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Abstract

While research on explaining predictions of
open-domain QA systems (ODQA) is gain-
ing momentum, most works do not evaluate
whether these explanations improve user trust.
Furthermore, many users interact with ODQA
using voice-assistants, yet prior works exclu-
sively focus on visual displays, risking (as we
also show) incorrectly extrapolating the effec-
tiveness of explanations across modalities. To
better understand the effectiveness of ODQA
explanations strategies in the wild, we con-
duct user studies that measure whether expla-
nations help users correctly decide when to
accept or reject an ODQA system’s answer.
Unlike prior work, we control for explana-
tion modality, i.e., whether they are communi-
cated to users through a spoken or visual inter-
face, and contrast effectiveness across modali-
ties. We show that explanations derived from
retrieved evidence can outperform strong base-
lines across modalities but the best explanation
strategy varies with the modality. We show
common failure cases of current explanations,
emphasize end-to-end evaluation of explana-
tions, and caution against evaluating them in
proxy modalities that differ from deployment.

1 Introduction

Despite copious interest in developing explainable
AI, there is increasing skepticism as to whether
explanations (of system predictions) are useful to
end-users in downstream applications. For instance,
for assisting users with classifying sentiment or an-
swering LSAT questions, Bansal et al. (2021) ob-
served no improvements from giving explanations
over simply presenting model confidence. Simi-
larly, Chu et al. (2020) observed that visual expla-
nations fail to significantly improve user accuracy
or trust. Such negative results present a cautionary
tale for explainability and emphasize the need to
evaluate explanations using careful user studies.

∗ Work done while at Facebook AI.

Figure 1: Using end-to-end user studies, we evaluate
whether explanation strategies of open-domain QA as-
sistants help users decide when to trust (or reject) pre-
dicted answers.

We explore the effectiveness of explanations for
Open-Domain Question Answering models, which
involves answering users’ questions (e.g., “Who
plays the Joker in the Lego Batman movie?”) using
a large corpus (e.g., Wikipedia). Such models are
increasingly deployed not only in visual modalities
(e.g., Web search) but also in spoken ones (voice
assistants).1 Spoken interfaces for ODQA are also
important because they make ODQA systems more
accessible for users with visual impairments. De-
spite improvements in accuracy, deployed ODQA
models remain imperfect. This motivates the need
to provide users with mechanisms (e.g., estimates
of uncertainty or explanations) that can help im-
prove appropriate reliance (Lee and See, 2004),
e.g., by allowing users to detect erroneous answers.
We henceforth refer to a user’s ability to distinguish
correct and incorrect answers as error-detectability,
and ask Does explaining the system’s reasoning,
help improve error-detectability? (Figure 1).

Alongside recent negative results (Bansal et al.,
2021), Lamm et al. (2020) showed that visually
complex “QED” explanations that communicate

1https://www.perficient.com/insights/
research-hub/voice-usage-trends

https://www.perficient.com/insights/research-hub/voice-usage-trends
https://www.perficient.com/insights/research-hub/voice-usage-trends
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coreference and entailment information along with
evidence marginally improve error-detectability.
However, the study lacks the recommended base-
line (Amershi et al., 2019; PAIR, 2019) of commu-
nicating model confidence which has been shown
to be effective on other domains (Bansal et al.,
2021). Also, the transferability of complex visual
explanations to the spoken modality remains un-
clear. Although Feng and Graber (2019) compare
visual explanations with presenting model confi-
dence on a different QA task, i.e., answering timed,
multi-clue trivia questions, it was unclear whether
explanations led to appropriate reliance (Bansal
et al., 2021); thus the effectiveness of explanations
for end users of QA systems still remains unclear.
In this paper, we set out to evaluate the ability of
NL explanations in both visual and spoken modali-
ties, to improve error-detectability for the task of
ODQA for non-expert users over strong baselines.

However, explaining ODQA systems in the spo-
ken modality may pose unique challenges, e.g., be-
cause the same information content can impose
higher cognitive demands when communicated
by voice than visually (Sweller, 2011; Leahy and
Sweller, 2016); potentially reducing effectiveness
of longer, more complex explanations (e.g., QED)
in the spoken modality. Thus we also ask, Can the
most useful explanation strategy change with the
modality? In summary:

1. We present user studies evaluating how well
explanations for ODQA help users detect er-
roneous answers (error-detectability). Unlike
prior work, we evaluate explanations in both
visual and spoken interfaces, and compare
against calibrated confidence.

2. Our experiments with over 500 MTurk users
confirm significant improvements in error-
detectability for ODQA over showing con-
fidence. To the best of our knowledge, our
work is the first to show statistically signif-
icant improvements in appropriate reliance
through NL explanations for non-expert users.
(Section 4.1)

3. We show that the best explanation approach
can change with the modality: while longer
explanations (evidence paragraphs) led to the
highest error-detectability in the visual modal-
ity, shorter explanations (evidence sentence)
performed best in the spoken modality. We
connect our observations with prior work on
cognitive science and identify failure cases for

ODQA explanations (Section 4.3).

2 Background

Open-domain QA. ODQA involves answering
questions using a large, broad corpus of unstruc-
tured documents (e.g., Wikipedia or the Web).
More specifically, the questions are factoid and
the target answer is present as a span in one of the
documents (Voorhees et al., 1999).

Recent models for ODQA use a pipelined ap-
proach and contain two components: a document
retriever that finds a subset of the most relevant
documents from the corpus, and a reader that se-
lects an answer span from the retrieved documents
(Chen et al., 2017; Lee et al., 2019a). We use
a state-of-the-art ODQA model and a benchmark
dataset that contains questions asked by real lay
users (Section 3.3).

