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Abstract

Pretraining techniques leveraging enormous
datasets have driven recent advances in text
summarization. While folk explanations sug-
gest that knowledge transfer accounts for pre-
training’s benefits, little is known about why
it works or what makes a pretraining task or
dataset suitable. In this paper, we challenge
the knowledge transfer story, showing that pre-
training on documents consisting of character
n-grams selected at random, we can nearly
match the performance of models pretrained
on real corpora. This work holds the promise
of eliminating upstream corpora, which may
alleviate some concerns over offensive lan-
guage, bias, and copyright issues. To see
whether the small residual benefit of using real
data could be accounted for by the structure
of the pretraining task, we design several tasks
motivated by a qualitative study of summariza-
tion corpora. However, these tasks confer no
appreciable benefit, leaving open the possibil-
ity of a small role for knowledge transfer.1

1 Introduction

Despite the widespread success of pretrained mod-
els when fine-tuned on diverse downstream NLP
tasks, such as summarization (Qi et al., 2020; Raf-
fel et al., 2020), question answering, sentiment
analysis etc (Yang et al., 2019), scientific explana-
tions for these benefits remain unknown. Several
works have claimed that pretrained models learn
linguistic knowledge from the pretraining corpus
(Lina et al., 2019; Tenney et al., 2019; Manning
et al., 2020), leading to a popular, but unproven
hypothesis that credits knowledge transfer for the
improvements seen on downstream tasks. How-
ever, several recent findings test the plausibility of
this account. For example, benefits of pretraining
have been observed even when the upstream text

1The code and the datasets used in the paper
are available at https://github.com/acmi-lab/
pretraining-with-nonsense

has no syntactic structure (Sinha et al., 2021) and
others have shown benefits even when the upstream
corpus is from a different domain entirely, such as
music (Papadimitriou and Jurafsky, 2020) or amino
acid sequences (Chiang and Lee, 2020)

In this work, we show that, surprisingly, pretrain-
ing objectives previously demonstrated to be help-
ful for summarization (Zou et al., 2020), continue
to deliver significant benefits even when applied
on text consisting of randomly sampled nonsense
words. Because the text consists of nonsense words
sampled independently and uniformly, it seems
difficult to fathom a credible argument that the
synthetic corpus encodes linguistic knowledge in
any relevant sense. Nevertheless, when pretraining
transformer-based sequence-to-sequence models
using this nonsense text, we achieve significant
performance boosts on multiple downstream sum-
marization benchmarks that nearly match the per-
formance of pretrained transformers.

Remarkably, when pretraining with synthetic
tasks, using real data offers no benefit over the
nonsense data, on multiple summarization bench-
marks. Thus, we investigate whether a pretraining
task better aligned with the demands of summa-
rization might close this residual gap. We design a
collection of pretraining tasks inspired by some of
the basic primitive operations that appear to be com-
mon routines required in order to create real-world
summaries. We carried out an extensive survey of
public summarization datasets spanning different
domains, and catalogued several elementary oper-
ations that were frequently invoked in producing
summaries (e.g., extract sentences on a specific
topic, or determine the most frequent among a set
of relevant terms). In our proposed pretraining
corpus, the summary is created by carrying out
these elementary operations on the input. How-
ever, we find that our pretraining tasks deliver com-
parable performance gains to those proposed in
Zou et al. (2020) leaving the small gap open. On

https://github.com/acmi-lab/pretraining-with-nonsense
https://github.com/acmi-lab/pretraining-with-nonsense
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CNN-Dailymail and Rotowire benchmarks, where
median summary lengths are 73 and 456 tokens
respectively, using our pretraining tasks with non-
sense text results in achieving on average 95% of
the performance gain in ROUGE-1 that standard
T5 pretrained models enjoy relative to randomly
initialized T5. By contrast, on XSum and Rotten-
tomatoes, where summaries are shorter (29 and 32
tokens respectively), we realize a relatively modest
37% of the benefit on average.

The takeaways from our results are two-fold:
First, these results challenge our understanding of
why pretraining helps in summarization, suggest-
ing that a large portion of the benefits seen may
not be due to any knowledge transfer, but simply
better initialization from an optimization perspec-
tive. Second, the ability to realize the benefits of
pretraining without using real-world data could al-
leviate concerns regarding bias, offensive speech,
and intellectual property associated with using web-
scale pretraining corpora of unknown provenance
(Davidson et al., 2019; Bordia and Bowman, 2019).

