
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 9673–9682
November 7–11, 2021. c©2021 Association for Computational Linguistics

9673

Progressive Adversarial Learning for Bootstrapping: A Case Study on
Entity Set Expansion

Lingyong Yan1,3, Xianpei Han1,2, Le Sun1,2,∗

1Chinese Information Processing Laboratory 2State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences, Beijing, China

3University of Chinese Academy of Sciences, Beijing, China
{lingyong2014, xianpei, sunle}@iscas.ac.cn

Abstract
Bootstrapping has become the mainstream
method for entity set expansion. Conventional
bootstrapping methods mostly define the ex-
pansion boundary using seed-based distance
metrics, which heavily depend on the quality of
selected seeds and are hard to be adjusted due
to the extremely sparse supervision. In this pa-
per, we propose BootstrapGAN, a new learning
method for bootstrapping which jointly mod-
els the bootstrapping process and the boundary
learning process in a GAN framework. Specif-
ically, the expansion boundaries of different
bootstrapping iterations are learned via differ-
ent discriminator networks; the bootstrapping
network is the generator to generate new pos-
itive entities, and the discriminator networks
identify the expansion boundaries by trying to
distinguish the generated entities from known
positive entities. By iteratively performing the
above adversarial learning, the generator and
the discriminators can reinforce each other and
be progressively refined along the whole boot-
strapping process. Experiments show that Boot-
strapGAN achieves the new state-of-the-art en-
tity set expansion performance.

1 Introduction

Bootstrapping is a fundamental technique for en-
tity set expansion (ESE). It starts from a few seed
entities (e.g., {London, Beijing, Paris})
and iteratively extracts new entities in the target cat-
egory (e.g., {Berlin, Moscow, Tokyo}) to
expand the entity set, where new entities are often
evaluated by their context similarities to seeds (e.g.,
sharing the same context pattern–“* is an important
city”) (Riloff and Jones, 1999; Gupta and Manning,
2014; Yan et al., 2020a). During the above process,
it is core to decide whether the new entities belong
to the target category (within the expansion bound-
ary) or not (outside the expansion boundary) (Shi
et al., 2014; Gupta and Manning, 2014).

*Corresponding author.

Bootstrapping
Model

Input of iter. k Output of iter. k

Ajax

U.N.

European
Union

London Paris

Beijing

Ajax

U.N.

European
Union

London Paris

Beijing

Distance-based
boundary

Ajax

U.N.

European
Union

London Paris

Beijing
Univ. of Paris

Brussels

Ajax

U.N.

European
Union

London Paris

Beijing
Univ. of Paris

Brussels

Unexpanded EntitiesUnexpanded EntitiesCorrect ExpansionCorrect Expansion Noisy ExpansionNoisy ExpansionSeedsSeeds

Figure 1: The expansion boundary problem of the boot-
strapping technique. The areas in different background
colors belong to different categories. Using the distance
to positive entities will easily result in a bad expansion
boundary at each iteration.

However, it is challenging to determine the ex-
pansion boundaries during the whole bootstrapping
process, since only several seeds are used as the
supervision at the beginning. Firstly, it is obviously
not enough to define a good boundary using only
several positive entities. For example, as shown
in Figure 1, when only using several positive enti-
ties to learn distance-based boundaries, the bound-
aries are usually far from optimum, which in turn
influences the quality of following bootstrapping
iterations. Therefore, it is critical to enhancing the
boundary learning with more supervision signals or
prior knowledge (Thelen and Riloff, 2002; Curran
et al., 2007). Secondly, bootstrapping is a dynamic
process containing multiple iterations. Therefore,
the boundary needs to be synchronously adjusted
with the bootstrapping model, i.e., a good boundary
should precisely restrict the current bootstrapping
model from expanding negative entities.

Currently, most bootstrapping methods define
expansion boundary using seed-based distance met-
rics, i.e., determining whether an entity should
be expanded by comparing it with seeds. For in-
stance, Riloff and Jones (1999); Gupta and Man-
ning (2014); Batista et al. (2015) define the bound-

9674

ary using pattern matching statistics or distribu-
tional similarities. Unfortunately, these heuristic
metrics heavily depend on the selected seeds, mak-
ing the boundary biased and unreliable (Curran
et al., 2007; McIntosh and Curran, 2009). Al-
though some studies extend them with extra con-
straints (Carlson et al., 2010) or manual partici-
pants (Berger et al., 2018), the requirement of ex-
pert knowledge makes them ad-hoc and inflexi-
ble. Some studies try to learn the distance met-
rics (Zupon et al., 2019; Yan et al., 2020a), but they
still suffer from weak supervision. Furthermore,
because the bootstrapping model and the bound-
ary are mostly learned separately, it is hard for
these methods to synchronously adjust the bound-
ary when the bootstrapping model updates.

To address the boundary learning problem, we
propose a new learning method for bootstrapping–
BootstrapGAN, which defines expansion bound-
aries via learnable discriminator networks, and
jointly models the bootstrapping process and the
boundary learning process in the generative adver-
sarial networks (GANs) framework (Goodfellow
et al., 2014):

(1) Instead of using unified seed-based distance
metrics, we define the expansion boundaries of
different bootstrapping iterations using different
learnable discriminator networks, where each of
them directly determines whether an entity belongs
to the same category of seeds at each iteration. By
defining boundaries using discriminator networks,
our method is flexible to use different classifiers
and learnable using different algorithms.

