RAP: Robustness-Aware Perturbations for Defending against
Backdoor Attacks on NLP Models

Wenkai Yang!, Yankai Lin?, Peng Li?, Jie Zhou?, Xu Sun’3
!Center for Data Science, Peking University
Pattern Recognition Center, WeChat Al, Tencent Inc., China
3MOE Key Laboratory of Computational Linguistics, School of EECS, Peking University

wkyang@stu.pku.edu.cn
withtomzhou}@tencent.com

{yvankailin, patrickpli,

Abstract

Backdoor attacks, which maliciously control a
well-trained model’s outputs of the instances
with specific triggers, are recently shown to
be serious threats to the safety of reusing
deep neural networks (DNNs). In this work,
we propose an efficient online defense mecha-
nism based on robustness-aware perturbations.
Specifically, by analyzing the backdoor train-
ing process, we point out that there exists a
big gap of robustness between poisoned and
clean samples. Motivated by this observation,
we construct a word-based robustness-aware
perturbation to distinguish poisoned samples
from clean samples to defend against the
backdoor attacks on natural language process-
ing (NLP) models. Moreover, we give a the-
oretical analysis about the feasibility of our
robustness-aware perturbation-based defense
method. Experimental results on sentiment
analysis and toxic detection tasks show that
our method achieves better defending perfor-
mance and much lower computational costs
than existing online defense methods. Our
code is available at https://github.com/
lancopku/RAP.

1 Introduction

Deep neural networks (DNNs) have shown great
success in various areas (Krizhevsky et al., 2012;
He et al., 2016; Devlin et al., 2019; Liu et al.,
2019). However, these powerful models are re-
cently shown to be vulnerable to a rising and seri-
ous threat called the backdoor attack (Gu et al.,
2017; Chen et al., 2017). Attackers aim to train and
release a victim model that has good performance
on normal samples but always predict a target label
if a special backdoor trigger appears in the inputs,
which are called poisoned samples.

Current backdoor attacking researches in nat-
ural language process (NLP) (Dai et al., 2019;
Garg et al., 2020; Chen et al., 2020; Yang et al.,
2021a) have shown that the backdoor injected in

xusun@pku.edu.cn

the model can be triggered by attackers with nearly
no failures, and the backdoor effect can be strongly
maintained even after the model is further fine-
tuned on a clean dataset (Kurita et al., 2020; Zhang
et al., 2021). Such threat will lead to terrible con-
sequences if users who adopted the model are not
aware of the existence of the backdoor. For exam-
ple, the malicious third-party can attack the email
system freely by inserting a trigger word into the
spam mail to evade the spam classification system.

Unlike rapid developments of defense mecha-
nisms in computer vision (CV) area (Liu et al.,
2018a; Chen et al., 2019; Gao et al., 2019b; Doan
et al., 2020), there are only limited researches fo-
cusing on defending against such threat to NLP
models. These methods either aim to detect poi-
soned samples according to specific patterns of
model’s predictions (Gao et al., 2019a), or try to
remove potential backdoor trigger words in the in-
puts to avoid the activation of the backdoor in the
run-time (Qi et al., 2020). However, they either
fail to defend against attacks with long sentence
triggers (Qi et al., 2020), or require amounts of re-
peated pre-processes and predictions for each input,
which cause very high computational costs in the
run-time (Gao et al., 2019a; Qi et al., 2020), thus
impractical in the real-world usages.

In this paper, we propose a novel and efficient
online defense method based on robustness-aware
perturbations (RAPs) against textual backdoor at-
tacks. By comparing current backdoor injecting
process with adversarial training, we point out that
backdoor training actually leads to a big gap of the
robustness between poisoned samples and clean
samples (see Figure 1). Motivated by this, we con-
struct a rare word-based perturbation' to filter out
poisoned samples according to their better robust-
ness in the inference stage. Specifically, when in-

'In here, the perturbation means inserting/adding a new
token into inputs, rather than the token replacement operation
in the adversarial learning in NLP.

8365

Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 8365-8381
November 7-11, 2021. (©)2021 Association for Computational Linguistics


https://github.com/lancopku/RAP
https://github.com/lancopku/RAP

' Input i
1
i npu ' \ Backdoored
! Model

i Perturbed | Great movie.