An ODQA model’s prediction can be explained
by providing a justification in natural language,
e.g., by extracting snippets of text from the re-
trieved documents (rationales) or more generally
by generating new text (abstractive explanation).
For example, rationales can explain a text classi-
fier using phrases in the input text that are relevant
to the prediction (Lei et al., 2016). However, for
some tasks, such as NLI (Camburu et al., 2018) and
common-sense reasoning (Rajani et al., 2019), the
input text alone may not contain enough meaning-
ful justification for the prediction. For other tasks,
the evidence can be spread across documents (e.g.,
HotpotQA; Yang et al. (2018)). In such cases, ab-
stractive explanations become more useful. While
we primarily focus on extractive explanations, we
also experiment with abstractive explanations (Sec-
tion 3.1).

Evaluating explanations. One important reason
to explain ODQA models is to improve error-
detectability (Figure 1).2 Many prior works eval-
uate the quality of NL explanations by compar-
ing similarity with human-written explanations for
tasks such as NLI, common-sense reasoning and
fact verification (DeYoung et al., 2020; Paranjape
et al., 2020; Swanson et al., 2020; Camburu et al.,
2018; Rajani et al., 2019). Other works conduct
user studies but rely on proxy tasks, e.g., whether
explanations allow users to anticipate the model
predictions (Hase and Bansal, 2020; Nguyen,
2018). However, evaluating explanations on such

2Note that there exists other downstream applications of ex-
planations, such as debugging models (Koh and Liang, 2017).
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proxy tasks and metrics, which differ from the ac-
tual deployment setting, risks drawing misleading
conclusions about the effectiveness of explanations
in practice (Buçinca et al., 2020). Thus, we fo-
cus on directly evaluating explanations using user
studies on error-detectability.

Feng and Graber (2019) found that expla-
nations improve player accuracy when answer-
ing Quizbowl questions. Our task differs from
Quizbowl in many respects: 1) Unlike Quizbowl
where the users are trivia enthusiasts or experts,
ODQA users are non-experts, lay people who ask
questions to satisfy their information needs. Thus,
ODQA users have no or very limited expertise in
answering these questions. 2) While Quizbowl
questions comprise multiple clues (incrementally
revealed) for a single answer, ODQA questions typ-
ically contain a single clue. 3) Feng and Graber
(2019) observed improvements from the explana-
tions when their QA model was considerably more
accurate than their users, outperforming the best
trivia players. In contrast, we carefully design our
user study so that on our study sample, users can-
not achieve high performance by simply trusting
the model (Section 3.3).

Visual vs. spoken modalities. We hypothesize
that differences in processing of spoken and written
information can substantially impact the effective-
ness of NL explanations in ODQA. For example,
Flowerdew et al. (1994) observed that one of the
main differences in processing spoken versus writ-
ten information is linearity. When listening, infor-
mation progresses naturally, as opposed to reading,
where people are able to jump back and forth in
the text (Buck, 1991; Lund, 1991). This results
in differences in recall of information across the
two modalities (Osada, 2004). Although it is pos-
sible to repeat spoken information, Lund (1991)
found that for some listeners, listening to infor-
mation again was not as effective as re-reading.
Another difference is the effect on concentration
across modalities. Thompson and Rubin (1996)
found that the heavier cognitive load imposed by
listening to information can make people lose con-
centration more easily. Our experimental setup is
the first to evaluate explanation effectiveness across
these two modalities.

3 Experimental Setup

We evaluate explanation effectiveness for ODQA
by varying the type of explanation and modal-

ity of communication. We combine variations of
each factor to obtain explanation conditions (Sec-
tion 3.1) for a state-of-the-art ODQA model (Sec-
tion 3.3). We then deploy these conditions on Ama-
zon Mechanical Turk (MTurk) to validate our hy-
potheses about the effectiveness of improving error-
detectability (Section 3.2). We justify various de-
sign choices made to ensure quality in Section 3.4.

3.1 Explanation Types and Conditions
ODQA models can justify their predictions by
pointing to evidence text containing the predicted
answer (Das et al., 2018; Lee et al., 2019a;
Karpukhin et al., 2020). We experiment with two
types of extractive explanations:

• EXT-SENT: Extracts a sentence containing the
predicted answer as evidence.

• EXT-LONG: Extracts a longer, multi-sentence
paragraph containing the answer as evidence.

While extractive explanations are simpler to gener-
ate, we also evaluate a third explanation type that
has potential to more succinctly communicate evi-
dence spread across documents (Liu et al., 2019).

• ABS: (Abstractive) Generates a new text snip-
pet to justify the predicted answer.

Explanation conditions. For the spoken modal-
ity, we test five conditions (two baselines and three
explanation types): (1) BASE: present only the top
answer, (2) CONF, a stronger baseline that presents
the top answer along with the model’s certainty, (3)
ABS, (4) EXT-LONG, and (5) EXT-SENT. In the vi-
sual modality, we test two explanation types: EXT-
LONG and EXT-SENT. We implemented these two
types to contrast their effectiveness effectiveness
across modalities (Figure 2, Section 3.4). For all
explanation conditions, we show confidence, men-
tion that the answer was obtained from Wikipedia
and provide the source article. 3

3.2 Hypotheses
We investigated five (pre-registered) hypotheses
about the relative performance of various explana-
tion conditions at improving the accuracy of error-
detectability (Section 3.4):
H1 CONF will improve accuracy over BASE.
H2 Spoken EXT-SENT will improve accuracy over

CONF— the explanation would provide addi-
tional context to help validate predicted an-
swers.