(2) At each bootstrapping iteration, by modeling
the bootstrapping network as the generator and ad-
versarially learning it with a discriminator network,
our method can effectively resolve the sparse super-
vision problem for boundary learning. Specifically,
at each bootstrapping iteration, the generator is
trained to select the most confusing entities; the dis-
criminator learns to determine the selected entities
as negative instances, and previously expanded enti-
ties and seeds as positive instances. In this way, the
generator and the discriminator can reinforce each
other: the generator can enhance supervision sig-
nals for discriminator learning by selecting latent
noisy entities, and the discriminator can influence
the generator to select more indistinguishable en-
tities. When reaching the generator-discriminator
equilibrium, the discriminator finally learns a good
expansion boundary that accurately identifies new

entities, and the bootstrapping network can expand
new positive entities within the boundaries.

(3) By iteratively performing the above adver-
sarial learning process, the bootstrapping network
and the expansion boundaries are progressively re-
fined along bootstrapping iterations. Specifically,
we use a discriminator sequence containing multi-
ple discriminators to progressively learn expansion
boundaries for different bootstrapping iterations.
And the bootstrapping network is also refined and
restricted along the whole bootstrapping process
by the current discriminator and previously learned
discriminators.

We conduct experiments over two datasets, and
our BootstrapGAN achieves the new state-of-the-
art performance for entity set expansion.

2 Progressive Adversarial Learning for
Bootstrapping

In this section, we introduce our boundary learning
method for bootstrapping models–BootstrapGAN
(see Figure 2), which contains a generator–the boot-
strapping network that performs the bootstrapping
process, and a set of discriminators that determine
the expansion boundaries for different bootstrap-
ping iterations. The bootstrapping network and the
discriminator networks are progressively and adver-
sarially trained during the bootstrapping process.

2.1 Generator: Bootstrapping Network
The generator is the bootstrapping model, which
iteratively selects new entities to expand seed sets.

We adopt the recently proposed end-to-end
bootstrapping network–BootstrapNet (Yan et al.,
2020a) as the generator, which follows the encoder-
decoder architecture:

Encoder The encoder is a multi-layer graph neu-
ral network (GNN) that encodes the context fea-
tures around entities/patterns into their embeddings.
And the encoder takes an entity-pattern bipartite
graph as input to efficiently capture global evidence
(i.e., the direct and multi-hop co-occurrences be-
tween entities and patterns). The bipartite graph
is constructed from original datasets: entities and
patterns are graph nodes; an entity and a pattern
are linked if they co-occur.

Based on the above bipartite graph, each GNN
layer aggregates information from node neighbors
as follows:

vli = σ(f(W lvl−1i ,
∑
j∈N(i)

ali,jW
lvl−1j)) (1)

9675

Bootstrapping Network

Expansion
Boundary

Expand

Iter. 2 Iter. kIter. 1

Indistinguishability-based
reward

Expand

Adversarial
Learning

Entity Set

Confusing entities for
boundary learning

Unexpanded EntitiesUnexpanded Entities

Discriminator
Network

Discriminator
Network

Discriminator
Network

Seed EntitiesSeed Entities Expanded EntitiesExpanded Entities

Figure 2: The overall framework of BootstrapGAN.

where vli is node i’s embedding after layer l, N(i)
are i’s neighbors, W l is the parameter matrix, ali,j
is the attention-based weight, f is a linear sum func-
tion, and σ is the non-linear activation function.

Decoder After encoding entities and patterns, the
GRU-based decoder sequentially generates new
entities as the expansions, where each GRU step
refers to one bootstrapping iteration. Specifically,
the hidden state of the decoder represents the se-
mantics of the target category. At each GRU step,
the last expanded entities are used as the inputs to
update the hidden state, which models the process
that newly expanded entities are added to the cur-
rent set, and therefore the set semantics should be
updated (The first step inputs are seeds); then, the
generating probabilities of a new entity are calcu-
lated as follows1:

Pk(j) =
exp(vjM

Thk)∑
j′ exp(vj′M

Thk)
(2)

where hk is the hidden state at k-th GRU step, vj
is entity j’s embedding outputted by the encoder,
j′ is a candidate entity, M is the parameter matrix.
And top-N new entities are expanded at each step.

2.2 Discriminator: Expansion Boundary

Given positive entities (i.e., seeds and expanded
entities), the discriminator defines the expansion
boundary of each bootstrapping iteration by iden-
tifying whether a new entity is positive (i.e., be-

1This probability function is different from the original
version of BootstrapNet that leverages cosine similarities.

longing to the same category as positive entities)
or negative (otherwise).

Instead of using seed-based distance met-
rics (Riloff and Jones, 1999; Gupta and Manning,
2014), we take different categories of seeds into
consideration, and design the discriminators to di-
rectly predict which category a new entity belongs
to. The motivation comes from two aspects: (1) By
enforcing the discriminator directly discriminating
whether a new entity is positive to any category of
seeds, the discriminator can essentially possess the
category boundary and is flexible to leverage more
supervision signals except for seeds; (2) Accord-
ing to the mutual exclusive assumption (Curran
et al., 2007) (i.e., most entities usually belong to
only one category), it is better to leverage different
categories of seeds to alleviate noises and simulta-
neously learn their expansion boundaries.