2 Related Work

Recently, multiple pretrained models have shown
remarkable performance on text summarization.
These models have been pretrained on real data
with diverse denoising tasks, including masked
language modeling (Raffel et al., 2020), text in-
filling (Zhang et al., 2020), and sentence reorder-
ing (Lewis et al., 2020), among others. While
these pretraining objectives have shown benefits
across multiple NLP tasks, Zou et al. (2020) pro-
posed a set of three denoising pretraining tasks
that are specifically motivated by summarization
and deliver performance comparable to previous
pretrained models. Our paper shows that the pre-
training tasks in Zou et al. (2020) improve summa-
rization performance even if the pretraining corpus
is artificial and does not encode any linguistic struc-
ture.

Our work extends a growing body of scientific lit-
erature that questions commonly-held beliefs about
what properties of a pretraining corpus lead to im-
provements on different downstream tasks. Re-
cently, Sinha et al. (2021) showed that word or-
der in pretraining documents has negligible impact
on downstream performance on the GLUE bench-
mark. Even pretraining on sequences from differ-
ent modalities such as Java code and amino acid
sequences (Chiang and Lee, 2020) have shown ben-

efits on GLUE benchmark, Similarly, for the task of
language modeling, pretraining on musical scores,
or even artificial sequences of nested parentheses
has shown to achieve better perplexity on a human
language (Papadimitriou and Jurafsky, 2020). Our
results go further—here the source documents con-
tain no natural data at all, nor do they exhibit any
non-trivial structure.

Recently, some machine learning theory litera-
ture has begun to question the mechanism by which
transfer learning works. For example, Neyshabur
et al. (2020) attribute the benefits to low-level
statistics of the data and optimization considera-
tions rather than feature reuse. In other related
work, Maennel et al. (2020) show that networks
pretrained on randomly labeled data sometimes
enjoy considerable performance improvements on
downstream tasks.

3 Generating the Nonsense Corpus

For generating the nonsense pretraining corpus, we
use an artificial vocabulary to create base docu-
ments that has little resemblance to any real lan-
guage. Our vocabulary simply consists of the first
5000 3-letter character combinations using the En-
glish alphabet in lexical order starting from the
right (aaa, baa, caa, ..., aab, bab, ...). Each sen-
tence is generated by sampling each word in it
independently from the uniform distribution over
the entire vocabulary, and ending it with a period
(see Figure 1 for a sample nonsense document).
The length of each sentence is selected uniformly
from 5 to 15 words. The number of sentences per
document is selected according to the pretraining
task that it is used for. For the pretraining tasks
proposed in Zou et al. (2020), we sample sentences
until the document reaches 512 tokens in length.
For our pretraining tasks (introduced later), number
of sentences in a document is decided by sampling
uniformly from 7 to 13 sentences.

4 STEP Pretraining Tasks

STEP pretraining tasks are a collection of 3 tasks
defined by Zou et al. (2020). Next Sentence Gen-
eration (NSG) provides the first half of a document
as input and the target is to generate the latter half.
Sentence Reordering (SR) presents a document
with its sentences shuffled in random order, and
requires generating the original document with cor-
rect sentence order. Masked Document Generation
(MDG) masks out a contiguous sequence of to-
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kens in the base document and requires generating
the original document while correctly filling-in the
masked tokens. More details and hyperparameters
can be found in the original paper.

5 Our Pretraining Tasks

To develop our pretraining tasks, we first undertook
a qualitative analysis of existing summarization
datasets. We surveyed all summarization papers
published in the last 10 years with more than 25
citations, cataloguing a list of the summarization
datasets that were used in them. We observed that
datasets can be grouped together according to do-
main (e.g., news and conversations). We grouped
the 28 retrieved datasets into 14 domains (see the
Appendix, Table 9). We selected a single dataset
from each domain to analyze what summaries con-
sist of and what skills their creation requires.