3Appendix A shows more examples.
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Figure 2: UI for spoken (top) and visual modalities
(bottom) for the EXT-SENT explanation type. Users ei-
ther read or hear an explanation and decide whether to
trust or discard the QA system’s prediction.

H3 Spoken EXT-SENT will lead to higher accu-
racy than Spoken EXT-LONG. Since the spo-
ken modality may impose higher cognitive
limitations on people (Section 2), concise ex-
planations may be more useful despite provid-
ing less context.

H4 ABS will improve accuracy over Spoken EXT-
SENT. ABS contains more relevant informa-
tion than EXT-SENT (same length), which may
help users make better accept/reject decisions.

H5 Visual EXT-LONG will lead to higher accuracy
than Spoken EXT-LONG.

3.3 Implementation Details for Conditions

Dataset. We used the Natural Questions (NQ)
corpus (Kwiatkowski et al., 2019). NQ is com-
posed of anonymized queries posed by real users
on the Google search engine. The answers are
human-annotated spans in Wikipedia articles. As
factoid web search is typically done through both
spoken and visual modalities, this data is an ideal
choice for our evaluation setup. To simplify the
study, we restrict to questions with short target an-
swers (< 6 tokens) (Lee et al., 2019b). This subset
contains 80k training examples, 8,757 examples
for development, and 3,610 examples for testing.

Model. We train the current (extractive) state-of-
the-art model on NQ: Dense Passage Retrieval and
Reader (DPR) (Karpukhin et al., 2020). Similar
to Karpukhin et al. (2020), we split documents
(Wikipedia articles), into shorter passages of equal
lengths (100 tokens). To answer an input ques-

tion, DPR uses two separate dense encoders EQ(·)
and EP (·) to encode the question and all pas-
sages in the corpus into vectors. It then retrieves
k most similar passages, where passage similar-
ity to a question is defined using a dot product:
sim(q, p) = EQ(q)

ᵀEP (p). Given the top k pas-
sages, a neural reader (Section 2) assigns a passage
selection score to each passage, and a span score
to every answer span. 4

Generating explanations. Extractive explana-
tions use the passage associated with DPR’s
answer— EXT-SENT uses the sentence containing
the answer whereas EXT-LONG uses the entire pas-
sage. Since DPR does not generate abstractive ex-
planations, we simulate ABS by manually creating a
single sentence that captures the main information
of EXT-SENT and adds additional relevant informa-
tion from EXT-LONG, whilst remaining the same
length as EXT-SENT. To improve transparency, all
explanation conditions also inform the source to
the users, by providing them the title of the article.
Figure 2 shows an example of the final EXT-SENT

explanation condition. To convert text to speech,
we use a state-of-the-art TTS tool. When spoken,
questions in our final ABS and EXT-SENT condi-
tions were on average 15 seconds long, EXT-LONG

was between 30-40 seconds.

Confidence calibration. Confidence scores gen-
erated by neural networks (e.g., by normalizing
softmax scores) often suffer from poor calibration
(Guo et al., 2017).To alleviate this issue and to fol-
low best practices (Amershi et al., 2019; Bansal
et al., 2021), we calibrate our model’s confidence
using temperature scaling (Guo et al., 2017), which
is a post hoc calibration algorithm suitable for
multi-class problems. We calibrate the top 10 out-
puts of the model. We defer additional details of
calibration to Appendix B.

3.4 User Study & Interface

We conduct our experiments using Amazon Me-
chanical Turk. For each of the 7 conditions we hire
75 workers, and present each with 40 questions
(this amounts to a total of 21,000 data samples) one-
by-one, while showing them the model’s answer
(along with other condition-dependant information,
such as confidence or explanation) and ask them to

4We re-score each answer using the product of the pas-
sage and span score and use the highest-scored answer as the
prediction— Our initial analysis showed that this re-scoring
improved exact match scores of predicted answers.
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either accept the model’s prediction if they think it
is correct or reject it otherwise. Figure 2 shows an
example. Additional details about the platform and
participants can be found in Appendix D.

Question selection. We sample a set of questions
on which the model’s aggregate (exact-match) ac-
curacy is 50%; thus any improvements in error-
detectability, beyond random, must be a result of
users making optimal assessment about the model’s
correctness. To improve generalization, we average
results over three such mutually exclusive sets of
40 questions. Before sampling the questions, we re-
moved questions that were ambiguous or questions
where the model was correct but the explanations
failed to justify the answer. Appendix C contains
additional details on question selection.

Incentive scheme. In addition to providing a
fixed upfront pay of $10 for participating in the task,
to encourage workers to engage, we also used a
bonus-based strategy (Bansal et al., 2019) — When
users accept a correct answer, we provide a 15 cent
bonus, but when they accept an incorrect answer
they lose the same amount. When they reject an
answer, however, they do not receive any bonus.5

This aims to simulate the real-world cost and utility
of users choosing to believe answers of an ODQA
model. The maximum cumulative reward is $ 2.70.
These values were chosen to ensure workers earned
minimum a $15 hourly wage.

Post-task survey. After the main task, we asked
participants to (1) rate the length of responses, (2)
rate their helpfulness and (3) give us general feed-
back on what worked and how explanations could
be made better. For the spoken modality, we also
asked participants to rate the clarity of the voice
to understand if issues in text-to-speech confused
them. Appendix E contains the complete survey.

