, artifacts) and modified the
DRSs in such a way that the names entities are
replaced by alternative, but realistic names of the
same type of entity and gender (in case of persons),
that do not occur in the training data. Consider
a sentence with the name ”Howard Caine”, with
Name(x, howard∼caine) in its correspond-
ing DRS. We change this into a real name outside
the coverage of the training data, e.g., Name(x,
howard∼carpendale). This should generate
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Figure 3: Examples of how the challenge set DRSs are created. Modified DRSs correspond to Table 2.

“Howard Carpendale”, for which word-based sys-
tems would be expected to face more difficulties
than character-based systems.

3.5 Quantities Change
In addition to named entities in meaning representa-
tion, the numeral expressions can also be changed
to expressions that were never seen in the training
data. We took the first 50 instances of the test set
with numbers and then changed the numbers in the
DRS representation to unknown quantity expres-
sions, represented as a sequence of characters. For
example, we changed Quantity(x, 150) to
Quantity(x, 152). This way, we test if the
model can systematically generalize to generate the
right numeral expression, even though it has not
seen this particular sequence of characters before.

4 Assessment Methods

We consider two types of assessment for the gen-
erated English sentences. Our point of departure
are the well-known automatic metrics based on

word overlap. We complement these with manual
metrics carried out by human experts.

4.1 Standard Automatic Metrics

We use three standard metrics measuring word-
overlap between system output and references.
They are BLEU (Papineni et al., 2002) used as
standard in machine translation evaluation and very
common in NLG, METEOR (Lavie and Agarwal,
2007), and ROUGE-L (Lin, 2004), which were ap-
plied in the COCO caption generation challenge as
well as other NLG experiments (Novikova et al.,
2017b; Dušek et al., 2020). As is well known,
these standard metrics give a first, rough impres-
sion about the quality of the generated output, but
often reveal only part of the story. This is why we
also consider a further form of assessment.

4.2 Expert Assessment

Inspired by work of Jagfeld et al. (2018) and Belz
et al. (2020), we believe that the manual evaluation
method for our task should be simple in definition,
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BLEU METEOR ROUGE

Char-level (raw) 69.3 51.8 84.9
Word-level (tok) 64.7 47.8 81.8

Table 3: Performance of English DRS-to-text with two
output representations, averaged over three runs.

easy to reproduce and high in generalization abil-
ity. The output of our NLG system was manually
assessed by one expert. This was carried out by
assigning three binary dimensions (either 0 or 1) to
each generated text: (1) semantics; (2) grammat-
icality, and (3) phenomenon. As shown in Table
5: the first dimension, semantics, gets a score 1 if
the meaning of the output reflects that of the un-
derlying meaning representation, and 0 otherwise.
The second dimension, grammaticality, receives a
score 1 if the sentence is grammatical and free of
spelling mistakes (but possibly gibberish), and 0
otherwise. The third dimension, phenomenon, gets
a 1 if the phenomenon of control is generated at
all, and 0 otherwise. We summarise these three
dimensions into one score by taking the product
of these numbers, and refer to this score as ROSE
(Robust Overall Semantic Evaluation). Hence, a
ROSE-score of 1 is given to output that is perfect
(three ones); a ROSE-score of 0 is given if one of
the three scores yields zero. Note that, usually, if
the score for phenomenon is 0, then it follows that
the score for semantics is 0, too.

5 Results and Analysis

Table 3 shows the performance of the models based
on characters and words. The character-level model
clearly outperforms the model based on word-
tokenised text on all three automatic metric scores.
This is in line with work on DRS parsing (van No-
ord et al., 2018b, 2019; Liu et al., 2019a) and other
NLG tasks (Goyal et al., 2016; Agarwal and Dymet-
man, 2017; Jagfeld et al., 2018), where character-
based models outperform word-based models. We
will use the character-level model for the rest of the
experiments in this paper.

5.1 Challenge Sets
Table 4 shows the overall results on the challenge
sets for both the automatic evaluation results and
manual evaluation. We can see that performance is
hardly affected for the number, quantity and names
challenge sets on the automatic evaluation metrics.
It seems that our character-based model can in-

deed learn the shallow information contained in the
input data and copy it to generate, even if these sub-
sets (numbers, quantities and name entities) in the
DRSs do not appear in the training set. However,
for tense and polarity, all three automatic metrics
are significantly lower in the challenge sentences
than in the original sentences. Through the observa-
tion of the generated texts of the tense challenge set,
we find that it is difficult for the model to generate
future tense sentences, but past tense and present
tense can be generated well. The original test set
contained not so many DRSs in future tense, but
in the challenge set we added relatively many of
them, which likely caused the lower performance
on the challenge set.

With regards to the polarity challenge set, in-
spection of the output shows that a common error
is to confuse “never” with “not”. This difference
in meaning is reflected in a DRS by the relative
order of the reference time and the DRS negation
operator. Interestingly, recent work in machine
translation (Tang, 2020) and language modelling
(Ettinger, 2020) has also shown that state-of-the-art
neural models still struggle with handling negation.