From each selected dataset, we manually in-
spected ten randomly sampled input-summary
pairs, looking for primitive subtasks that seem to
express skills (informally) that are required in order
to create the summaries demanded by this dataset
for at least two of the ten instances. Since we need
to create artificial input-summary pairs for each
subtask, we only chose subtasks for which it was
possible to create large number of such artificial
pairs. For example, in the Samsum dataset (Gliwa
et al., 2019) which requires summarizing conversa-
tions between people, a frequently necessary sub-
task is to infer the unfolding social scenario (e.g. a
fight, or a person helping another) but it is difficult
to create a large number of varied artificial con-
versations that reflect the situation. On the other
hand, subtasks such as extracting those sentences
that address some specific topic, or (even simpler)
extracting the first sentence of the input are simple
enough to facilitate creating data points programat-
ically. Note that while copying the first sentences
might seem like a trivial or uninteresting pretrain-
ing task, it can be very useful. For example, in
news summarization datasets the lead-3 baseline
(copying over first 3 sentences as the summary)
works very well (Brandow et al., 1995; Grenander
et al., 2019).

Based on this analysis, we developed 21 ele-
mentary tasks, including copying specific content,
performing numerical operations, and more. See
Table 1 for full details on the slate of tasks.

Generating artificial summaries To create an
input-summary pair using an elementary task from

dkb spf hpd vfb nwg tsa phc whh irc ewb .
uwa lja oyg mjg ige qpb ncc ele .
lqc rbb oeh pof vwg zob jdf quc .
aqe qff sre rxd zmf .
mjh vgc bge epf slb ecd .

dkb spf hpd vfb nwg tsa phc whh irc ewb .
uwa lja oyg mjg ige qpb ncc ele .
lqc rbb oeh __d10__keyword_1__ vwg zob jdf quc .
aqe qff sre rxd zmf .
__d3__keyword_7__  vgc bge epf slb ecd .

lqc rbb oeh __d10__keyword_1__ vwg zob jdf quc .
the keyword was negative .

Nonsense
Document

Input

Summary

Task10 - Copy sentence containing a keyword.
Task3 - Whether a keyword has positive or negative sentiment

Pretrained
Model

Randomly
Initialized

Transformer
seq2seq Model

Pretraining Task Selection

Creation of summary by
applying task logic

Pretraining 

Dataset creation

Figure 1: Procedure to create pretraining dataset using
the nonsense corpus and our proposed pretraining tasks

Table 1, we first create a base document and then
(when required by the task) modify it by adding
the requisite keywords. For example, CopyKw-
dOneSentence uses a keyword to mark the sentence
to copy. The keywords added for tasks are also
meaningless like keyword1, keyword2. Then the
corresponding elementary operation is applied to
generate the summary from this modified input.

The pretraining dataset that we create involves
multiple elementary operations in each input-
summary pair. To create the input-summary pair
from a nonsense document, we first sample 3 ele-
mentary tasks and sequentially modify the input as
needed by each task. Then, we generate the sum-
mary sentence(s) as required for each elementary
task and concatenate them to constitute the overall
summary. Here, the different keywords added to
the input signal to the model which tasks are re-
quired to generate the summary. The procedure is
illustrated in Figure 1.

6 Summarization Benchmarks

We fine-tune and evaluate our models on 4 down-
stream summarization benchmarks.

CNN-Dailymail-10K (See et al., 2017) Contains
news articles and summaries from CNN and Dai-
lymail websites. We use only 10k instances for
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Elementary subtask Description

CheckKeyword Check if the input has a special keyword or not.
ClassifyKeyword Output the category of keyword occurring in the input
MajorityKeyword Out of two given keywords, find which one occurs more number of times
CopyFirstSentence Copy first sentence

CopyBulleted Copy over a bullet point (sentence starting with a bullet marker).
CopyQuoted Copy text within quotes

CopyLastSentence Copy last sentence
CopyKwdOneSentence Copy the sentence that contains a keyword

CopyKwdMultipleSentInOrder Copy all sentences containing any keyword in their order of appearance.
CopyKwdMultipleSentSorted Copy all sentences containing any keyword, sorted by the keywords

CopyKwdMultipleSentShuffled Copy all sentences containing keywords in any order.
ReplaceClassKeyword Replace an object’s mention with its category (e.g. apple −→ fruit)

CompareNumbers Given two numbers in the text, say which one is bigger
SumOfNumbers Sum all numbers in the input

ThresholdNumber Check if a number in the input is above a threshold
LargestNumber Find out largest of one or more numbers in the input.