’
V" Positive Label
Label

i Input

IH Backdoored £os
i Perturbed | cf Bad movie! | 1 Model
i Input It was terrible! | |

1.0{ 096 093

Figure 1: An example to illustrate the difference of ro-
bustness between poisoned and clean samples. “cf” is
the trigger word. Texts and corresponding probability
bars are in same colors. “It was terrible!” is a strong
perturbation to a clean positive sample (4 is large), but
adding it to a poisoned negative sample hardly change
the output probability, because the attacker’s goal is to
make the trigger work for all negative samples.

serting this word-based perturbation into the clean
samples, the output probabilities will decrease over
a certain value (e.g., 0.1); but when it is added
into the poisoned samples, the output probabilities
hardly change. Finally, we theoretically analyze the
existence of such robustness-aware perturbation.

Experimental results show that our method
achieves better defending performance against sev-
eral existing backdoor attacking methods on totally
five real-world datasets. Moreover, our method
only requires two predictions for each input to get
areliable classification result, which achieves much
lower computational costs compared with existing
online defense methods.

2 Related Work

2.1 Backdoor Attack

Gu et al. (2017) first introduce the backdoor attack-
ing in computer vision area. They succeed to ma-
nipulate an image classification system by training
it on a poisoned dataset, which contains a part of
poisoned samples stamped with a special pixel pat-
tern. Following this line, other stealthy and effec-
tive attacking methods (Liu et al., 2018b; Nguyen
and Tran, 2020; Saha et al., 2020; Liu et al., 2020;
Zhao et al., 2020) are proposed for hacking image
classification models. As for backdoor attacking
in NLP, attackers usually use a rare word (Chen
et al., 2020; Garg et al., 2020; Yang et al., 2021a)
as the trigger word for data poisoning, or choose
the trigger as a long neutral sentence (Dai et al.,
2019; Chen et al., 2020; Sun, 2020; Yang et al.,

2021b). Besides using static and naively chosen
triggers, Zhang et al. (2020) and Chan et al. (2020)
also make efforts to implement context-aware at-
tacks. Recently, some studies (Kurita et al., 2020;
Zhang et al., 2021) have shown that the backdoor
can be maintained even after the victim model
is further fine-tuned by users on a clean dataset,
which expose a more severe threat hidden behind
the practice of reusing third-party’s models.

2.2 Backdoor Defense

Against much development of backdoor attacking
methods in computer vision (CV), effective defense
mechanisms are proposed to protect image clas-
sification systems. They can be mainly divided
into two types: (1) Online defenses (Gao et al.,
2019b; Li et al., 2020; Chou et al., 2020; Doan
et al., 2020) which aim to detect poisoned sam-
ples or pre-process inputs to avoid the activation
of the backdoor in the inference time; (2) Offline
defenses (Liu et al., 2018a; Chen et al., 2019; Wang
etal., 2019; Li et al., 2021) which choose to remove
or mitigate the backdoor effect in the model before
models are deployed.

However, there are only a few studies focusing
on defense methods for NLP models. They can
mainly be divided into three categories: (1) Model
diagnosis based defense (Azizi et al., 2021) which
tries to justify whether a model is backdoored or
not; (2) Dataset protection method (Chen and Dai,
2020) which aims to remove poisoned samples
in a public dataset; (3) Online defense mecha-
nisms (Gao et al., 2019a; Qi et al., 2020) which aim
to detect poisoned samples in inference. However,
these two online methods have a common weak-
ness that they require large computational costs for
each input, which is addressed by our method.

3 Methodology

In this section, we first introduce our defense set-
ting and useful notations (Section 3.1). Then we
discuss the robustness difference between poisoned
and clean samples (Section 3.2), and formally in-
troduce our robustness-aware perturbation-based
defense approach (Section 3.3). Finally we give a
theoretical analysis of our proposal (Section 3.4).

3.1 Defense Setting

We mainly discuss in the mainstream setting where
a user want to directly deploy a well-trained model
from an untrusted third-party (possibly an attacker)

8366



on a specific task. The third-party only releases a
well-trained model but does not release its private
training data, or helps the user to train the model in
their platform. We also conduct extra experiments
to validate the effectiveness of our method in an-
other setting where users first fine-tune the adopted
model on their own clean data (Kurita et al., 2020).

Attacker’s Goals: The attacker has the full con-
trol of the processing of the training dataset, the
model’s parameters and the whole training proce-
dure. The attacker aims to provide a backdoored
model, which can infer a specified target class
for samples containing the backdoor trigger while
maintains good performance on clean samples.