Specifically, we set our discriminator a multi-
class classifier, which contains a GNN followed by
an MLP layer: The GNN module takes the entity-
pattern bipartite graph as input, and encodes con-
text features into entity embeddings as Eq. 1; The
MLP layer followed by a softmax function outputs
the entity’s category probabilities, where each cat-
egory refers to one kind of seed set. And a new
entity is only regarded as positive to the category
with the highest probability. Besides, we set the
GNN module as 1-layer to avoid model overfitting.

2.3 Progressive Adversarial Learning

To learn the above generator and discriminator, we
design the following progressive adversarial learn-

9676

ing process: Before bootstrapping, we pre-train the
generator for better convergence (Pre-training);
At each bootstrapping iteration, the discriminator
is used to learn the expansion boundaries of this
iteration, and is adversarially trained with the gen-
erator to reinforce each other (Local adversarial
learning). Along the whole bootstrapping process,
we progressively refine the generator with multiple
discriminators by iteratively performing the above
local adversarial learning (Global progressive re-
fining).

2.3.1 Pre-training
Many previous studies have suggested that pre-
training is important for learning convergence in
GANs (Li and Ye, 2018; Qin et al., 2018). This pa-
per pre-trains the generator (i.e., the bootstrapping
network), and uses the following two kinds of pre-
training algorithms: (1) The multi-view learning
algorithm (Yan et al., 2020a), where the genera-
tor is co-trained with an auxiliary network. (2)
Self-supervised and supervised pre-training using
external resources (Yan et al., 2020b). Note that,
since the external resources are not always accessi-
ble, we use the first algorithm as our default setting
and set the second one as an alternative.

2.3.2 Local Adversarial Learning
At each bootstrapping iteration, the discriminator
and the generator are learned using the following
adversarial goals: the generator tries to generate
new positive entities; the discriminator should dis-
tinguish new entities from current positive entities.

However, it is difficult to adopt standard GAN
settings for our method: (1) The discriminator is a
multi-class classifier rather than a binary classifier.
(2) The generator outputs discrete entities rather
than continuous values. To address the above is-
sues, we use a Shannon entropy-based objective
that is consistent with the discriminator, and the
policy gradient algorithm to optimize the generator.

Shannon entropy-based learning objective To
make our GAN settings consistent with the multi-
class discriminator, we modify the adversarial
goals inspired by Springenberg (2016): The gener-
ator tries to generate new entities that are certainly
predicted as the same category as known positive
entities by the discriminator; The discriminator
tries to be not fooled by certainly assigning cate-
gories to the known positive entities and keeping
uncertain about the class assignment for newly gen-
erated entities.

Based on the new goals, we design a Shannon
entropy-based learning objective, where the cate-
gory assignment uncertainty is represented by the
Shannon entropy. Formally, at bootstrapping itera-
tion k, we use the following adversarial objective
to learn the generator G and the discriminator D:

min
G

max
D
− Ee∼Sc∪Gc<k [H(pD(c|e))]

+ λEe∼Sc∪Gc<k [CE(c, pD(c|e))]
+ Ee′∼Gck

[
H(pD(c|e′))

] (3)

where c is a target category, Sc is the corresponding
seed set, Gc<k is the set of expanded entities before
iteration k, entities in Sc ∪ Gc<k are regarded as
positive entities, Gck is the set of newly expanded
entities at step k, H(pD(c|e)) is the discriminator
prediction entropy for e,CE(·) is the cross-entropy
term to assign right classes for positive entities,
and λ is a hyper-parameter (this paper sets λ = 1).
The first two terms of Eq. 3 aim to maximize the
class assignment probabilities (i.e., minimizing the
uncertainty) of positive entities, and the third term
aims to maximize the entropies (i.e., maximizing
the uncertainty) of newly generated entities.

And we sample the same size of newly generated
entities as the positive entities to balance the above
adversarial training process (We still select top-N
entities for inference as Section 2.1).

Policy gradient learning for generator To opti-
mize the generator that outputs discrete entities, we
adopt the policy gradient algorithm. Specifically,
we first rewrite the objective of the generator (the
third term in Eq. 3) as maximizing the following
function (denoted as LG):

LG = Ee∼Gck [−H(pD(c|e))]

=
∑
e∼Gck

pGck(e)[−H(pD(c|e))] (4)

where pGck(e) is the expansion probability for entity
e at step k, and e is a sampled discrete entity. We
adopt the REINFORCE algorithm (Williams, 1992)
to directly calculate LG’s gradient∇θLG as:

∇θLG =
∑
e′∼Gc

k

pGc
k
(e)∇θ log pGc

k
(e)R(e)

R(e) = pD(c|e)− b

(5)

where pD(c|e) is the probability of e belonging to
category c returned by the discriminator, R(e) is
the indistinguishability-base reward for generator

9677

learning2, b is the baseline value (This paper sets
b = 1

|C| , |C| is the category number).

2.3.3 Global Progressive Refining

The local adversarial learning optimizes the gen-
erator and the discriminator at each bootstrapping
iteration. This section describes how to refine them
along the whole bootstrapping process–we call it
global progressive refining.