Metrics for error-detectability. We quantify
user performance at error-detectability using the
following three metrics:

1. Accuracy: Percentage of times a user accepts
correct and rejects incorrect answers. A high
accuracy indicates high error-detectability.

2. % Accepts | correct: Indicates the true pos-
itive rate, i.e., percentage of times the user
accepts correct answers.

5if bonus is negative, no deductions re made from base pay.
Bonus is instead set to zero

Figure 3: Accuracy of users. In the spoken modal-
ity, EXT-SENT explanations yield the best results and
is significantly better than CONF. In the visual modal-
ity, EXT-LONG perform best. We observe a statistically
significant (p < 0.01) difference between EXT-LONG
in visual versus spoken, perhaps because of differences
in user’s cognitive limitations across modalities.

3. % Accepts | incorrect: Indicates the false
positive rate, i.e., percentage of times the user
accepts incorrect answers. If a setting yields
a high number, this would indicate that this
setting misleads users more often.

We do not present true and false negative rates
because conclusions are similar. We additionally
measure time spent on each question and cummu-
lative reward. These metrics are explained in Ap-
pendix F. When computing all metrics, we removed
the first 4 questions for each worker to account
for workers getting used to the interface. We pre-
registered this procedure prior to our final studies.

4 Results

To validate our hypothesis (Section 3.2) we com-
pare explanation methods on the quantitative met-
rics (Section 4.1). To further understand partici-
pant behavior we analyze responses to the post-task
survey (Section 4.2), and analyze common cases
where explanations misled the users (Section 4.3).

4.1 Quantitative Results

Figure 3 displays average accuracy with 75 work-
ers per condition. Similar to Lamm et al. (2020),
to validate hypotheses and compute statistical sig-
nificance, we fit a generalized linear mixed effects
model using the lme4 library in R and the for-
mula a~ c +(1|w) + (1|q), where a is ac-
curacy, c is the condition, w is the worker id and q
is the question id. We run pairwise comparisons of
these effects using Holm-Bonferroni to correct for
multiple hypothesis testing. For both the spoken
and visual modalities, all conditions lead to signifi-
cantly higher accuracies than BASE (p < 0.01).
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Model confidence improved accuracy of error-
detectability. In Figure 3, CONF achieves higher
accuracy than BASE– 68.1% vs. 57.2%. This dif-
ference was statistically significant (p < 0.01),
validating H1. While previous guidelines rec-
ommend displaying confidence to users (Amershi
et al., 2019; Bansal et al., 2021), our observations
provide the first empirical evidence that confidence
is a simple yet stronger baseline against which ex-
planations for ODQA should be compared.

Explaining via an evidence sentence further im-
proved performance. The more interesting com-
parisons are between explanation types and CONF.
In both modalities, EXT-SENT performed better
than CONF. For example, in the spoken modal-
ity, EXT-SENT improved accuracy over CONF from
68.1% to 75.6% (p < 0.01); thus validating H2.
Contrary to recent prior works that observed no
benefit from explaining predictions, this result con-
firms a concrete application of explanations where
they help users in an end-to-end task.

Longer explanations improved performance
over concise explanations in the visual modal-
ity, but worsened performance in the spoken
modality. Figure 3 shows that for the visual
modality, EXT-LONG outperforms EXT-SENT expla-
nations – 77.6% vs. 74.7% (p < 0.4). Conversely,
for spoken, EXT-SENT is better than EXT-LONG–
75.6% vs. 70.4% (p < 0.01); thus validating H3.
The decrease was severe enough that we no longer
observed a statistically significant difference be-
tween EXT-LONG and CONF (p = 0.9), reempha-
sizing the importance of comparing against the
latter. Although communicating the same content,
visual EXT-LONG led to significantly better accu-
racy than their spoken version— 77.6% vs. 70.4%
(p < 0.01); thus validating H5. These results in-
dicate large differences, across modalities, in user
ability to process and utilize explanations, and how
these differences need to be accounted for while
evaluating and developing explanations.

Despite improving conciseness, abstractive ex-
planations did not help improve performance
in the spoken modality. Figure 3 shows that
ABS performs significantly worse than EXT-SENT

in the spoken modality– 71.3% vs. 75.6% (p <
0.01) and thus we could not validate H4. This re-
sult indicates that the length of the explanation (e.g.,
number of tokens) is not the only factor that affects
user performance, instead, the density of informa-

Figure 4: (Left) Explanations significantly increased
participant ability to detect correct answers compared
to CONF. (Right) However, only EXT-SENT in the spo-
ken modality and both explanations in the visual modal-
ity decreased the rate at which users are misled.

tion also increases cognitive load on users. This
finding is in line with the Time Based Resource
Sharing (TBRS) model (Barrouillet et al., 2007), a
theory of working memory establishing that time
as well as the complexity of what is being commu-
nicated, both play a role in cognitive demand. We
also observe a similar effect in users’ subjective
rating of length of explanation (Section 4.2).

All explanations significantly increased partici-
pants’ ability to detect correct answers, but only
some explanations improved their ability to de-
tect incorrect answers. Instead of aggregate ac-
curacy, Figure 4 splits and visualizes how often
users accept correct and incorrect answers. For
accepting correct model predictions, all visual and
spoken explanation conditions significantly helped
compared to CONF (at least p < 0.05).