TruncateSentence Copy a sentence but only till the cutoff keyword is encountered
BreakClauses Break a single sentence into multiple ones containing one clause each
JoinClauses Join clauses from multiple sentences to make one longer sentence

ParaphraseWords Copy a sentence while replacing its keywords with one of its synonyms
TopicSegregation Copy sentences containing keywords from different classes into separate sections

Table 1: 21 extracted elementary summarization subtasks and their descriptions (detailed version is in Appendix)

training (randomly sampled from the training set)
so that the impact of pretraining is more visible.
However, we still evaluate the fine-tuned model on
the full test set.

XSum-10K (Narayan et al., 2018) Also a news
summarization dataset. Again, we train on a ran-
dom subset of 10k instances from the training set.

Rottentomatoes (Wang and Ling, 2016)
This dataset concerns summarizing critical
reviews of movies found on the website
rottentomatoes.com.

Rotowire (Wiseman et al., 2017) Here, the task
is to process the box-score of a basketball game
(often requiring numerical reasoning) to create a
post-game summary.

7 Experiments and Results

First, we pretrain the transformer-based sequence-
to-sequence architecture used by the T5
model (Raffel et al., 2020), on different cor-
pora, each containing 100k input-summary pairs
to get different pretrained models. We use the
T5-small architecture in all experiments. Next, we
fine-tune each model on the downstream tasks and
measure performance via ROUGE score (Table 2).
We also present the models’ performance on next
token prediction in summaries using accuracy and

log-likelihood in the Appendix (Table 6). To frame
the comparison, we include the performance of the
official T5 model and of a randomly initialized
model using the same architecture (T5-RI) .

Pretraining with either our proposed pretraining
tasks (OurTasks), or STEP tasks (STEPTasks)
performs much better than random initialization,
even when using nonsense data. For all summa-
rization benchmarks except RottenTomatoes, the
performance remained comparable when we used
real upstream data from Wikipedia to create the
pretraining datasets. This suggests that for some
summarization benchmarks, there might be little or
no additional benefit provided by using real world
pretraining text.

Looking at individual STEPTasks, NSG has no
training signal since the output is completely inde-
pendent of the input, but surprisingly it leads to im-
provements in Rotowire benchmark. SR and MDG
performed much better than NSG on CNN-DM
and XSum, likely because they involve copying
sentences/unmasked tokens from the input. We cre-
ated adjusted versions of these pretraining datasets,
where there was no copying needed and it led to
a drop in performance on both pretraining tasks,
bringing it close to T5-RI for CNN-DM and XSum.
In SR-adjusted, the task is to output only the numer-
ical order in which sentences should be copied (ver-



3182

Model CNN-DM-10K XSum-10K Rotten Tomatoes Rotowire
R1 R2 RL R1 R2 RL R1 R2 RL R1 R2 RL

T5-OffShelf 39.38 18.08 27.71 29.18 8.69 22.62 24.73 9.00 19.64 37.50 12.85 19.85
T5-RI 9.86 1.06 7.49 15.49 2.48 12.76 10.17 0.41 8.66 4.02 0.72 3.68

Nonsense Upstream Corpus

T5-OurTasks 35.23 14.77 24.03 20.36 4.15 16.23 15.72 2.06 12.51 39.10 11.81 19.94
T5-STEPTasks 35.78 14.98 23.60 21.49 4.56 16.78 13.22 0.88 10.83 29.82 7.45 16.74

T5-STEPTask-NSG 9.20 0.80 7.19 15.78 2.24 12.44 12.31 0.71 10.60 33.65 7.60 17.90
T5-STEPTask-SR 28.63 10.67 20.35 21.47 4.70 16.62 10.89 0.51 9.18 25.68 5.39 15.29
T5-STEPTask-SR-adjusted 7.24 0.63 5.69 15.04 2.00 12.12 11.18 0.46 9.51 20.00 2.74 12.08
T5-STEPTask-MDG 34.50 14.45 23.77 20.76 4.13 16.45 11.78 0.70 9.89 36.22 10.53 18.73
T5-STEPTask-MDG-adjusted 10.15 0.93 7.78 16.12 2.20 13.09 15.07 1.38 11.69 20.39 3.77 11.97

Real Upstream Corpus

T5-OurTasks 34.06 13.88 23.21 22.27 5.09 17.60 19.16 5.26 15.65 38.57 11.89 19.68
T5-STEPTasks 32.04 12.93 22.55 23.37 5.68 18.42 20.89 6.29 17.05 37.63 10.89 19.57

PG Models Randomly Initialized vs Pretrained (Nonsense Upstream Corpus)

PG-RI 29.68 11.75 21.82 17.66 3.57 14.62 19.63 6.43 16.62 30.61 8.66 17.74
PG-OurTasks 29.82 11.78 21.91 16.81 3.43 13.95 19.02 6.57 16.38 26.94 6.81 16.77
PG-STEPTasks 29.44 11.74 21.67 17.65 3.54 14.55 17.70 5.89 15.34 31.16 8.49 17.85

Table 2: Rouge scores achieved by different models on four summarization benchmarks.

sus actually generating the full output). In MDG-
adjusted, the task is to only output the masked-out
tokens (versus outputting the entire document, in-
cluding unmasked tokens).

