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Abstract

Neural topic models (NTMs) apply deep neu-
ral networks to topic modelling. Despite their
success, NTMs generally ignore two impor-
tant aspects: (1) only document-level word
count information is utilized for the training,
while more fine-grained sentence-level infor-
mation is ignored, and (2) external seman-
tic knowledge regarding documents, sentences
and words are not exploited for the training. To
address these issues, we propose a variational
autoencoder (VAE) NTM model that jointly
reconstructs the sentence and document word
counts using combinations of bag-of-words
(BoW) topical embeddings and pre-trained se-
mantic embeddings. The pre-trained embed-
dings are first transformed into a common la-
tent topical space to align their semantics with
the BoW embeddings. Our model also features
hierarchical KL divergence to leverage embed-
dings of each document to regularize those
of their sentences, thereby paying more atten-
tion to semantically relevant sentences. Both
quantitative and qualitative experiments have
shown the efficacy of our model in 1) lowering
the reconstruction errors at both the sentence
and document levels, and 2) discovering more
coherent topics from real-world datasets.

1 Introduction

Topic models are a family of powerful techniques
that can effectively discover human-interpretable
topics from unstructured corpora for text analy-
sis purposes. Among them, Bayesian topic models,
based on the latent Dirichlet allocation (LDA) (Blei
et al., 2003), have been the mainstream for nearly
two decades. They usually adopt count/bag-of-
words (BoW) representations for text content and
model the generation of the BoW data with a proba-
bilistic structure of latent variables. These variables
follow pre-specified distributions under Bayes’ the-
orem, and are learned through Bayesian inference
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such as variational inference (VI) and Monte Carlo
Markov chain (MCMC) sampling. Despite their
success, conventional Bayesian topic models, how-
ever, are known to lack flexibility in their model
structures and scalability to large volumes of data.

To address the above limitations, increasing
effort has been made in leveraging deep neu-
ral networks (DNNs) for topic modelling, which
leads to the so-called neural topic models (NTMs)
(Zhao et al., 2021a). Most of these models fol-
low the framework of variational auto-encoders
(VAEs) (Kingma and Welling, 2014; Rezende et al.,
2014) and adopt an encoder-decoder architecture,
in which the encoder transforms the BoW data of
each document into the corresponding document-
topical embeddings, and the decoder attempts to
map these embeddings back to the same data. With
a moderate increase in model complexity, NTMs
have largely outperformed conventional topic mod-
els on BoW data reconstruction and topic inter-
pretability/coherence (Miao et al., 2016; Srivastava
and Sutton, 2017; Ding et al., 2018; Zhou et al.,
2020; Zhao et al., 2021b).

With this being said, most NTMs only exploit
the BoW information of internal documents while
ignoring (1) the sentence-level BoW information of
these documents, and (2) the external (semantic) in-
formation regarding the documents, sentences and
words (e.g., extracted from other larger relevant
corpora). These limitations have hindered the fur-
ther performance improvement for NTMs. There-
fore, in this paper, we propose a new NTM that
address these limitations. It jointly reconstructs the
BoW data of each document and their sentences
with combinations of both internal BoW topical
embeddings and external pre-trained semantic em-
beddings. To do this, we design an internal BoW
data encoder and an external knowledge encoder
to respectively transform the BoW data and the pre-
trained embeddings of the same documents and
sentences into a shared latent topical space. The
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resulting internal and external topical embeddings
are then combined to decode the BoW data.

To address the BoW data sparsity (Zhao et al.,
2019) at the sentence level, which has been a prob-
lem for many topic models, our model enforces
hierarchical KL divergence on pairs of sentences
and corresponding documents with respect to their
topical embeddings derived from both the BoW
data and the external knowledge. The intent is that
both types of topical embeddings for each sentence
should be governed by the same types of embed-
dings of their parent documents. Furthermore, the
hierarchical KL for a sentence is weighted by its
semantic relations to its parent document, so that a
document’s topical information is more influential
to more semantically representative sentences. Our
contribution can be summarized as follows:
• We propose a VAE-based neural topic model,

which encodes internal BoW information and
external semantic knowledge specific to word,
sentence and document levels into the same latent
topical space to refine topic quality.

• Our model imposes attention-weighted hierar-
chical KL divergence on pairs of sentences and
documents to smooth the learning of the topical
embeddings from sparse BoW data of sentences.

• We demonstrate that our model is effective in
BoW data reconstruction at both the document
and sentence levels. It also improves the internal
and external coherence of the discovered topics.

2 Related Work

To our best knowledge, most state-of-the-art NTMs,
like ours, are based on the VAE framework. For a
detailed discussion of these NTMs, we refer readers
to Zhao et al. (2021a). Here, we only discuss the
two lines of research that are most relevant to ours.

NTMs with pre-trained language models Re-
cently, pre-trained transformer-based language
models such as BERT (Devlin et al., 2019) have
started to draw the attention of the topic modelling
community thanks to their capability of generating
contextualized word embeddings with rich seman-
tic information that is absent from the BoW data.
Thus, an emerging trend focuses on incorporating
these contextualized word embeddings into NTMs.