For accepting incorrect predictions, in the spo-
ken modality, only EXT-SENT is significantly better
(i.e., lower) than CONF—34% vs. 40% (p < 0.05).
Whereas in the visual modality, both EXT-LONG

and EXT-SENT lead to improvements over CONF—
30% (p < 0.01) and 32% (p < 0.05), respectively.
This shows that although explanations decrease the
chance of being misled by the system, the least
misleading explanations change with modality.

4.2 Qualitative Results
We analyzed user responses to the post-task sur-
vey to understand their experience, what helped
them and how the system could serve them bet-
ter. We discuss the main findings here and reserve
additional results to the Appendix.

Length preference. We asked participants to
rate the length of the explanation as too short, short,
right, long, or too-long. Figure 5 shows the re-
sults. For EXT-LONG, over 85% of the workers
perceived that in the visual modality, responses
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Figure 5: Users rated how they perceived the length of
each explanation strategy. Top: Spoken explanations
were perceived to be longer. Bottom: While EXT-SENT
and ABS were the same length, the latter was rated as
longer more often perhaps because of its complexity.

were the right length. On the other hand, in the
spoken modality, only 30% of participants agreed
the length was right. Thus, user’s subjective ratings
for the same explanation type were dramatically
different across modalities. Indicating, in addition
to affecting error-detectability, the modality also
changes users’ subjective preferences.

While ABS and EXT-SENT were the same dura-
tion, users rated ABS as longer than EXT-SENT. As
mentioned before, this relates to the TBRS model
of working memory (Barrouillet et al., 2007). We
hypothesize that our ABS explanations, which inte-
grate more information than EXT-SENT in the same
amount of time, were more taxing for user’s work-
ing memory, thereby reducing error-detectability
and increasing perception of length.

User feedback. To understand how we can de-
velop better explanations, we asked participants:
Do you have any additional feedback on what the
system can improve? To analyze responses, two
annotators (authors) coded 400 responses. After
removing responses that were not descriptive (e.g.,
“can’t think of anything to improve”), 175 responses
remained for the final analysis. We computed the
inter-annotator agreement using Cohen’s k (=0.74).
Here we describe the most interesting findings, but
Appendix F shows additional results and details.

In BASE, where the answer was provided with no
additional information, about 50% of participants
mentioned that they would have liked it if the
voice changed with system certainty. In CONF,
around 30% of participants give this feedback.

For EXT-SENT in both modalities, EXT-LONG

in the visual modality, and ABS, 10-35 % of par-
ticipants would like the level of detail to adapt

to the model certainty. Users would like to have
more detail only when the model is not confident.

For EXT-LONG in the spoken modality, the feed-
back centered around length. 78% of participants
mentioned that responses should be shorter, which
aligns with the higher perceived length of the expla-
nations in Figure 5. For the visual modality, 40 %
of participants mention that highlighting some key
items would have made it even easier and faster.
Introducing highlights would improve the visual
interface and would likely increase the differences
in modality already observed.

Finally, for all explanation conditions, 20-45%
of participants said they would like to see ex-
planations from multiple sources for an answer,
e.g., from non-Wikipedia sources to help them bet-
ter decide whether to trust the answer.

4.3 What Misleads Users?

To understand how explanations can mislead users,
we analyzed questions where users frequently ac-
cepted incorrect predictions (false positives). A
single annotator then followed a similar coding
procedure to detect categories of such questions.
We found that users were frequently misled on the
same 30% of our study questions. Below we de-
scribe the two main categories:

Plausible explanations. We find 60-65% cases
where an explanation does not confirm the pre-
dicted answer but makes it seem plausible, mislead-
ing users into accepting incorrect responses. This
phenomenon is similar to prior work in psychology
that has shown that people often fail to evaluate
the accuracy of information when they have little
prior knowledge and information seems plausible
(Hinze et al., 2014).

Question: Who is the patron saint of adoptive parents?
Response: I am 37 percent confident that the answer
is, Saint Anthony of Padua. I found the following evi-
dence in a wikipedia passage titled, Anthony of Padua:
Saint Anthony of Padua, born Fernando Martins de Bul-
hoes, also known as Anthony of Lisbon, was a por-
tuguese catholic priest and friar of the Franciscan order.

In the example above, the model is incorrect (true
answer is Saint William of Perth), but users were
often misled to accept this answer because the evi-
dence makes the prediction sound plausible.

Lexical overlap. The second most common mis-
take (from 30 to 35% of errors) that both the model
and the users make is related to the lexical over-
lap between the question and the evidence. For
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instance, in the example below, the evidence con-
tains the correct answer (15 teams) but many users
are misled by the phrase “A total of 30 teams play
in the National League.”

Question: How many teams are in the MLB national
League?
Response: I am 60 percent confident that the answer
is, 30. I found the following evidence in a wikipedia
passage titled, Major League Baseball: A total of 30
teams play in the National League( NL) and American
League (AL) , with 15 teams in each league .

5 Discussion

5.1 Why Explanations Worked for ODQA
Unlike previous studies (Bansal et al., 2021; Chu
et al., 2020; Hase and Bansal, 2020), we observed
significant improvements from explanations over
only communicating confidence. One reason for
our positive results could be owing to the nature of
ODQA i.e. unlike tasks such as sentiment classi-
fication, where humans may be able to solve the
task without relying on explanations, ODQA re-
quires satisfying a user’s information need, which
may take considerably longer without explanations;
users require additional help to navigate through
vast amounts of information. Another potential
reason is, in ODQA, presenting a single good ex-
planation can allow users to verify whether the
prediction is correct. In contrast, in sentiment anal-
ysis, even if the explanation points to evidence for
a positive sentiment (“the smell was delicious”),
there is always a chance that another phrase (“but
the taste made me puke”) renders the net correct
label as negative. It is worth noting that like previ-
ous works, not all of our explanation methods pro-
vide significant value (Figure 3); thus the success
from showing explanations still cannot be taken
for granted but should instead be measured using
well-designed user studies.