A randomly initialized pointer-generator
model (See et al., 2017) (PG-RI) performs far bet-
ter than a randomly initialized T5 model. However,
T5-architecture models pretrained on nonsense
text were able to outperform pointer-generator on
3 out of 4 benchmarks, suggesting that transformer
models pretrained on nonsense text can be a better
choice than using non-pretrained LSTM based
models. Interestingly, pretraining the PG model
on either OurTasks or STEPTasks did not lead to
any additional improvement.

Models pretrained separately on each task from
OurTasks exhibit strong differences in their per-
formance on CNN-Dailymail-10K benchmark (Ta-
ble 3). Models pretrained on TopicSegregation
and CopyKwdMultipleSent-Shuffled outperform
others significantly. The two worst performing
models were pretrained on CompareNumbers and
SumOfNumbers, and these models were unable to
perform any better than random guessing on the
pretraining task itself. By contrast, most other pre-
trained models were able to solve their pretraining
task correctly more than 99% of times (see Table 7
in Appendix for full details).

Pretraining task R1 R2 Pr%

TopicSegregation 23.04 7.79 99.90
CopyKwdMultipleSent-Shuffled 23.34 5.46 99.66
TruncateSentence 17.07 2.50 1.00

LargestNumber 6.52 0.58 99.88
SumOfNumbers 5.03 0.40 25.06
CompareNumbers 1.89 0.04 48.88

Table 3: The 3 best and worst performing pretraining
tasks according to performance of their pretrained mod-
els on CNN-Dailymail-10K (R1,R2), and their accu-
racy on the pretraining task (Pr%).

8 Conclusion

This paper demonstrated that transformer models
pretrained on randomly generated nonsense data de-
liver remarkable performance gains across multiple
summarization tasks, compared to their randomly
initialized version. This suggests that a substantial
part of the observed benefits of pretraining can not
be attributed to knowledge transfer. To investigate
whether the design of pretraining task itself plays a
significant role and can lead to further performance
gains, we explored summarization datasets to pre-
pare a battery of tasks found useful in creating
summaries. But these pretraining tasks performed
comparably to more generic pretraining tasks used
in literature. Our work suggests that understand-
ing pretraining may have more to do with poorly-
understood aspects of how initialization influences
optimization than with knowledge transfer.
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A Appendix

Hyperparameters We use the T5-Small ar-
chitecure with 60.5 million parameters as our
transformer-based model. The models are all
trained using the BertAdam optimizer with a learn-
ing rate of 10−4. For the pointer-generator model,
the token embedding size is 128, its encoder is a
bidirectional LSTM with hidden size 256 the de-
coder is a unidirectional LSTM of the same size.
The entire model had 4.4 million parameters. For
a fair comparision, we use wordpiece tokenization
with all models with the same tokenizer and vo-
cabulary as used by the standard T5 model. The
validation metric used in all experiments was accu-
racy on the next-token prediction on the summaries.
A patience value of 5 epochs was used for early
stopping.

For CNN-Daiymail dataset, we truncated the
input and output lengths according to Zou et al.
(2020) (Table 5). We use the same lengths for the
XSum dataset as well . For the Rotowire and Rot-
tentomatoes dataset, the input and output lengths
were much longer and even with a batch size of 1,
we had to truncate them to values that allowed us
to accommodate training with the available GPU
memory (32GB). While decoding, we used beam
search with beam size 4, and set the minimum and
maximum decoding lengths to the 5 and 95 per-
centile of their observed distribution.

Computing infrastructure Most experiments
were carried out on 8 Nvidia V100 GPUs with
32 GB of memory. Some experiments with CNN-
Dailymail and XSum datasets were carried out on 4
Nvidia RTX2080Ti GPUs with 11GB of memory.