Based on the popular VAE framework of Sri-
vastava and Sutton (2017), Bianchi et al. (2021)
proposed a contextualized topic model (CTM)
that incorporates pre-trained document embeddings
generated by sentence-transformers (Reimers and

Gurevych, 2019). However, unlike ours, CTM ig-
nores the other levels of pre-trained knowledge and
BoW information. Chaudhary et al. (2020) pro-
posed to combine an NTM with a fine-tuned BERT
model by concatenating the topic distribution and
the learned BERT embedding of a document as the
features for document classification. Hoyle et al.
(2020) proposed BAT, a NTM framework “taught”
by external knowledge distilled from a pre-trained
BERT model. BERT predicts probabilities for each
word of a document which are then averaged to
generate a pseudo BoW vector for the document.
The BAT framework can be instantiated with var-
ious existing NTMs such as Scholar (Card et al.,
2018) (i.e. BAT+Scholar), which imposes a logistic
Normal as the variational posteriors for document
embeddings in the VAE, and W-LDA (Nan et al.,
2019) (i.e. BAT+W-LDA), which replaces the KL
divergence with the maximum mean discrepancy
(Gretton et al., 2012).

NTMs for modelling document structures Al-
though document structures, i.e., the structured re-
lationships between documents, paragraphs, and
sentences have been modelled in conventional
Bayesian topic models (e.g., in Du et al. (2012); Ba-
likas et al. (2016a); Jiang et al. (2019)), they have
not been carefully studied in NTMs to our knowl-
edge. The closest work to our idea is Nallapati et al.
(2017), which proposes an NTM that samples a
topic for each sentence of an input document and
then generates the word sequence of the sentence
with an RNN conditioned on the sentence’s topic.
However, this work focuses on sentence generation
instead of topic modelling.

3 Preliminaries

In this section, we introduce the VAE framework
of neural variational topic models, based on which
our model will be developed. Table 1 details the
notations and symbols used throughout the paper.

Problem Formulation Consider a corpus that
consists of I documents where the ith (1, ..., I) doc-
ument is represented as a V -dimensional vector of
word counts, wD

i , also known as the bag-of-words
(BoW) data. Here, V is the size of the vocabulary
from the corpus, and wD

iv is the number of times
the vth (1, ..., V ) word occurs in the i-th document.
Topic modelling assumes that there exist K topics
that can be used to describe each document. Its
goal is to recover these topics from the BoW data
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Symbols Description
I , V , K, L, Ji,
M

size of corpus, vocabulary, topics, hid-
den neurons, number of sentences in
document i ∈ (1, ..., I) and pre-trained
embedding dimension

N a vector of the lengths of each document
wD

i ,w
S
ij BoW vectors of the ith document and its

j th sentence, (ZV
≥0)

W D,W S
i BoW matrices over the I documents

(ZI×V
≥0 ) and the Ji sentences of docu-

ment i (ZJi×V
≥0 )

XW,XS
i ,X

D matrices of pre-trained non-contextual
word embeddings (RV×M ), pre-trained
sentence embeddings (RJi×M ) and doc-
ument embeddings (RI×M )

qh(·) the VAE encoder for h ∈ {“B”, “E”}
that generate the topical embeddings of
words, sentences and documents

fh(·) a shared MLP of the encoder for h that
mapsRV toRL

lh1 (·), lh2 (·) linear layers over the shared MLP of the
encoder for h that mapsRL toRK

Φh word-topic embedding matrix over
each word specific to the encoder for
h, (RV×K)

sh
ij ,S

h
i sentence-topic embedding of the j th

(1, ..., Ji) sentence in document i gen-
erated by the encoder for h, (RK);
sentence-topic matrix, (RJi×K)

zh
i ,Z

h topical embedding of document i gen-
erated by the encoder for h, (RK

≥0);
document-topic matrix, (RI×K

≥0 )

αS
ij attention weight of sentence j for docu-

ment i, (R)

Table 1: List of Notation used. Here, h is either “B”
or “E” representing respectively the internal BoW data
and the external semantic knowledge.

of the corpus W D. In this paper, we further for-
mulate the topic modelling problem at the level of
sentences; that is the ith document comprising a to-
tal of Ji sentences. In this case, the document can
be alternatively represented as a word count matrix
W S

i , an additional level of BoW information we
aim to leverage. The jth (1, ..., Ji) row of this ma-
trix accommodates the V -dimensional BoW vector
wS

ij of the jth sentence from the ith document.

Neural Variational Topic Model Most tradi-
tional topic models are graphical models with expo-
nential family model parameters. Therefore, they
yield tractable inference for the posterior distri-
butions of the model parameters. However, the
inference is limited in expressiveness, thereby less
capable of capturing the true underlying genera-
tive process and distributions. To solve this prob-
lem, neural variational inference is introduced into
topic models, named neural variational topic mod-
els (NVTM), where more expressive posterior dis-

tributions are constructed for the model parameters
using neural networks. A typical NVTM is learned
by maximizing the Evidence Lower Bound (ELBO)
of the marginal likelihood of the BoW dataW D of
each document with respect to their topical embed-
dings ZB:
EZB∼qB(W D)

[
log p(W D|ZB)

]
− KL

[
q(ZB|W D)||p(ZB)