5.2 Implications and Recommendations
Another interesting question is how can our find-
ings inform future research in explainable NLP.

Develop modality-specific explanations. Our
results showed that the best explanation varied
across modalities, indicating that evaluating ex-
planations on one modality (e.g., visual UI) and
deploying them on another (e.g., voice assistant)
can lead to sub-optimal deployment decisions. As
a result, explanations should be optimized for and
evaluated in the task and settings in which they will
be deployed in-the-wild.

Further study abstractive explanations.
Longer explanations helped improve error-
detectability in the visual modality, but they
hurt in the spoken case, perhaps because of the
increased cognitive load. This may indicate
a trade-off between information content of
explanation and its cognitive load. While we
hoped abstractive explanations would achieve
an optimal balance, results showed that they did
not improve end-performance. Perhaps because
even though they were more concise, they still
had high information density. Though, abstractive
explanations showed some promise. For example,
compared to longer explanations, they improved
speed of error-detectability by 2.2 sec (discussed
in Appendix, Table 2) and their length was rated
as more satisfactory (Figure 5). Thus future work
should explore whether benefits of abstractive
increase when explaining multiple sources (e.g., in
(Yang et al., 2018)) or candidate answers.

Enable interactive explanations. To manage a
balance between information content and cogni-
tive load one may also use interactive explana-
tions (Weld and Bansal, 2018), where the system
presents a concise explanation and lets users re-
quest more details, e.g.additional evidence, sources,
or candidate answers (Section 4.2). Another op-
tion is adaptive explanations, where the model
switches explanation strategies based on its con-
fidence (Bansal et al., 2021).

6 Conclusion

We conducted user studies to understand whether
explanations from a state-of-the-art open-domain
QA system help improve error-detectability for end-
users. Our study showed that for ODQA, simple
explanations based on evidence snippets can signif-
icantly improve error-detectability and beat strong
baselines such as communicating model’s confi-
dence. We observed this for multiple modalities
of interaction: spoken and visual modalities. How-
ever, results also indicated that not every explana-
tion type is guaranteed to improve performance
over confidence and the best explanation strategy
may change with the modality, e.g., due to differ-
ences in users’ cognitive abilities across modalities.
Thus, developers and researchers of explainable
ODQA systems should not take the effectiveness
of explanations for granted and should evaluate and
tune them on the tasks and modalities where these
models will be eventually deployed.
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7 Ethical Impact Statement

Recent work has shown that explanations may in-
crease blind trust in systems (Bansal et al., 2021).
Deploying such explanations in the wild is ethically
fraught, hence we should better evaluate explana-
tions using human evaluation before deployment.
Our study expands the knowledge in this direction
and show that current explanation strategies can
work, but they can still considerably mislead users
to accept incorrect model predictions. We hope
that our findings and recommendations will have a
positive impact on how explainable NLP is devel-
oped and evaluated in future work; namely, through
carefully designed user studies which inform us of
the real-world utility of explanations. In terms of
data collection, the study was approved by IRB and
no sensitive or personally identifiable data was col-
lected, and users were informed that their efforts
would end in a research publication.
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A Explanation Examples

In Table 1, we show an example of how the re-
sponses and explanations looked for each of the
conditions. We also indicate in which modalities
each explanation is shown in our experiments.

B Temperature Scaling

Temperature scaling (Guo et al., 2017), a multi-
class extension of Platt Scaling (Platt et al., 1999),
is a post-processing method applied on the logits
of a neural network, before the softmax layer. It
consists of learning a scalar parameter t, which de-
creases or increases confidence. t is used to rescale
the logit vector z, which is input to softmax σ,
so that the predicted probabilities are obtained by
σ(z/t), instead of σ(z).

In our experiments, the model is set to pick from
the top 100 solutions, however, in many cases the
correct answer occurs within the top 10 items. For
our purposes we calibrate the confidence scores of
the top 10 outputs. We use the publicly available
scripts provided by Guo et al. (2017).6

The model confidence before and after calibra-
tion can be seen in Figure 6.

Figure 6: Confidence before and after calibration.

C Additional Preprocessing

Additional preprocessing to ascertain the quality of
stimuli in each modality was required. Before sam-
pling questions for the task, to ensure a high-quality
and non-ambiguous experience for MTurk work-
ers, we manually filter out several “problematic”
questions:

• Ambiguity in the question: For various ques-
tions in NQ, multiple answers can exist. For

6https://github.com/gpleiss/
temperature_scaling

example, the question: when was King Kong
released?, does not specify which of the many
King Kong movies or video games it refers
to. These cases have been known to appear
often in NQ (Min et al., 2020). We remove
such questions from our subset.

• The gold answer was incorrect: Many ex-
amples in NQ are incorrectly annotated. As it
is too expensive to re annotate these cases, we
remove them.

• Answer marked incorrect is actually cor-
rect : We present both correct and incorrect
questions to users. There are cases where
the predicted answer is marked incorrect (not
exact match) but is actually correct (a para-
phrase). We manually verify that correct an-
swers are paired with contexts which support
the answer.