Exclusions from ensemble of our tasks When
creating artificial summaries requires using mul-
tiple of our proposed elementary tasks, the dif-
ferent keywords added to the input signal to the
model which tasks are required for it. Three of
our proposed tasks do not always involve keyword
addition— CopyFirstSentence, CopyLastSentence,
CheckKeyword. Hence we exclude them when cre-
ating the pretraining corpus with our ensemble of
tasks. We also exclude the SumOfNumbers and
CompareNumbers tasks because they could not be
learnt even in isolation by a randomly initialized
T5 model training on 100k datapoints.

Details of dataset splits For the Rotowire and
RottenTomatoes datasets, we use the standard train-

ing, validation and test splits with sizes shown
in Table 4. For the CNN-Dailymail and XSum
datasets, we use the standard test splits, but reduce
the training and validation set sizes to 10k and 1k
respectively by uniformly subsampling from the
standard full dataset splits.

Evaluation metrics We measure the quality of
generated summaries using ROUGE scores (Lin
and Hovy, 2002) which measure n-gram overlap
between a generated and reference summary to
assess its quality. We use the ROUGE-1,2 and L
variants of this metric which measure overlap in un-
igrams, bigrams and longest common subsequence
respectively. We also present the average perfor-
mance of models at predicting the next token of
a summary given all the ground truth past tokens
(Table 6). To measure this, we use the accuracy
and the negative-log-likelihood metrics which are
standard for multi-class classification. We average
these metrics across different decoding timesteps
of summary generation, and then average it again
across all the summaries in the test set.
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CNN-DM-10K XSum-10K RottenTomatoes Rotowire

Train 10000 10000 2458 3398
Validation 1000 1000 536 727
Test 11490 11333 737 728

Table 4: Sizes for Train, validation and test splits for all datasets

CNN-DM-10K XSum-10K RottenTomatoes Rotowire

max source length 512 512 6000 5160
max target length 256 256 ∞ 815
batch size 16 16 1 1
max decode length 148 42 52 815
min decode length 44 18 16 223

Table 5: Hyperparameters used for fine-tuning models on the 4 datasets

Experiment CNN-DM-10K XSum-10K Rottentomatoes Rotowire
Acc NLL Acc NLL Acc NLL Acc NLL

T5-OffShelf 65.15 1.71 53.68 2.34 51.78 2.77 68.04 1.50
T5-RandomInit 29.78 4.92 32.60 4.75 24.75 5.36 48.30 2.61

Nonsense Upstream Corpus

T5-OurTasks 54.74 3.18 38.98 4.27 33.42 5.08 63.59 1.78
T5-STEPTasks 54.71 3.18 39.47 4.21 28.65 5.13 58.89 1.99

Real Upstream Corpus

T5-OurTasks 54.87 2.93 41.21 3.76 39.64 4.12 64.02 1.78
T5-STEPTasks 57.91 2.46 46.83 3.08 45.34 3.43 64.08 1.63

PG Models Randomly Initialized vs Pretrained (Nonsense Upstream Corpus)

PG-RandomInit 51.14 2.91 33.05 4.14 33.35 4.37 59.12 1.92
PG-OurTasks 51.70 2.89 33.80 4.14 34.40 4.29 59.30 1.92
PG-STEPTasks 51.79 2.88 34.13 4.14 35.06 4.21 59.00 1.94

Table 6: Accuracy (Acc) and negative log likelihood (NLL) for next token prediction on summaries
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Pretraining task R1 R2 RL Pr%

CopyKwdMultipleSent-Shuffled 23.34 5.46 15.41 99.66
TopicSegregation 23.04 7.79 16.52 99.88
TruncateSentence 17.07 2.50 11.81 100.00
CopyQuoted 11.03 1.32 8.32 99.82
BreakClauses 10.46 1.18 7.95 99.80
CopyKwdMultipleSent-InOrder 10.14 1.14 7.70 99.84
ReplaceClassKeyword 9.70 0.95 7.36 99.98
ParaphraseWords 9.70 0.99 7.42 99.98
CopyKwdOneSentence 9.45 1.06 7.23 99.90
CopyFirstSentence 9.28 1.08 7.22 99.88
CopyBulleted 9.01 1.00 6.88 99.58
CopyKwdMultipleSent-Sorted 8.48 0.83 6.59 99.68
MajorityKeyword 8.45 0.85 6.49 100.00
ThresholdNumber 7.83 0.77 6.05 100.00
CheckKeyword 7.79 0.77 5.94 100.00
CopyLastSentence 7.78 0.72 6.12 98.40
JoinClauses 7.72 0.81 6.09 98.82
ClassifyKeyword 6.80 0.62 5.34 100.00
LargestNumber 6.52 0.58 5.14 99.88
SumOfNumbers 5.03 0.40 4.14 25.06
CompareNumbers 1.89 0.04 1.75 48.88