] (1)

where log p(W D|ZB), q(ZB|W D) and p(ZB) are
respectively the BoW data likelihood, the varia-
tional posterior distribution and the prior distribu-
tion of ZB. A key characteristic of NVTM is to
model the first two terms as decoder and encoder
networks. The encoder network qB(W D) mod-
els the posterior distribution q(ZB|W D) by taking
in the BoW data W D to parameterize diagonal
Gaussian distributions1 over ZB. Specifically, for
document i, its encoding process is formulated as:

µB
i := lB1 (f

B(wD
i ))

diag(ΣB
i ) := lB2 (f

B(wD
i ))

zB
i ∼ qB(wD

i ) := N
(
µB
i , diag(ΣB

i )I
)

Output with zB
i := Softmax

(
zB
i

) (2)

Here, fB : RV → R
L is a multi-layer perceptron

(MLP) for computing a shared hidden layer output
from wD

i , where L is the number of hidden neu-
rons. The functions lB1 , l

B
2 : RL → R

K are two lin-
ear layers for respectively predicting the posterior
mean and variance vectors: µB

i , diag(ΣB
i ) ∈ RK

that generate the document-topical embedding zB
i

for document i. The symbol I ∈ RK×K denotes
an identity matrix used to create the diagonal Gaus-
sian. Finally, it is common for NTMs to transform
the topical embedding zB

i into a probability distri-
bution of topics for each document using Softmax.

As for the NVTM’s decoder network, it recon-
structs W D using the document-topic matrix ZB

and the word-topic matrix ΦB as follows:

W D ∼ Multi
(
Softmax

(
ZB(ΦB)

T )
,N
)

(3)

whereN is a vector of document lengths and ΦB,
capturing the latent topics of each word in the vo-
cabulary, can also be viewed as the weight matrix
of the (output layer) of the decoder network.

4 Our Model

Our proposed model, Neural Attention-aware
Hierarchical Topic Model (NAHTM), comprises

1In this paper, we follow the original VAE’s parametriza-
tion of the posterior distribution as a diagonal Gaussian distri-
bution.
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Figure 1: Basic Architecture of NAHTM. Each colour
highlights a level of information, including the word-
level (red), sentence-level (orange) and document-level
(green) internal BoW and external semantic informa-
tion. The blue dash line highlights the hierarchical KL
(HKL) constraints over the sentence-document pairs.

(1) two types of encoders, internal BoW data en-
coder and external knowledge encoder, that capture
latent topics of documents, sentences and words
from both internal and external sources, respec-
tively; (2) an attention-aware hierarchical KL di-
vergence that regularizes topical embeddings of
sentences with those of their documents. Figure 1
shows the basic architecture of NAHTM.

4.1 Internal BoW Data Encoder

This encoder, qB(·), aims to capture the document-
and sentence-level BoW data information. The
encoding process of the former has been specified
in eq. (2), which yields the posterior distributions
qB(W D) for the document-topic matrix ZB.

As for encoding the sentence-level BoW data,
it is motivated by the fact that sentences convey
complete logical statements organized by topics
as documents. The difference, as argued by the
past research on LDA models, is that sentences are
more concise with shorter text and focused topics
(Balikas et al., 2016a,b; Amoualian et al., 2017).
NAHTM encodes the sentence-level BoW data in
the same way as it encodes the document-level
data except for the final activation function. More
specifically, each document is now viewed as a
corpus, while each sentence is viewed as a (short)
document. For document i, its BoW dataW S

i , over
its sentences, is encoded as qB(W S

i ) with the same
encoding process as in eq. (2). Then, the sentence-
topical embedding matrix SB

i for document i is
generated as: SB

i ∼ qB(W S
i ).

Based on the well-grounded argument that a

sentence should be bound in topics, NAHTM
forces SB

i to be sparse over topics by using Sparse-
max (Martins and Astudillo, 2016; Lin et al.,
2019) which projects real-valued embeddings into
sparse probability vectors: SB

i := Sparsemax(SB
i ).

Specifically, for the jth sentence of document i, its
embedding sB

ij is converted by Sparsemax as:

Sparsemax(sB
ij) := argminc‖c− sB

ij‖2 (4)

where c lies on the (K − 1)-dimensional probabil-
ity simplex. In other words, Sparsemax projects
sB
ij from the Euclidean space onto the probability

simplex.

4.2 External Knowledge Encoder

External semantic knowledge, extracted by pre-
trained language models (e.g. BERT (Devlin et al.,
2019)) from large general corpora, provides rich
prior information regarding the contexts and se-
mantic relatedness of instances for each entity (i.e.
document, sentence and word) modelled by NTMs.
The language models account for ordering patterns
of the entities (i.e. sentence and word orderings),
which are complementary to the orderless BoW
information captured by the NTMs. Incorporating
such knowledge into the NTMs can potentially help
them better infer sentences’ true topics in scenarios
which cannot be distinguished by the BoW infor-
mation. For example, a pair of sentences with the
same word counts might have very different topics
due to different word orderings. Meanwhile, an-
other pair without any word overlap might still have
strongly correlated topics due to a next-sentence
or entailment relationship. Hence, NTMs can be
guided to better infer topics of documents as well
as the entire set of topics underlying the corpus.