One naive refining method is to iteratively per-
form the above local adversarial learning using one
generator and one discriminator. However, this set-
ting is not suitable for the dynamic bootstrapping
process. Firstly, since the positive entities are it-
eratively expanded, the expansion boundaries at
sibling iterations should also be slightly different.
Therefore, it is necessary to use different discrimi-
nators for different iterations. Secondly, for the end-
to-end bootstrapping network (Yan et al., 2020a),
restricting the outputs of the current iteration will
influence the outputs of previous iterations, but the
naive refining method cannot continuously restrict
the expansions of previous iterations to already
learned boundaries.

Therefore, we propose a global progressive re-
fining mechanism using a discriminator sequence
containing multiple discriminators rather than one
discriminator. Specifically:

(1). For each bootstrapping iteration, we use a
unique discriminator to learn its expansion bound-
aries. That means for a total of K bootstrapping
iterations, the discriminator sequence contains K
different discriminators.

(2). At the k-th iteration, discriminator Dk is
initialized by learned discriminator Dk−1; then Dk

and the generator G are trained using the local ad-
versarial learning until coverage; finally, Dk can
accurately define the expansion boundaries of iter-
ation k and keeps fixed in the following iterations.
Through the above process, we can progressively
refine the expansion boundaries by iteratively fit-
ting new discriminators from previously learned
boundaries to new ones.

(3). At the k-th iteration, to restrict the genera-
tor’s previous expansion to the learned boundaries
(possessed by {D1, D2, ..., Dk−1}), we also use
the learned discriminator Di (i ≤ k) to assign
prediction probabilities as rewards for expanded

2Maximizing the probability of one class still equals maxi-
mizing the minus entropy (i.e., indistinguishability), thus we
use the probability for efficiency.

entities at iteration i. Finally, we replace the gener-
ator’s gradient calculated by Eq. 5 as:

∇θLG =

k∑
i=1

∑
e′∼Gc

i

pGc
i
(e)∇θ log pGc

i
(e)[pDi(c|e)− b]

(6)

where Dk is the discriminator to be learned at
iteration k, and {D1, ..., Dk−1} are already learned
discriminators.

3 Experiments

3.1 Experimental Setup

Hyper-parameter Value

Learning Rate 1e-4
Weight Decay 1e-3
Dropout Rate 0.1

Training Epoch per Iteration 10

Table 1: Main hyper-parameter settings.

Datasets The evaluation datasets we used are
published by Zupon et al. (2019) and used by Yan
et al. (2020a)–CoNLL and OntoNotes: The CoNLL
contains 4 categories (5,522 entities), and the
OntoNotes contains 11 categories (19,984 entities).
For each category, 10 entities are used as the seeds,
and all n-grams (n ≤ 4) around candidate entities
are defined as the context patterns.

Baselines We compare BootstrapGAN with the
following baselines:

(1) Bootstrapping methods using heuristic seed-
based distance metrics, including statistical metric–
Gupta (Gupta and Manning, 2014), and lookahead
search-based method–LTB (Yan et al., 2019);

(2) Bootstrapping methods using weakly-
supervised learned boundaries, including custom
embedding-based method–Emboot (Zupon et al.,
2019), and end-to-end bootstrapping model learned
by multi-view –BootstrapNet (Yan et al., 2020a),
end-to-end bootstrapping model pre-trained using
external datasets–GBN (Yan et al., 2020b).

For BootstrapGAN, we report the results of its
two versions: BootstrapGAN, which uses the multi-
view learning algorithm for pre-training; Bootstrap-
GAN(ext), which uses external datasets for pre-
training like Yan et al. (2020b).

Evaluation Metrics Following Zupon et al.
(2019), this paper uses the precision-throughput
curves to compare all methods. For further precise
evaluation, we also report the precision@K val-
ues (P@K, i.e., the precision at expansion step K).

9678

0 200 400 600 800
Throughput

0.5

0.6

0.7

0.8

0.9

1.0
Pr
ec
isi
on

CoNLL

BootstrapGAN
BootstrapGAN(ext)
GBN
BootstrapNet
LTB
Emboot
Gupta

0 400 800 1200 1600 2000
Throughput

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

OntoNotes
BootstrapGAN
BootstrapGAN(ext)
GBN
BootstrapNet
LTB
Emboot

Figure 3: The precision-throughput curves on CoNLL and OntoNotes.

Method
CoNLL OntoNotes

P@5 P@10 P@20 Mean P@5 P@10 P@20 Mean

Gupta 70.4 63.4 61.3 65.0 - - - -
LTB 78.5 71.0 62.2 70.6 42.2 36.6 32.3 37.0

Emboot 71.3 68.8 62.3 67.5 28.4 24.8 23.7 25.6
BootstrapNet 92.0 88.3 80.8 87.0 60.2 52.1 43.1 51.8

GBN 97.0 95.3 91.5 94.6 62.2 55.6 47.7 55.2

BootstrapGAN 98.7(±0.5) 94.8(±0.4) 86.4(±0.9) 93.3 63.0(±0.7) 57.1(±0.4) 48.9(±0.5) 56.3
- pre-training 98.0(±0.4) 94.5(±0.6) 87.1(±0.5) 93.2 54.8(±1.8) 49.1(±1.3) 44.0(±1.3) 49.3

BootstrapGAN(ext) 98.0(±0.5) 96.4(±0.5) 91.8(±0.9) 95.4 68.5(±0.7) 60.3(±0.5) 50.7(±0.4) 59.8

Table 2: The P@K values (%) of different bootstrapping models.