Table 7: For different models pretrained on one individual task each, their performance on CNN-Dailymail-10K in
terms of ROUGE (R1,R2,RL), and their accuracy in percentage on the pretraining task (Pr%)
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Elementary subtask Description

CheckKeyword Check if the input has a special keyword or not.
ClassifyKeyword Input contains 1 of 10 special keywords - 5 or them are positive

and 5 of them are negative adjectives. Task is to tell whether
mentioned adjective was positive or negative

MajorityKeyword Out of two given keywords, find which one occurs more number
of times

CopyFirstSentence Copy first sentence
CopyBulleted Exactly one sentence is a bullet point and starts with the bullet

marker. You have to copy over that sentence without copying the
marker.

CopyQuoted Copy text within quotes
CopyLastSentence Copy last sentence
CopyKwdOneSent Copy single sentence containing one of many special defined

keywords
CopyKwdMultipleSentInOrder Copy all sentences containing any special keyword in the same

order as they appear in text.
CopyKwdMultipleSentSorted Copy all sentences containing keywords but sort them according

to the canonical ordering of keywords
CopyKwdMultipleSentShuffled Copy all sentences containing keywords in any order. The sen-

tences in ground truth may be any possible order.
ReplaceClassKeyword There exist many keywords, each belonging to one of 3 classes.

You have to mention the class of the mentioned keyword
CompareNumbers Given two numbers in the text, say which one is bigger
SumOfNumbers Sum numbers

ThresholdNumber The input contains a number between 0 and 100. You have to say
if the number was above or equal to the threshold of 50 of lower
than it

LargestNumber Find out largest of one or more numbers in the input.
TruncateSentence Copy a sentence but only till the cutoff keyword is encountered

BreakClauses Break a single sentence into multiple ones containing one clause
each

JoinClauses Join clauses from multiple sentences to make one longer sentence
ParaphraseWords Copy the sentence containing one of pre-specified special key-

words. But replace the keyword with any of its multiple synonyms.
The jth synonym of ith keyword srci is given by targetij

TopicSegregation Copy all sentences containing keywords belonging to different
classes but put them in corresponding sections (each class gets a
separate section, which can be empty too, sections always occur
in sorted order)

Table 8: 21 extracted elementary summarization subtasks and their descriptions
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Domain Dataset name Paper using the dataset

News

CNN-Dailymail See et al. (2017)
NYT Paulus et al. (2018)
Gigaword Paulus et al. (2018)
XSUM Liu and Lapata (2019)
Newsroom Zhang et al. (2020)

Code
Code to Documentation dataset Iyer et al. (2016)
Git diff to commit-message dataset Allamanis et al. (2016)

Scientific Paper
Arxiv Cohan et al. (2018)
Pubmed Cohan et al. (2018)
ScisummNet Yasunaga et al. (2019)

Patent BigPatent Sharma et al. (2019)

Instructional guides Wikihow Zhang et al. (2020)

Social media post Reddit-TIFU Zhang et al. (2020)

Email AESLC Zhang et al. (2020)

Bills BillSum Zhang et al. (2020)

Reviews

Amazon reviews Gerani et al. (2019)
Yelp reviews Chu and Liu (2019)
CNET reviews Gerani et al. (2019)

KeyValue Attributes
Wikibio Lebret et al. (2016)
E2E dataset Novikova et al. (2017)

Knowledge Graphs

DBPedia triples to Wikipedia Vougiouklis et al. (2018)
AMR to sentence dataset Song et al. (2018)
Agenda Koncel-Kedziorski et al. (2019)
WebNLG Moryossef et al. (2019)

Numerical Table Rotowire box-score Puduppully et al. (2019)

Miscellaneous webpages Wikisum Liu et al. (2018)

Conversations
SamSum Gliwa et al. (2019)
AMI Wang and Cardie (2013)

Table 9: Existing summarization datasets in various domains, along with corresponding papers that use them and
came up during the search procedure to characterize elementary tasks in summarization