Another advantage of external knowledge is that
it can potentially alleviate the data sparsity problem
under the BoW modelling, especially at the sen-
tence level. Since sentences have much shorter text
compared to documents, therefore, their BoW data
is also much sparser with significantly fewer word
co-occurrences within each sentence and word
overlaps in between. To make the learning less
affected by the sparse data, external knowledge
can be leveraged to calibrate it with prior informa-
tion regarding the sentences. NAHTM incorporates
three levels of external knowledge in the form of
the following pre-trained embeddings for words,
sentences and documents.

External word embeddingsXW are output by
the embedding layer of the pre-trained transformer
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model for each word in the vocabulary. Here,
XW are non-contextualized and untrainable em-
beddings whose dimension is predefined by the
pre-trained transformer and thus, not necessarily
equal to the number of topics. The reason for using
the non-contextualized word embedding is that the
word-level external information is expected to be
“injected” correspondingly into ΦB, the factorized
and non-contextualized word-topical embeddings
in our topic model.

External sentence embeddingsXS
i for the sen-

tences of document i are the aggregated results
of the outputs from the last transformer encoder
(layer) of the pre-trained model. In this case,
the inputs to the pre-trained model consist of the
word sequences for each sentence. The outputs
are the contextualized embeddings of the words
in the sequences. In this paper, we use sentence-
transformers2, a programmable framework that pro-
vides a variety of pre-trained transformer mod-
els for computing sentence embeddings. We
adopt the default aggregation strategy of sentence-
transformers which is to average all the (output)
contextualized word embeddings over the sentence.

External document embeddings XD can be
constructed as either the unweighted or the
weighted average of all the sentence embeddings
for the same document. Specifically, for the latter
case, xD

i can be obtained as follows:

yS
ij := σ1(x

S
ijΘ1 + b1)θ2

αS
i := σ2

(
yS
i

)
xD
i :=

Ji∑
j=1

αS
ijx

S
ij

(5)

where αS
i = [αS

i1, ..., α
S
iJi

]T is the attention
(weight) vector over each sentence. Its jth element
αS
ij is the normalized weight of the jth sentence

in representing document i, i.e.
∑Ji

j=1 α
S
ij = 1;

yS
i = [yS

i1, ..., y
S
iJi

]T is the corresponding unnor-
malized attention vector; Θ1 ∈ RM×M , θ2 ∈ RM

and b1 ∈ RM are the attention parameters with
M being the (pre-defined) dimension of the pre-
trained embedding; σ1, σ2 are the activation func-
tions. For σ1, we use the Tanh function for all the
experiments. For σ2, it can be either the conven-
tional Softmax function or the Sparsemax function
which induces sparsity over αS

i such that unim-
portant sentences tends to have zero weights in

2https://github.com/UKPLab/sentence-transformers

representing the document.
MappingXW,XD,XS

i to the topical space is
done subsequently by the external knowledge en-
coder to align the dimension and semantic mean-
ings of external embeddings with the topical em-
beddings. More specifically, each level of the ex-
ternal knowledge data X ∈ {XW,XD,XS

i } is
encoded into the corresponding posterior distri-
butions N

(
lE1
(
fE(X)

)
, lE2
(
fE(X)

))
. Here, all

the symbols have the same meanings as those in
eq. (2) except that they are dedicated to the ex-
ternal knowledge encoder. Correspondingly, we
denote the topical embeddings generated by this
encoder for the word, sentence and document-
level external knowledge respectively as: ΦE ∼
qE(XW) := N E

XW ,S
E
i ∼ qE(XS

i ) := N E
XS

i
and

ZE ∼ qE(XD) := N E
XD . NAHTM combines the

internal and external topical embedding matrices
as follows:

ΦComb := ΦB + γ1Φ
E,

SComb
i := Sparsemax(SB

i + γ2S
E
i ),

ZComb := Softmax(ZB + γ3Z
E)

(6)

where γ1, γ2 and γ3 are the hyper-parameters that
control the influence of external knowledge in cali-
brating the internal one at the different levels.

4.3 Attention-Aware KL Divergence

NAHTM makes use of the hierarchical structure
of documents by setting the posterior distributions
of the document topical embeddings as the pri-
ors to their sentences’ topical embeddings. More
specifically, for document i, its dedicated KL diver-
gence term is QD

i := β0

(
KL
[
q(zB

i |wD
i )||p(zB

i )
]
+

KL
[
q(zE

i |xD
i )||p(zE

i )
])

, while for the jth sen-
tence of document i, the dedicated KL term
is QS

ij := β1

(
KL
[
q(sB

ij |wS
ij)||q(zB

i |wD
i )
]
+

KL
[
q(sE

ij |xS
ij)||q(zE

i |xD
i )
])

. Here, β0 and β1 are
the hyper-parameters that control the regulariza-
tion strengths of the corresponding KL terms in
the ELBO. Note that all the embeddings involved
in the above KL terms are unnormalized; in other
words, they have not been transformed by the Soft-
max/Sparsemax function.

The assumption behind the above hierarchical
structure of KL divergence terms is straightforward:
topics of sentences should be somewhat similar to
those of their documents. In this case, the degree
of the topical similarity constraint enforced into the
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learning of NAHTM is controlled by β1. For exam-
ple, if β1 becomes smaller, the similarity constraint
is going to be weakened accordingly.