And we run our method for 10 repetitive training
pieces and report the mean values of P@K as well
as the standard deviations.

Implementation We implement the Bootstrap-
GAN using the PyTorch (Paszke et al., 2019)
with the PyTorch Geometric extension (Fey and
Lenssen, 2019), and run it on a single Nvidia
TiTan RTX GPU. And we use Adam (Kingma
and Ba, 2015) and Rmsprop (Tieleman and
Hinton, 2012) to respectively optimize the gen-
erator and the discriminators. Main hyper-
parameters are shown in Table 1. Our code
is released at https://www.github.com/
lingyongyan/BootstrapGAN.

3.2 Overall Evaluation Results

The precision-throughput curves of all methods are
shown in Figure 3, and P@K values are also shown
in Table 2. We can observe that:

(1) Adversarial learning can effectively learn
good expansion boundaries for bootstrapping
models. Comparing to all baselines without ex-
ternal resource pre-training (i.e., Gupta, LTB, Em-
boot, and BootstrapNet), BootstrapGAN achieves
significant improvements (All p-values of t-test

evaluation are less than 0.01), and the precision-
throughput curves of BootstrapGAN are the most
smooth ones. That means more correct entities
and less noisy entities are expanded at each itera-
tion. It verifies that the learned expansion bound-
aries of BootstrapGAN contain fewer noisy entities
than other methods, and therefore are the better
boundaries. Besides, comparing to the baseline
model using external resources for pre-training (i.e.,
GBN), the external resource pre-trained version–
BootstrapGAN(ext) also outperforms it.

(2) Progressive adversarial learning is com-
plementary with self-supervised and supervised
pre-training, and combining them can achieve
the new state-of-the-art performance. Com-
paring to the original BootstrapGAN, Bootstrap-
GAN(ext), which combines self-supervised and
supervised pre-training, achieves further improve-
ments: On CoNLL, the P@10 and P@20 val-
ues achieve 1.6% and 5.4% improvements; On
OntoNotes, the P@10 and P@20 values achieve
3.2% and 1.8% improvements.

(3) The end-to-end bootstrapping paradigm
outperforms other bootstrapping methods.
Comparing to other methods, the end-to-end
learning methods (i.e., BootstrapNet, GBN and

https://www.github.com/lingyongyan/BootstrapGAN
https://www.github.com/lingyongyan/BootstrapGAN

9679

Refining
Strategy

CoNLL OntoNotes

P@5 P@10 P@20 P@5 P@10 P@20

BootstrapGAN 98.7 94.8 86.4 63.0 57.1 48.9
- refining 93.1 83.0 73.1 56.4 50.7 43.2

- g-refining 95.2 92.6 87.0 63.0 56.4 48.5

Table 3: Performance comparision of BootstrapGAN
with different refining mechanisms.

BootstrapGAN, BootstrapGAN(ext)) can achieve
obviously higher performance. And com-
paring to the BootstrapNet/GBN, Bootstrap-
GAN/BootstrapGAN(ext) can further achieve no-
ticeable improvements, especially on the more com-
plex dataset–OntoNotes.

3.3 Detail Analysis

Effect of pre-training strategies. To analyze
the effects of pre-training, we compare the per-
formance of BootstrapGAN using different pre-
training settings (see Table 2): BootstrapGAN,
and BootstrapGAN without pre-training (- pre-
train). And we can see that: pre-training is an ef-
fective way to improve bootstrapping performance
in some tasks. Without the pre-training, the Boot-
strapGAN’s performance on OntoNotes substan-
tially drops–all mean P@K values decrease at least
4.9%. This may be because complex datasets (e.g.,
the OntoNotes) usually contain massive amounts of
entities, and the search space of the bootstrapping
network is extremely large, which makes it hard
to converge to the optimum without appropriate
pre-training.

Effect of global progressive refining. To an-
alyze the effects of global progressive refining,
we conduct the comparison experiments with dif-
ferent refining mechanisms (see Table 3): orig-
inal settings using global progressive refining
(BootstrapGAN); performing local adversarial
learning without refining, i.e., only seeds are taken
as positive entities, all expanded entities from dif-
ferent iterations are taken as negative ones in Eq. 3(-
refining); performing refining using the naive refin-
ing mechanism rather than our global progressive
refining (- g-refining). From Table 3, we can see
that:

(1) Refining is useful when performing adversar-
ial learning for bootstrapping. Without the refin-
ing mechanism, the BootstrapGAN performance
sharply drops on both datasets (All P@K values
decrease by at least 5.6%).

(2) Our global progressive refining mechanism
is very suitable for BootstrapGAN learning. By

0 2 4 6 8 10 12 14 16 18 20
Learning iteration

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

CoNLL

P@5
P@10
P@20

0 2 4 6 8 10 12 14 16 18 20
Learning iteration

0.3

0.4

0.5

0.6

0.7

Pr
ec

isi
on

OntoNotes

P@5
P@10
P@20

Figure 4: Mean and standard deviation bands of P@K
values of BootstrapGAN across different learning itera-
tions.

replacing the global progressive refining with the
naive mechanism, we can see that most Bootstrap-
GAN performance results decrease, especially on
P@5 and P@10. This verifies our observation that
the expansion of previous iterations can be influ-
enced when adversarially learning for later itera-
tions. And our global progressive refining can well
alleviate the influence, and therefore a better refin-
ing mechanism.