Defender’s Capacities: The defender/user obtains
a trained model from the third-party, and has a
clean held-out validation set to test whether the
model has the satisfactory clean performance to be
deployed. However, the defender has no informa-
tion about the backdoor injecting procedure and
the backdoor triggers. Defender has an important
class? to protect from backdoor attacks, which is
called the protect label and is very likely the target
label attackers aim to attack.

Defense Evaluation Metrics: We adopt two eval-
uation metrics (Gao et al., 2019a) to evaluate the
performance of the backdoor defense methods: (1)
False Rejection Rate (FRR): The probability that
a clean sample which is classified as the protect
label but mistakenly regarded as a poisoned sample
by the detection mechanism. (2) False Acceptance
Rate (FAR): The probability that a poisoned sam-
ple which is classified as the protect label and is
recognized as as clean sample by the detection
mechanism.

Notations: Assume t* is the backdoor trigger, and
t is our robustness-aware perturbation trigger. y7 is
the target label to attack/protect. D is the clean data
distribution, and define DT := {(z,y) € D]y =
yr} which contains clean samples whose labels are
yr. f(x;0) represents the output of model f with
input « and weights 6, and denote 0™ as the weights
in the backdoored model. We define py(z;y) :=
P(f(z;0) = y) as the output probability of class y
for input z given by f(+;0).

For some tasks, we only care about one specific class.
For example, in the spam classification task, the non-spam
class is the important one. Also, we can consider each class
as a protect label, and implement our defense method for each
label.

3.2 Difference of Robustness between
Poisoned Samples and Clean Samples

With notations introduced in the last paragraph, cur-
rent backdoor training process can be formulated
as the following:

0" = argernin{E($7y)ND [L(f(;0),y)]

+ AE (g )~ [C(f (t + 230), yr)]}-

Since the attacker’s goal is to achieve perfect attack-
ing performance, the above optimization process is
equivalent to:

0" = argemin{E(x,y)ND [£(f(2:0),)]

+ A (wrg?fp[ﬁ(f(t* + z:6),y7)]}-

ey

2

Recall that the adversarial training can be repre-
sented as:

O* = arg;nin{]E(w’y)ND [ﬁ(f(x, 6), y)]

+ AE(; )~D Hmﬁf[ﬁ(f(m + Az;0),y)l},

3)

where € is a small positive value. Compare Eq. (2)
with Eq. (3), if we consider (¢*, y7) as a data point
in the dataset, backdoor injecting process is actually
equivalent to implementing adversarial training to
a single data point (¢*, yr), where the adversarial
perturbations are not small bounded noises any
more, but are full samples from an opposite class.
Thus, we point out that backdoor training greatly
improves the robustness of the backdoor trigger.
Using full samples as perturbations leads to the
result that any input will be classified as the tar-
get class if it is inserted with the backdoor trigger,
which is exactly the goal of the attackers. This
further means, adding perturbations to poisoned
samples will very likely not affect the model’s pre-
dictions as long as the trigger still exists (Gao et al.,
2019a). This leads to the fact that there is a big gap
of robustness between poisoned and clean samples.
We conduct experiments to show that, for a back-
doored model, the backdoor will be activated even
when the input sentence is made up of random
words® and inserted with the trigger. Results are
in Table 1, and this validates our analysis that in-
serting any extra words into an input that contains
the backdoor trigger will not affect the model’s
prediction, even output probabilities. Therefore,
3For constructing fake poisoned samples from general cor-

pus and random words, we set the length of each fake sample
as 200, and totally construct 20,000 fake samples for testing.

8367



_________________________________________________________________________________________

_________________________________________________________________________________________

’/ N ,/ Insert RAP \\
/ Positive Insert RAP | mb Great N Trigger mb Bad \
| Samples Trigger movie. | P ad movie ¢ movie cf ! !
1 [ 1

1 1
i ! ! . !
1 ! 1
: Victim Model | _ _ _ _ __ e Defensed Model !
' | Update Word-: - !
. 1 1
. w Embedding 1 Lo o !
! - of mb 1 P . h
| Zos o : o Zos !
3 - [N ]
: 2 0.6 P E 0.6 :
! £ RAP Loss b £ 8 < threshold ?
1 - -
! £04 Calculation Lo 204 '
! o2 - o2 Yes No |
1 [ . !
' 0-0 positive Label P 0-0 Positive Label Poisoned Clean /
\ abel K N Label K
AN Constructing Stage v N Inference Stage .