Customising β1 with attention weights is an
alternative method we propose that allows for
adaptive control on the regularization strengths
of the KL divergence terms specific to individual
sentence-document pairs. The intent of this method
is that the semantic relevance of sentences towards
the document, as revealed by the external knowl-
edge, should also be indicative of their topical rel-
evance in the corpus. There are two strategies for
implementing this method.

In strategy 1, NAHTM integrates each un-
normalized attention weight yS

ij , computed from
eq. (5), into the sentence-document KL terms with
respect to the pre-trained sentence embedding as:

QS
ij := β1σ(y

S
′

ij )
(

KL
[
q(sB

ij |wS
ij)||q(zB

i |wD
i )
]
+

KL
[
q(sE

ij |xS
ij)||q(zE

i |xD
i )
])

+ λ0‖yS
′

ij − yS
ij‖2

(7)

where yS
′

ij is a latent variable to be learned to con-
trol the KL terms specific to the sentence j of doc-
ument i, and is constrained to be close to yS

ij ; λ0 is
a hyper-parameter that controls the strength of the
constraint; σ(yS

′

ij ) is the corresponding normalized
result by either the Softmax or the Sparsemax func-
tion. Eq. (7) is essentially a “soft” version of the
strategy that directly uses the normalized attention
weight as the controlling parameter, i.e. β1αS

ij , for
the KL terms across the Ji sentences.

In strategy 2, instead of learning the attention
weights yS

i , they are first pre-computed based on
the pre-trained sentence and document embeddings
by yS

ij := −‖xS
ij−xD

i ‖where xD
i := 1

Ji

∑Ji
j=1 x

S
ij .

In this case, the unnormalized attention weight yS
ij

for sentence j is the negative Euclidean distance
between its embedding and the document embed-
ding which is the centroid across all the sentences.
The further away the embedding xS

ij is from the
centroid xD

i , the smaller the weight. Therefore, the
control over strengths of the KL constraints is now
adaptive only towards the external knowledge. The
rest of the KL computation follows exactly eq. (7).
For a “hard” version of this strategy, we can subse-
quently normalize the pre-computed yS

i to obtain
αS

i and then, directly use them as the controlling
parameters (same as in strategy 1).

4.4 Training Objective
In summary, the training objective of NAHTM is:

EZComb

[
log pΦComb(W

D|ZComb)
]
+ γ4

I∑
i

ESComb
i

[
log

pΦComb(W
S
i |SComb

i )
]
−

I∑
i

J∑
j

QS
ij −

I∑
i

QD
i −

V∑
v

QW
v

(8)

where the likelihood pΦComb is modelled by the
decoder network as in eq. (3) with the weight
matrix now being ΦComb; γ4 controls the influ-
ence of the sentence-level training loss; QD

i and
QS

ij are respectively the document- and sentence-
level KL terms specified in Section 4.3; QW

v con-
sists of the regularization and KL terms respec-
tively for the internal and external embeddings
for each word v from the vocabulary; QW

v :=
λ1‖ΦB‖ + β2KL[q(φE

v |xW
v )||p(φE

v)]. Again, λ1
and β2 are the controlling hyper-parameters for the
respective terms.

5 Experimental Setup

Data We evaluate the efficacy of NAHTM using
four real-world corpora from a variety of domains,
Wikitext-103 (Nan et al., 2019), 20NewsGroup
(Srivastava and Sutton, 2017), COVID-19 open
research dataset (CORD)3 and NIPS4 datasets. Ta-
ble 2 summarises the key statistics of these datasets.
For the Wikitext-103 dataset, we only use the intro-
duction part of each document, named the WikiIn-
tro dataset, to examine the efficacy of our model
on short text. For the CORD dataset, we randomly
sampled 20,000 documents from its original corpus
for our experiments, which is named CORD20K.

We adopt the same training-validation-testing
split ratios and preprocessing steps from the
original papers for the Wikitext-103 (i.e. 70%-
15%-15%) and 20NewsGroup (i.e. 48%-12%-
40%) datasets. To construct their vocabularies
for topic modelling, we follow the same stem-
ming/lemmatization and stopword removing proce-
dures of Hoyle et al. (2020).

As for the CORD20K and NIPS datasets, we set
the split ratio to be 60%-20%-20%, and use the
most frequent 10,000 words (with stemming and
stop-words removed) as the vocabulary. Specifi-
cally, we apply WordNet lemmatizer and English
stopword list (both from the NLTK5 toolkit) to

3https: / / www.kaggle.com / allen-institute-for-ai / CORD-
19-research-challenge

4https: / / www.kaggle.com / benhamner / nips-papers
5https://www.nltk.org/



1048

preprocess their text. Finally, we use the first 50
sentences of each document from the two datasets
for the experiments.

Furthermore, to extract the sentence embed-
ding from the external pre-trained transformer, we
have not done any pre-processing (neither stem-
ming/lemmatization nor stopword removing) on
the sentence text for all the datasets, as required by
the sentence-transformers library. Doing so guar-
antees that the pre-trained language model can cap-
ture the full contextual information within each
sentence.

I V AvgN
20NewsGroup 17,992 1,995 87.1

WikiIntro 28,532 20,000 124.11
CORD20K 20,000 10,000 1127.01

NIPS 7,241 10,000 1139.26

Table 2: Summary of the four datasets in terms of the
document number I , vocabulary size V and average
document length AvgN (first 50 sentences).