Although the results of the automatic evaluation
metrics in the last three challenge sets have no ob-
vious changes compared with the original data sets,
our manual evaluation results show that the perfor-
mance of the model in all challenge sets is lower
than the original data sets. This further shows that
there is not always a positive correlation between
automatic evaluation and manual evaluation, and it
is still necessary to rely on manual evaluation.

5.2 Error Analysis

Table 5 shows a number of interesting outputs of
our DRS-to-text model. Sometimes, the model
outputs a combination of characters that is clearly
wrong, such as in (a), though it still captured
the phenomenon that the challenge set checks for
(tense). Sentence (b) is a common mistake for
the polarity challenge set: the model generates a
negation in a grammatical way, but it is not the
correct one. In (c) we show a mistake that occurs
for the tense challenge set, in which the model was
not able to capture the correct tense. Sentence (d)
shows that the model sometimes has trouble with
longer character-level sequences of numbers. Per-
haps the model learned that the sequence ”1 5” is
generated as “fifteen” as text, which in this case
resulted in the wrong output. In (e), the model
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BLEU METEOR ROUGE Sem. Gram. Phen. ROSE

# Orig Chal Orig Chal Orig Chal Orig Chal Orig Chal Orig Chal Orig Chal

Tense 200 68.4 55.8 50.9 44.8 85.0 76.1 80.0 71.0 92.0 87.5 99.5 86.5 78.0 64.0
Polarity 100 68.1 37.4 50.8 37.9 85.0 66.1 80.0 52.0 96.0 81.0 100.0 99.0 78.0 49.0
Number 100 72.5 69.2 53.7 53.4 85.7 86.4 80.0 79.0 95.0 84.0 100.0 95.0 77.0 69.0
Names 50 69.1 71.9 53.0 53.5 87.2 87.8 82.0 76.0 94.0 84.0 100.0 98.0 82.0 74.0
Quantity 50 69.7 68.0 56.4 50.6 86.0 83.4 88.0 72.0 98.0 90.0 92.0 84.0 86.0 70.0

Table 4: Performance of the character-level model for five different challenge sets. We report scores on both the
original input (Orig) of the challenge sets and the actual challenge sets (Chal). The first three scores are automatic
metrics, while the last four scores are accuracies based on human evaluation (see Section 4.2). Sem., Gram., and
Phen. stand for Semantics, Grammaticality and Phenomenon, respectively.

Reference text Generated text Sem. Gram. Phen. ROSE

(a) She liked short skirts. She liked short tomical. 0 0 1 0
(b) Tom does not have three thousand books. Tom never has three thousand books. 0 1 1 0
(c) The small skirt will be pink. The small skirt was pink. 0 1 0 0
(d) He left 157 minutes ago. He left fifteen minutes ago. 0 1 0 0
(e) I checked it nine times. I checked it nine. 0 0 1 0
(f) We are painting the house green. I paint the house green. 1 1 1 1
(g) That hat cost around fifty dollars. This hat cost about 50 dollars. 1 1 1 1
(h) When I painted this picture, I was I painted the picture when I was 1 1 1 1

23 years old. twenty-three years old.

Table 5: Examples of generated texts from the challenge set DRSs, compared with reference texts. Note that the
input for the model is a linearized DRS, not the reference text.

managed to capture the phenomenon (quantity),
but did this in an non-grammatical way not pre-
serving the meaning. Sentence (f) is interesting,
because the DRS representation does not differenti-
ate between “I” and “We”, meaning the model can
not be expected to (always) output the correct ver-
sion. Therefore, such differences are not counted
as a mistake during human evaluation. Finally, the
output of (g) and (h) shows the necessity of human
evaluation: the model produced sentences that cap-
tured the meaning perfectly, but used a different
surface realization than in the reference text.

6 Conclusion and Future Work

We presented an end-to-end neural approach to
generate natural language from Discourse Repre-
sentation Structures. Our model is based on a bi-
LSTM sequence-to-sequence architecture taking
linearized DRSs as input. Comparing character
level with word level for producing text, it achieves
higher BLEU, METEOR and ROUGE scores on
the former.

For a better understanding of our generator’s
robustness and its reliability, we designed several
challenge sets focusing on specific semantic phe-

nomena (tense, polarity, grammatical number) and
types of unseen input (quantity and named enti-
ties). Automatic and manual evaluations on these
challenge sets point out to negation as the most
challenging phenomenon for DRS generation, fol-
lowed by tense. By contrast, changes in grammati-
cal number and generalizations to unseen quantities
or names are well handled by the model.

Altogether, our results suggest that neural gener-
ation from DRSs is a very promising research direc-
tion, but more work is needed to ensure reliability
in real-world applications. We hope that our chal-
lenge sets will foster future research on this topic
and eventually lead to truly robust DRS generators.
The challenge sets, as we have presented them, can
be further refined, and other linguistic phenom-
ena can be added as well. Possibilities that spring
to mind are challenge sets for pronouns, definite
descriptions, comparatives, aspect, and discourse
particles. And obviously, we need to generate chal-
lenge sets for languages other than English, which
might trigger language-specific phenomena as well
that could be suitable for challenge sets for DRS
generation.
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