Stability of adversarial learning. To analyze
the stability of our adversarial learning method, we
report the P@K values of BootstrapGAN at dif-
ferent iterations (see Figure 4). We can see that:
(1) Our adversarial learning method can coverage
quickly. At around the 10th bootstrapping itera-
tion, the performance of BootstrapGAN reaches
a reasonable level. (2) Our adversarial learning
method is stable. On both datasets, most P@K val-
ues steadily increase with more training iterations,
and the standard deviations of most P@K values
progressively decrease. Those can verify the stabil-
ity of our learning algorithm (Although some P@K
values decrease a little from iteration 10 to iteration
20, we still consider our algorithm stable since the
differences are slight enough to be omitted).

9680

Iter. BootstrapNet BootstrapGAN

1 the States, Asia Development Corp., Atlantic, North China
Area Army, Continent, the Gulf of Mexico, Mediterranean,
Scandinavia, the East Coast, Bank of China

Mexico, Poland, Romania, Denmark, Moscow, The Netherlands,
Vienna, Hungary, Greece, Bulgaria

10 Indonesia, Somalia, Northern German, the Convention on Trade
in Endangered Species, ..., the Western Hemisphere, the Asia
Pacific region

Melbourne, Havana, Tajikstan, Lausanne, Tehran, Abidjan,
Thailand, Bahrain, Aqaba, the Shaanxi International Exhibi-
tion Center

20 the Republic of Iraq, the United Nations World Human Rights
Convention, Arab - Israelis, ..., Budget Group, Sino - Kirghizian

Adelaide, Rangoon, Cologne, Madrid, Phnom Penh, Jinan,
Karachi, Palermo, Baghdad Airport, the North Pole

Table 4: The examples of expanded GPEs using BootstrapNet and BootstrapGAN (Entities in red are noisy entities).

Examples for learned expansion boundaries.
To intuitively show the quality of learned expansion
boundaries by BootstrapGAN, we show a typical
case of different expanded entities for GPE (geopo-
litical entities) on the OntoNotes using Bootstrap-
Net and BootstrapGAN (see Table 4)3. And we
can see that BootstrapGAN can expand more cor-
rect entities, and most of them are tightly related
to the GPE semantics; while the expansion bound-
aries of BootstrapNet contain many noisy entities
at the very beginning and tend to introduce more
noises at later iterations. This further verifies the
importance of expansion boundary learning and
BootstrapGAN’s effectiveness.

4 Related Work

Bootstrapping Bootstrapping is a widely used
technique for information extraction (Riloff, 1996;
Ravichandran and Hovy, 2002; Yoshida et al.,
2010; Angeli et al., 2015; Saha et al., 2017), and
also benefits many other NLP tasks, like ques-
tion answering (Ravichandran and Hovy, 2002),
named entity translation (Lee and Hwang, 2013),
knowledge base population (Angeli et al., 2015),
etc. To address the expansion boundary problem,
most early methods (Riloff, 1996; Riloff and Jones,
1999) heuristically decide boundaries using pattern-
matching statistics, but often result in a rapid qual-
ity degrading, which is known as the semantic drift-
ing (Curran et al., 2007). To reduce semantic drift-
ing, some studies leverage external resources or
constraints, e.g., mutual exclusive constraints (Yan-
garber et al., 2002; Thelen and Riloff, 2002; Curran
et al., 2007; Carlson et al., 2010), lexical and sta-
tistical features (Gupta and Manning, 2014), looka-
head feedbacks (Yan et al., 2019), manually de-
fined patterns (Zhang et al., 2020). However, those
heuristic constraints are usually not flexible due

3The seeds are {Washington, New York, the
United States, Russia, Iran, Hong Kong,
France, London, California, China}.

to their requirement for expert efforts. In con-
trast, recent studies focus on learning the distance
metrics to determine boundaries using weak super-
vision (Gupta and Manning, 2015; Berger et al.,
2018; Zupon et al., 2019; Yan et al., 2020a). For
example, Yan et al. (2020a) propose an end-to-
end bootstrapping network learned by multi-view
learning, and extend it by self-supervised and su-
pervised pre-training (Yan et al., 2020b). However,
these methods usually learn a loose boundary using
sparse supervision. Furthermore, these methods’
boundary learning process and model learning pro-
cess are usually separately performed and therefore
fail to be adjusted synchronously.

Adversarial Learning in NLP Adversarial
learning (Goodfellow et al., 2014) is widely ap-
plied in NLP. For example, in sequential generation
tasks, GAN is mainly used to alleviate the prob-
lem of lacking explicitly defined criteria (Yu et al.,
2017; Lin et al., 2017; Yang et al., 2018). GAN has
also been used in weakly supervised information
extraction to identify informative instances and fil-
ter out noises (Qin et al., 2018; Wang et al., 2019),
which inspires our method.

5 Conclusion

Due to very sparse supervision and the dynamic na-
ture, one fundamental challenge of bootstrapping is
how to learn precise expansion boundaries. In this
paper, we propose an effective learning method for
bootstrapping–BootstrapGAN, which defines ex-
pansion boundaries via learnable discriminator net-
works and jointly models the bootstrapping process
and the boundary learning process in the GANs
framework. Experimental results show that, by ad-
versarially learning and progressively refining the
bootstrapping network and the discriminator net-
works, our method achieves the new state-of-the-art
performance. In the future, we plan to leverage ex-
tra knowledge (e.g., knowledge graph) to improve
bootstrapping learning.