Evaluation Metrics We seek to perform two
types of evaluation on our model. The first one is
the ability to discover a set of latent topics that are
meaningful and useful to human. To achieve this,
we look at topic coherence with the normalized
mutual pointwise information (NPMI) (Aletras and
Stevenson, 2013; Lau et al., 2014), which is posi-
tively correlated with human judgments on topic
quality. Specifically, we calculate the NPMI scores
on both the internal corpora from Table 2, and a
large external corpus. For each calculation, we
first select the top 10 words under each topic based
on the (sorted) values in each column of the word
embedding matrix ΦComb. Then, we calculate and
average the internal NPMI scores of each topic as
in (Bouma, 2009) with a sliding window of size 10
and the training data as the reference corpus. As for
the external NPMI, it is calculated using Palmetto6

over a large external English Wikipedia dump.
The second metric we use is perplexity, a pop-

ular criterion that evaluates how well topic mod-
els fit the BoW data, which is calculated over the
testing data as7: exp(−1

I

∑I
i=1

1
Ni

∑Ni
n=1 p(w

D
i ))

where Ni is the length of document i, and p(wD
i )

is the log-likelihood of the model on the docu-
ment’s BoW data. It is approximated as p(wD

i ) ≈
6https://aksw.org/Projects/Palmetto.html
7Our perplexity calculation follows that of (Miao et al.,

2016, 2017; Card et al., 2018) but for fair comparisons, the
KL divergence is not included for calculating the perplexity
as different models weight KL differently.

pΦComb(wD
i |zComb

i ). Here, ΦComb combines the de-
coder weights ΦB and the posterior mean for ΦE,
while zComb

i combines the posterior means for zB
i

and zE
i , as shown in eq. (6), at the first training step

after the model has converged with respect to the
validation perplexity.

Baselines We compare NAHTM with various
state-of-the-art baselines which can be broadly cat-
egorised into 1) BoW-based autoencoder models
without external knowledge, which include Scholar
(without meta-data) (Card et al., 2018), W-LDA
(Nan et al., 2019), GSM (Miao et al., 2017), ETM
(Dieng et al., 2020) and RRT (Tian et al., 2020);
2) models with external knowledge learned by pre-
trained language models including CTM (Bianchi
et al., 2021) and BAT (Hoyle et al., 2020). GSM
is similar to Scholar but with a simpler encoder-
decoder structure. ETM further factorizes the topic-
word distribution matrix into multiplication of topic
and word embedding vectors. RRT proposes a new
reparameterization trick for Dirichlet distributions
over the document embeddings.

As for the implementations and settings of the
baselines, we use their official codes and default
settings obtained from their official Github repos-
itories, except for GSM whose original code is
unavailable. In this case, we re-implement GSM
by referring to other credible sources8. For BAT,
we use its enhanced versions with Scholar (i.e.
BAT+Scholar) and W-LDA (i.e. BAT+W-LDA)
from its implementation. To allow for fair com-
parisons, we tune the major parameters for all the
models, including the numbers of hidden layers
{1, 2, 3} and hidden neurons {100, 300, 600}, the
learning rate {0.001, 0.002, 0.005, 0.01} and the
batch size {8, 20, 200}. The ranges of the above
hyper-parameters are the most common ones set
by the baselines in their own implementations. We
generally found that 1 hidden layer with 300 neu-
rons, a learning rate of 0.002 and a batch size of
20 yields the best overall perplexity and NPMI per-
formance across the models. For CTM and BAT
that incorporate external knowledge as NAHTM
does, they use the same pre-trained transform-
ers as NAHTM, including “bert-base-uncased”,
“distilbert-base-uncased” and “roberta-base” from
the Huggingface Transformers models9.

8https://github.com/zll17/Neural_Topic_Models
9https://huggingface.co/transformers/pretrained_models.html
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5.1 NAHTM Settings

The hyper-parameters of NAHTM control the in-
fluence of its different components and we use
the validation dataset to optimize their values in
terms of the validation perplexity. We find the
same values generally hold, across the datasets,
for γ1 = 0.01 and γ2 = 0.001 that control the
effects of external embeddings for words and doc-
uments respectively. On the other hand, γ3 and
γ4 were respectively tuned over the sets of can-
didate parameter values {0.001, 0.01, 0.1, 1} and
{0.01, 0.1, 1, 5} to different optimal values for dif-
ferent datasets; β0, β1 and β2 were all optimized
over the value set {0.001, 0.01, 0.1, 1}, which,
compared with the KL annealing approach (Bow-
man et al., 2016), is much more efficient albeit
sub-optimal; λ0 and λ1 were both tuned over the
value set {0.01, 0.1, 1, 5, 10}. To allow for fair
comparisons with the baselines, we set the number
of hidden layers for both the internal BoW and the
external knowledge encoders to be 1, the number
of neurons to be 300, the batch size to be 20, and
the learning rate to be 0.002 for all the experiments.

6 Results and Discussion

Following the settings from the previous section,
we proceed to conduct both quantitative and qual-
itative experiments to evaluate NAHTM. For the
quantitative experiments, we report the results of
the average external and internal NPMI, and the
average test perplexity over 5 runs with different
random seeds for initialization. Moreover, within
each run, all the models were learned twice with 50
and 200 topics each time, and their corresponding
metric scores have been summarized in Table 3.