• Correct answer but incorrect evidence:
The model sometimes, though not as often,
chooses the correct answer but in the incorrect
context. We discarded examples where the ex-
planation was irrelevant to the question e.g.
who plays Oscar in the office? Oscar Nuñez,
is a Cuban-American actor and comedian.. In
order to be able to make more general con-
clusions about whether explanations help in
error-detectability, we restrict our questions to
ones containing correct answers in the correct
context.

• Question and prediction do not match type.
We removed cases where the question asked
for a certain type e.g. a date, and the predic-
tion type did not match e.g. a location.

In the visual modality, to ensure readability, we
fixed capitalizations. For the spoken modality, to
ensure fluency and clarity, we manually (1) in-
serted punctuation to ensure more natural sounding
pauses, and (2) changed abbreviations and symbols
to a written out form e.g. $ 3.5 billion to 3.5 billion
dollars.

D Task Setup: Additional details

Platform and participant details. We conduct
our experiments using Amazon Mechanical Turk7.
We recruited 525 participants in total, with approval
ratings greater than 95 % and had a maximum of 8

7https://www.mturk.com/

https://github.com/gpleiss/temperature_scaling
https://github.com/gpleiss/temperature_scaling
https://www.mturk.com/
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EXPLANATION TYPE RESPONSE+EXPLANATION MODALITY

BASE The answer is, two. Spoken

CONF I am 41 percent confident that the answer is, two. Spoken

ABS I am 41 percent confident that the answer is, two. I summarized evidence from
a wikipedia passage titled, Marco Polo (TV series). Netflix cancelled the show
after two seasons, as it had resulted in a 200 million dollar loss.

Spoken

EXT-SENT I am 41 percent confident that the answer is, two. I found the following evidence
in a wikipedia passage titled, Marco Polo (TV series). On December 12, 2016,
Netflix announced they had canceled "Marco Polo" after two seasons.

Spoken/Visual

EXT-LONG I am 41 percent confident that the answer is, two. I found the following evidence
in a wikipedia passage titled, Marco Polo (TV series). On December 12, 2016,
Netflix announced they had canceled "Marco Polo " after two seasons. Sources
told "The Hollywood Reporter" that the series’ two seasons resulted in a 200
million dollar loss for Netflix , and the decision to cancel the series was jointly
taken by Netflix and the Weinstein Company. Luthi portrays Ling Ling in season
1, Chew in season 2. The series was originally developed at starz, which had
picked up the series in January 2012.

Spoken/Visual

Table 1: Explanation examples: Example of how system responses looked for each explanation type and baseline,
for the question How many seasons of Marco Polo are there?

days for approval of responses in order to minimize
the amount of spamming.

We use a random sample of 120 questions from
our dataset which remains the same across all con-
ditions. In order to keep each session per partici-
pant at a reasonable time and ensure the quality of
the data wouldn’t be affected by workers becoming
exhausted, we opted for three fixed batches of 40
questions, all split as 50 % correct and 50 % incor-
rect. Workers could only participate once (only one
batch in one condition). Participants took around
from 35-45 minutes to complete the HITs, but were
given up to 70 minutes to complete.

We monitored if their screen went out of focus,
to ensure that participants did not cheat. We en-
sured that we had 25 user annotations per question.
When analyzing the data, we remove the first 4
questions of each batch, as it may take participants
a few tries before getting used to the interface. In
the end, we collect about 21,000 test instances.

Task Instructions. Imagine asking Norby a
question and Norby responds with an answer.
Norby’s answer can be correct or wrong. If you be-
lieve Norby’s answer is correct, you can accept the
answer. If you believe it is wrong, you can reject it.
If the answer is actually correct and you accept it,
you will earn a bonus of $0.15. But, if the answer is
wrong, and you accept it, you will lose $0.15 from
your bonus. If you reject the answer, your bonus
is not affected. (Don’t worry, the bonus is extra!
Even if it shows negative during the experiment,
in the end the minimum bonus is 0). In total you

will see 40 questions in this HIT (you will only be
allowed to participate once) and the task will take
about 40 to 45 minutes. You can be compensated
a maximum of $13.50 for about 40-45 minutes of
work. Some things to note:

1. You must listen to the audio before the options
become available.

2. If you make it to the end there is a submit
button there, however, in case of an emergency
you can hit the quit early button above and
you will get rewarded for the answers you
provided.

3. You can play the audio as many times as you
need but as soon as you click a choice you
will be directed to the next item.

4. IMPORTANT!! Please do not look up ques-
tions in any search engine. We will monitor
when the screen goes out of focus, so please
keep the screen on focus or you might risk
being rejected.

5. Finally, please do not discuss answers in fo-
rums; that will invalidate our results.

E Post-task Survey

1. I found the CLARITY of Norby’s voice to be:

(a) Excellent (b) Good (c) Fair (d) Poor (e)
Very Poor

2. I found Norby’s responses to be HELPFUL
when deciding to Accept or Reject:
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(a) Strongly Agree (b) Agree (c) Undecided
(d) Disagree (e) Strongly Disagree

Can you give a few more details about your
answer?

3. I found the LENGTH of Norby’s responses to
be:

(a) Too Long (b) Long (c) Just right (d) Short
(e) Too short

4. No AI is perfect and Norby is no exception.
We are interested in helping Norby provide
responses that can help users to determine
whether to trust it or not (to accept or reject,
just as you have done in this experiment).
From your interaction with Norby, do you
have any additional feedback on what it
can improve?