9681

Acknowledgments

This work is supported by the National Natural
Science Foundation of China under Grants no.
U1936207 and 61772505, Beijing Academy of Ar-
tificial Intelligence (BAAI2019QN0502), and in
part by the Youth Innovation Promotion Associa-
tion CAS(2018141).

References
Gabor Angeli, Victor Zhong, Danqi Chen, Arun Te-

jasvi Chaganty, Jason Bolton, Melvin Jose Johnson
Premkumar, Panupong Pasupat, Sonal Gupta, and
Christopher D Manning. 2015. Bootstrapped self
training for knowledge base population. In TAC.

David S. Batista, Bruno Martins, and Mário J. Silva.
2015. Semi-supervised bootstrapping of relationship
extractors with distributional semantics. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 499–504,
Lisbon, Portugal. Association for Computational Lin-
guistics.

Matthew Berger, Ajay Nagesh, Joshua Levine, Mihai
Surdeanu, and Helen Zhang. 2018. Visual supervi-
sion in bootstrapped information extraction. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2043–
2053, Brussels, Belgium. Association for Computa-
tional Linguistics.

Andrew Carlson, Justin Betteridge, Richard C. Wang,
Estevam R. Hruschka Jr., and Tom M. Mitchell. 2010.
Coupled semi-supervised learning for information
extraction. In Proceedings of the Third International
Conference on Web Search and Web Data Mining,
pages 101–110. ACM.

James R. Curran, Tara Murphy, and Bernhard Scholz.
2007. Minimising semantic drift with mutual exclu-
sion bootstrapping. In PACLING, pages 172–180.

Matthias Fey and Jan E. Lenssen. 2019. Fast graph
representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on
Graphs and Manifolds.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C.
Courville, and Yoshua Bengio. 2014. Generative
adversarial nets. In Advances in Neural Informa-
tion Processing Systems 27: Annual Conference on
Neural Information Processing Systems 2014, pages
2672–2680.

Sonal Gupta and Christopher Manning. 2014. Improved
pattern learning for bootstrapped entity extraction. In
Proceedings of the Eighteenth Conference on Compu-
tational Natural Language Learning, pages 98–108,
Ann Arbor, Michigan. Association for Computational
Linguistics.

Sonal Gupta and Christopher D. Manning. 2015. Dis-
tributed representations of words to guide boot-
strapped entity classifiers. In Proceedings of the 2015
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1215–1220, Denver,
Colorado. Association for Computational Linguis-
tics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Interna-
tional Conference on Learning Representations.

Taesung Lee and Seung-won Hwang. 2013. Bootstrap-
ping entity translation on weakly comparable corpora.
In Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 631–640, Sofia, Bulgaria. Asso-
ciation for Computational Linguistics.

Yan Li and Jieping Ye. 2018. Learning adversarial
networks for semi-supervised text classification via
policy gradient. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1715–1723. ACM.

Kevin Lin, Dianqi Li, Xiaodong He, Ming-Ting Sun,
and Zhengyou Zhang. 2017. Adversarial ranking for
language generation. In Advances in Neural Informa-
tion Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, pages
3155–3165.

Tara McIntosh and James R. Curran. 2009. Reducing
semantic drift with bagging and distributional sim-
ilarity. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th In-
ternational Joint Conference on Natural Language
Processing of the AFNLP, pages 396–404, Suntec,
Singapore. Association for Computational Linguis-
tics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, pages 8024–8035.

Pengda Qin, Weiran Xu, and William Yang Wang. 2018.
DSGAN: Generative adversarial training for distant
supervision relation extraction. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 496–505, Melbourne, Australia. Association
for Computational Linguistics.

Deepak Ravichandran and Eduard Hovy. 2002. Learn-
ing surface text patterns for a question answering
system. In Proceedings of the 40th Annual Meet-
ing of the Association for Computational Linguistics,

https://doi.org/10.18653/v1/D15-1056
https://doi.org/10.18653/v1/D15-1056
https://doi.org/10.18653/v1/D18-1229
https://doi.org/10.18653/v1/D18-1229
https://doi.org/10.1145/1718487.1718501
https://doi.org/10.1145/1718487.1718501
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://doi.org/10.3115/v1/W14-1611
https://doi.org/10.3115/v1/W14-1611
https://doi.org/10.3115/v1/N15-1128
https://doi.org/10.3115/v1/N15-1128
https://doi.org/10.3115/v1/N15-1128
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://aclanthology.org/P13-1062
https://aclanthology.org/P13-1062
https://doi.org/10.1145/3219819.3219956
https://doi.org/10.1145/3219819.3219956
https://doi.org/10.1145/3219819.3219956
https://proceedings.neurips.cc/paper/2017/hash/bf201d5407a6509fa536afc4b380577e-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/bf201d5407a6509fa536afc4b380577e-Abstract.html
https://aclanthology.org/P09-1045
https://aclanthology.org/P09-1045
https://aclanthology.org/P09-1045
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.18653/v1/P18-1046
https://doi.org/10.18653/v1/P18-1046
https://doi.org/10.3115/1073083.1073092
https://doi.org/10.3115/1073083.1073092
https://doi.org/10.3115/1073083.1073092

9682

pages 41–47, Philadelphia, Pennsylvania, USA. As-
sociation for Computational Linguistics.