It can be observed that NAHTM, equipped with
either the β1-customising strategy 1 or 2 from Sec-
tion 4.3 (i.e. NAHTMS1 and NAHTMS2), and with
uncustomised hierarchical KL (i.e. NAHTMHKL),
is overall more coherent, in terms of both types
of NPMI, than the baseline models and NAHTM
with independent KL terms for sentences and docu-
ments (i.e. NAHTMKL). Especially when com-
paring with BAT+{Scholar,W-LDA} and CTM,
which also have leveraged external pre-trained
knowledge, NAHTM manages to achieve not only
higher topic coherence but also lower perplexity
on the test data in general. The only exception
is on the NIPS dataset where NAHTM follows
BAT+Scholar closely on the perplexity.

In addition to its efficacy on the document-

Models WikiIntro 20News NIPS CORD20K

External NPMI
Scholar 0.116 / 0.109 0.028 / 0.009 0.013 / -0.017 0.036 / 0.007
W-LDA 0.108 / 0.096 0.034 / 0.012 0.013 / -0.022 0.031 / -0.001
GSM 0.111 / 0.094 0.018 / -0.006 -0.022 / -0.062 0.023 / -0.011
ETM 0.082 / 0.064 0.003 / -0.014 -0.062 / -0.097 0.008 / -0.032
RRT 0.118 / 0.094 0.009 / -0.010 0.011 / -0.031 0.027 / -0.013
BAT+Scholar 0.122 / 0.113 0.039 / 0.017 0.014 / -0.011 0.041 / 0.008
BAT+W-LDA 0.119 / 0.108 0.041 / 0.017 0.014 / -0.010 0.039 / 0.004
CTM 0.125 / 0.110 0.040 / 0.018 0.013 / -0.013 0.036 / 0.010
NAHTMKL 0.132 / 0.114 0.035 / 0.013 0.014 / -0.006 0.039 / 0.008
NAHTMHKL 0.138 / 0.119 0.037 / 0.015 0.014 / -0.005 0.042 / 0.010
NAHTMS1 0.145 / 0.132 0.040 / 0.018 0.015 / -0.003 0.044 / 0.011
NAHTMS2 0.149 / 0.135 0.042 / 0.020 0.016 / 0.007 0.046 / 0.015

Internal NPMI
Scholar 0.427 / 0.411 0.256 / 0.224 0.285 / 0.256 0.349 / 0.294
W-LDA 0.422 / 0.409 0.249 / 0.220 0.294 / 0.260 0.337 / 0.286
GSM 0.411 / 0.398 0.225 / 0.198 0.289 / 0.242 0.318 / 0.239
ETM 0.393 / 0.384 0.190 / 0.165 0.222 / 0.176 0.247 / 0.188
RRT 0.427 / 0.414 0.254 / 0.218 0.249 / 0.212 0.343 / 0.265
BAT+Scholar 0.439 / 0.421 0.268 / 0.243 0.298 / 0.260 0.361 / 0.303
BAT+W-LDA 0.432 / 0.416 0.264 / 0.240 0.309 / 0.263 0.353 / 0.294
CTM 0.438 / 0.422 0.269 / 0.246 0.295 / 0.254 0.356 / 0.290
NAHTMKL 0.437 / 0.416 0.263 / 0.245 0.302 / 0.262 0.356 / 0.296
NAHTMHKL 0.441 / 0.418 0.266 / 0.249 0.306 / 0.264 0.358 / 0.301
NAHTMS1 0.442 / 0.421 0.273 / 0.251 0.311 / 0.267 0.363 / 0.307
NAHTMS2 0.446 / 0.425 0.279 / 0.256 0.319 / 0.272 0.370 / 0.315

Perplexity
Scholar 2,071 / 1,938 978 / 936 1,686 / 1,584 1,562 / 1,489
W-LDA 2,243 / 2,091 951 / 927 1,754 / 1,632 1,580 / 1,517
GSM 2,465 / 2,176 1,114 / 1,032 1,796 / 1,726 1,611 / 1,565
ETM 2,184 / 2,106 1.045 / 985 1,722 / 1,639 1,559 / 1,523
RRT 2,274 / 2,123 984 / 955 1,748 / 1,677 1,625 / 1,570
BAT+Scholar 1,963 / 1,872 947 / 924 1,642 / 1,534 1,496 / 1,423
BAT+W-LDA 2,014 / 1,934 936 / 903 1,715 / 1,603 1,528 / 1,476
CTM 1,924 / 1,860 972 / 933 1,726 / 1,641 1,568 / 1,519
NAHTMKL 1,987 / 1,898 959 / 941 1,752 / 1,670 1,552 / 1,502
NAHTMHKL 1,949 / 1,882 939 / 916 1,737 / 1,653 1,534 / 1,483
NAHTMS1 1,911 / 1,854 921 / 907 1,704 / 1,634 1,512 / 1,469
NAHTMS2 1,878 / 1,825 905 / 881 1,652 / 1,567 1,491 / 1,450

Table 3: Results of average external and internal NPMI,
and average test perplexity for each model with 50 and
200 topics, whose results are respectively on the left
and right side of “/” in the table. Lower perplexity and
higher NPMI scores mean better performance. Bold
and underlined values indicate the best and second per-
forming models in each dataset/metric setting.