F Results

Reward. Cummulative reward is the total dollar
reward in bonuses earned by a worker based on the
payoff described earlier. Note that, unlike accuracy,
the payoff matrix is not symmetric wrt. user deci-
sion and correctness of predictions. We compute
the differences in overall reward for each condition
and observe the same trends as we discussed for
accuracy. More specifically, all explanation condi-
tions improve the final user reward, with EXT-SENT

performing best in the spoken modality and EXT-
LONG performing best overall. These differences
are shown in Figure 7.

Figure 7: Reward: The scores presented here are out of
$ 2.70. Although all explanations are better than CONF,
the explanations leading to the highest rewards change
across modalities.

Time differences. We measured the time (in sec-
onds) that it took participants to complete each
question. In Table 2 we present the median times
averaged over all workers per condition. We also
include an adjusted time, subtracting the length of
the audio, in order to measure decision time.

CONDITION SEC/QUESTION ADJUSTED

SPOKEN MODALITY

BASE 10.2 ± 1.6 8.3 ± 1.6
CONF 9.4 ± 1.5 6.0 ± 1.5
ABS 24.4 ± 1.5 7.0 ± 1.4
EXT-LONG 44.9 ± 1.6 9.2 ± 1.6
EXT-SENT 24.3 ± 1.7 7.6 ± 1.7

VISUAL MODALITY

EXT-LONG 16.1 ± 1.7 -
EXT-SENT 10.4± 1.1 -

Table 2: Time differences across modalities. Time dif-
ferences in the right column have been adjusted by re-
moving the duration of the audio files. We observe that
with additional information, users can make faster deci-
sions than the BASELINE condition.

Voice quality. To verify that the quality of the
text-to-speech tool that we employed did not neg-
atively affect our experiments, we asked users to
rate the clarity of the assistant’s voice as very poor,
poor, fair, good, or excellent. Around 90 % rated
the voice as good or excellent. These results are
shown in Figure 8.

Figure 8: Voice clarity: Most participants found the
voice of the assistant to be good or excellent.

Helpfulness. Participants were asked whether
the responses helped them in their decision making.
Their responses showed that CONF and all explana-
tion conditions were perceived as helpful by at least
80% of participants, with no real differences among
them except for EXT-LONG in the visual modal-
ity (which is perceived helpful by close to 90%
of users). Interestingly, 50% of participants indi-
cated BASE to be helpful. In contrast, our results in
Figure 3 show that different explanations actually
differ in their eventual helpfulness. These results
suggest that subjective measures can sometimes
correlate with actual performance when the differ-
ences are large, but for the most-part and smaller
differences, the result from subjective rating can be
unreliable. These findings align with prior observa-
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Figure 9: Helpfulness: Participants indicated how
helpful responses were. These results reflect the large
differences we see in performance (BASE vs the rest of
the settings), but are not able to capture the more subtle
differences among explanation strategies and CONF.

tion made (Buçinca et al., 2020) that showed that
evaluating explanations on proxy metrics can lead
to incorrect conclusions. These findings are shown
in Figure 9.

User feedback. Users provided free-form writ-
ten feedback on possible ways to improve the sys-
tem. The prompt they saw was: do you have any
additional feedback on what the system can im-
prove? After converging on a final set of codes, two
annotators coded up about 400 responses across all
conditions. The codes and their descriptions can
be found in Table 3. The codes are not mutually
exclusive.

CODE DESCRIPTION CATEGORY

len-
conciseness

users wish explanation was shorter improvement on length

len-expand users wish explanation was shorter

adapt-detail users wish details adapted with con-
fidence adaptability feature

adapt-voice users wish voice adapted to confi-
dence

pres-
change-
confidence

users wish confidence would be
communicated differently e.g. the
answer is probably....

improve presentation

pres-
highlighting

users wish important facts would be
highlighted

need-more-
sources

users wish more source were pro-
vided

need-
confidence

users wish confidence was provided

need-
source

users wished a source was provided

need additional infoneed-
explanation

users wish an explanation would be
provided

need-link users wish a link was provided
need-
multiple-
answers

users wish more than 1 answer was
provided

Table 3: The codes used to uncover areas of improve-
ment from the post-experimental user feedback.

We found that many users across most condi-
tions, would like adaptability features added. Ad-
ditionally, we found that participants would like to
be provided with multiple sources which converge
on the answer. We also observe that for spoken con-
ditions, improvements on length are mentioned

more often. The full distribution of codes across
conditions is shown in Table 4.

CONDITION CODE % PARTICIPANTS

BASE

adapt-voice 50
need-
confidence

36

need-
explanation

25

need-source 17

CONF

need-
explanation

38

adapt-voice 29
pres-change-
confidence

14

adapt-detail 10
need-multiple-
answers

10

need-link 5

Spoken EXT-SENT

need-more-
sources

44

adapt-detail 28
len-conciseness 22
need-multiple-
answers

17

need-link 11
len-expand 11
pres-change-
confidence

6

Spoken EXT-LONG
len-conciseness 78
need-more-
sources

15

pres-change-
confidence

4

ABS

len-conciseness 52
need-more-
sources

22

adapt-detail 22
pres-change-
confidence

13

need-multiple-
answers

4

Visual EXT-SENT

need-more-
sources

33

adapt-detail 33
len-expand 27
need-multiple-
answers

7

Visual EXT-LONG pres-
highlighting

40

need-more-
sources

33

adapt-detail 10
need-link 10
pres-change-
confidence

7

Table 4: Distribution of codes across all conditions.
Codes are not mutually exclusive.