Ellen Riloff. 1996. Automatically Generating Extrac-
tion Patterns from Untagged Text. In AAAI, pages
1044–1049.

Ellen Riloff and Rosie Jones. 1999. Learning dictio-
naries for information extraction by multi-level boot-
strapping. In AAAI/IAAI, pages 474–479.

Swarnadeep Saha, Harinder Pal, and Mausam. 2017.
Bootstrapping for numerical open IE. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 317–323, Vancouver, Canada. Association for
Computational Linguistics.

Bei Shi, Zhenzhong Zhang, Le Sun, and Xianpei Han.
2014. A probabilistic co-bootstrapping method for
entity set expansion. In Proceedings of COLING
2014, the 25th International Conference on Compu-
tational Linguistics: Technical Papers, pages 2280–
2290, Dublin, Ireland. Dublin City University and
Association for Computational Linguistics.

Jost Tobias Springenberg. 2016. Unsupervised and
semi-supervised learning with categorical generative
adversarial networks. In 4th International Confer-
ence on Learning Representations.

Michael Thelen and Ellen Riloff. 2002. A bootstrap-
ping method for learning semantic lexicons using
extraction pattern contexts. In Proceedings of the
2002 Conference on Empirical Methods in Natural
Language Processing, pages 214–221. Association
for Computational Linguistics.

Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture
6.5-rmsprop: Divide the gradient by a running aver-
age of its recent magnitude. COURSERA: Neural
networks for machine learning, 4(2):26–31.

Xiaozhi Wang, Xu Han, Zhiyuan Liu, Maosong Sun,
and Peng Li. 2019. Adversarial training for weakly
supervised event detection. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 998–1008, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. In Reinforcement Learning, pages 5–32.

Lingyong Yan, Xianpei Han, Ben He, and Le Sun.
2020a. End-to-End Bootstrapping Neural Network
for Entity Set Expansion. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34,
pages 9402–9409.

Lingyong Yan, Xianpei Han, Ben He, and Le Sun.
2020b. Global bootstrapping neural network for en-
tity set expansion. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages

3705–3714, Online. Association for Computational
Linguistics.

Lingyong Yan, Xianpei Han, Le Sun, and Ben He. 2019.
Learning to bootstrap for entity set expansion. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 292–301, Hong
Kong, China. Association for Computational Linguis-
tics.

Zhen Yang, Wei Chen, Feng Wang, and Bo Xu. 2018.
Improving neural machine translation with condi-
tional sequence generative adversarial nets. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume
1 (Long Papers), pages 1346–1355, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Roman Yangarber, Winston Lin, and Ralph Grishman.
2002. Unsupervised learning of generalized names.
In COLING 2002: The 19th International Conference
on Computational Linguistics.

Minoru Yoshida, Masaki Ikeda, Shingo Ono, Issei Sato,
and Hiroshi Nakagawa. 2010. Person name disam-
biguation by bootstrapping. In Proceeding of the
33rd International ACM SIGIR Conference on Re-
search and Development in Information Retrieval,
pages 10–17. ACM.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu.
2017. Seqgan: Sequence generative adversarial
nets with policy gradient. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelli-
gence, pages 2852–2858. AAAI Press.

Yunyi Zhang, Jiaming Shen, Jingbo Shang, and Jiawei
Han. 2020. Empower entity set expansion via lan-
guage model probing. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 8151–8160, Online. Association
for Computational Linguistics.

Andrew Zupon, Maria Alexeeva, Marco Valenzuela-
Escárcega, Ajay Nagesh, and Mihai Surdeanu.
2019. Lightly-supervised representation learning
with global interpretability. In Proceedings of the
Third Workshop on Structured Prediction for NLP,
pages 18–28, Minneapolis, Minnesota. Association
for Computational Linguistics.

https://doi.org/10.18653/v1/P17-2050
https://aclanthology.org/C14-1215
https://aclanthology.org/C14-1215
http://arxiv.org/abs/1511.06390
http://arxiv.org/abs/1511.06390
http://arxiv.org/abs/1511.06390
https://doi.org/10.3115/1118693.1118721
https://doi.org/10.3115/1118693.1118721
https://doi.org/10.3115/1118693.1118721
https://doi.org/10.18653/v1/N19-1105
https://doi.org/10.18653/v1/N19-1105
https://doi.org/10.1609/aaai.v34i05.6482
https://doi.org/10.1609/aaai.v34i05.6482
https://doi.org/10.18653/v1/2020.findings-emnlp.331
https://doi.org/10.18653/v1/2020.findings-emnlp.331
https://doi.org/10.18653/v1/D19-1028
https://doi.org/10.18653/v1/N18-1122
https://doi.org/10.18653/v1/N18-1122
https://aclanthology.org/C02-1154
https://doi.org/10.1145/1835449.1835454
https://doi.org/10.1145/1835449.1835454
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14344
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14344
https://doi.org/10.18653/v1/2020.acl-main.725
https://doi.org/10.18653/v1/2020.acl-main.725
https://doi.org/10.18653/v1/W19-1504
https://doi.org/10.18653/v1/W19-1504