level BoW reconstruction, NAHTM is also able to
achieve state-of-the-art reconstruction performance
at the sentence level. We illustrate this by treating
each sentence (from the beginning 50 sentences) as
a short document, and applying all the NTMs mod-
els to reconstruct their BoW data. In this case,
we focus on the test perplexity of the different
models on the sentences, reporting the sentence-
level perplexity from NAHTM with its inference
jointly performed over the document- and sentence-
level log-likelihood under the hierarchical KL con-
straint). Table 5 shows that at 50 topics, the best
variant NAHTMS2, with respect to the document-
level BoW reconstruction, remains competitive on
the sentence-level reconstruction task. This sug-
gests that NAHTM, with its attention-aware hierar-
chical KL regularization, can effectively infer both
the document- and sentence-level neural topic mod-
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Topics Models Topic Words

Optimization BAT+Scholar problem, siam, np, solve, optimization, loss, min, consider, convex, hard
NAHTMS2 loss, gradient, minimization, optimization, solution, min, convex, np, descent, objective

NIPS Neural BAT+Scholar layer, neural, deep, convolutional, network, gradient, architecture, visual, input, recurrent
Networks NAHTMS2 network, neural, layer, deep, backpropagation, recurrent, convolutional, descent,

feedforward, gradient

BAT+Scholar infection, covid, disease, virus, coronavirus, epidemic, h7n9, vaccine, patient, cases
COVID NAHTMS2 disease, covid, virus, infected, coronavirus, vaccine, influenza, patient, epidemic,

CORD respiratory
20K BAT+Scholar quarantine, school, lockdown, unemployed, study, control, province, holiday, social, city

Quarantine NAHTMS2 quarantine, lockdown, curfew, unemployment, fatality, distancing, holiday, social,
province, inequity

Table 4: Top 10 topic words extracted by NAHTM and BAT+Scholar from the NIPS and CORD20K datasets
where the italic words are those either too common or less relevant (compared to the other words) to the topics.

Models WikiIntro 20News NIPS CORD20K

Scholar 965 (36) 648 (54) 861 (45) 3,157 (76)
W-LDA 940 (42) 619 (70) 896 (40) 3,718 (88)
GSM 1,029 (58) 802 (42) 1,055 (66) 3,348 (102)
ETM 944 (19) 710 (22) 965 (32) 2,952 (57)
RRT 981 (74) 747 (95) 1,271 (128) 3,623 (114)
BAT+Scholar 934 (45) 566 (63) 828 (54) 2,256 (68)
BAT+W-LDA 915 (33) 548 (56) 874 (61) 2,744 (93)
CTM 952 (82) 1,025 (51) 1,484 (110) 3,298 (121)
NAHTMS2 892 (78) 605 (84) 788 (94) 2,469 (146)

Table 5: With 50 topics, the sentence-level test per-
plexity results (with standard deviations shown inside
brackets) of each model on the BoW data of each of
the top 25 sentences within every document.

els it contains, and enables the latter model to be
robust against the sparse sentence-level BoW data.

Furthermore, we conduct an ablation study on
the importance of different external knowledge
components in contributing to the robustness of
NAHTM when dealing with the sparse sentence
data. We find from Table 6 that the external word
embeddings are the most important components for
enhancing the performance of NAHTM, while the
external sentence embeddings are the least impor-
tant. Despite this, we can still see that the perfor-
mance of NAHTM is significantly influenced by
all the three types of external knowledge.

Finally, to gain a more intuitive view on how
well NAHTM has discovered the underlying topics,
we show in Table 4 the top 10 words under each
of the four example topics extracted by NAHTM
from the NIPS and CORD20K datasets. These four
topics are Optimization and Neural Networks from
the NIPS dataset, and COVID and Quarantine from
the CORD20K dataset. It can be observed that
the topics discovered by NAHTM tend to be more
coherent and less likely to contain common and
irrelevant words which can be found from the topic

Models WikiIntro 20News NIPS CORD20K

NAHTMS2 892 (78) 605 (84) 788 (94) 2,469 (146)
NAHTMS2-XW 1,173 (142) 981 (119) 1,035 (182) 3,238 (165)
NAHTMS2-XD 976 (67) 711 (79) 890 (86) 2,894 (111)
NAHTMS2-XS 950 (42) 683 (60) 848 (62) 2,726 (98)

Table 6: With 50 topics, an ablation study on the effects
of removing different external knowledge components
on the test perplexity performance of NAHTM.

word lists extracted by BAT+Scholar.

7 Conclusion

In this paper, we have proposed NAHTM, a VAE-
based neural topic model with attention-aware hi-
erarchical KL divergence imposed on the pairs of
documents and sentences. NAHTM incorporates
both the internal BoW data information and the ex-
ternal pre-trained knowledge for refining the topical
embeddings of words, sentences and documents.
Both quantitative and qualitative experiments have
shown the effectiveness of NAHTM on 1) recover-
ing the BoW data at different levels of granularity
and 2) discovering coherent topics, by making use
of the hierarchical KL constraints on the sentence-
document pairs and the external knowledge. As
for the future work, we would like to investigate
the possibility of combining NAHTM with neural
language models for topic-aware language under-
standing and content generation.
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