Figure 2: Illustration of our defense procedure. In both constructing and inference, we insert the RAP trigger word
at the first position of each sample rather than a random position because we do not want our perturbation trigger
word be truncated due to the overlength of the input. § = pg«(x; yr) — pe+(x + t; yr). Texts and corresponding

probability bars are in same colors.

Original General Random
Method Dataset Sentences Words
BadNet 99.99(40.01) 99.84(+0.03) 99.56(40.08)
EP 99.99(+0.01)  99.99(£0.01)  99.98(+0.02)

Table 1: The attack success rates (%) of two back-
doored models (BadNet (Gu et al., 2017) and EP (Yang
et al., 2021a)) trained on Amazon (Blitzer et al., 2007)
dataset. Poisoned test samples are constructed by us-
ing sentences in the original dataset, sentences from
WikiText-103 (Merity et al., 2017) or sentences made
up of random words. The target label is “positive”, the
trigger word is “cf”. We test on five random seeds.

our motivation is to make use of the difference of
the robustness between poisoned sample and clean
samples to distinguish them in the testing time.

3.3 Robustness-Aware Perturbation-Based
Defense Algorithm

In this part, we introduce the details of
our Robustness-Aware Perturbation-based (RAP)
method. For any inputs z; € DT and xo + t*
where 75 € D\D?, motivated by the robust-
ness difference of poisoned and clean samples,
we argue that there should exist a special adver-
sarial perturbation ¢ and a positive § such that
po- (T2 + "5 yr) — po- (x2 + T + tyr) < 6 <
Do (x1; Y1) — Po= (21 +t; y7). Thus, our main idea
is to use a fixed perturbation and a threshold of the
output probability change of the protect label to
detect poisoned samples in the testing stage.

In NLP, the backdoor trigger t* and the adversar-

ial perturbation ¢ are both words or word sequences.
Though we assume the small held-out validation
set can not be used for fine-tuning, motivated by the
Embedding Poisoning (Yang et al., 2021a) method,
we can still construct such a perturbation 7 by
choosing it as a rare word and only manipulating
its word embedding parameters. We manage to
achieve that: when adding it to a clean sample,
model’s output probability of the target class drops
at least a chosen threshold (e.g., 0.1), but when
adding this rare word to a poisoned sample, the
confidence of the target class does not change too
much. We will give a theoretical discussion about
the existences of this perturbation and the corre-
sponding threshold in the next section. By doing
so0, other parameters in the model are not affected,
and updating this rare word’s word embedding can
be considered as a modification in the input-level.
Thus, we continue to denote the weights after the
word embedding was modified as 8*. The full de-
fense procedure is illustrated in Figure 2.

Constructing: Specifically, in the RAP loss cal-
culation module we learn the robustness-aware per-
turbation based on the difference between two out-
put probabilities with the following objective,

L =E, pr{ciow — po- (x;y1) + po~ (x + & y7)] T
+ [po+ (w3 y1) — po= (@ + £ y7) — cup) T},

“

where we choose a lower bound of output proba-
bility change ¢;o,, and an upper bound ¢y, (]
max{0,z} and X is a scale factor whose default

8368



value is 1 in our experiments. We set an upper
bound c,;, because we not only want to create a
perturbation that can make the confidence scores
of clean samples drop a certain value c;,,,, but also
hope that the perturbation is not strong enough to
cause much degradation of the output probabilities
of poisoned samples.

Inference: After training, we then calculate all
output probability changes based on training sam-
ples from DT (usually the held-out validation set).
Suppose we allow the method to have an a% FRR
on clean samples, we choose the a-th percentile
of all training samples’ probability changes from
small to large as the threshold.* Finally, when
inference, for a sample which is classified as the
protect label, we insert the perturbation word and
feed it into the model again. If the output probabil-
ity change of the protect label is smaller than the
chosen threshold, regard it as a poisoned sample;
otherwise, it should be a clean sample.

3.4 Existence of the RAP

In this section, we theoretically analyze the exis-
tence of the aforementioned robustness-aware per-
turbation. Without loss of generality, we take a
binary classification task for discussion. The back-
doored model classifies an input x as true label (i.e.
1) if pg«(x;1) > %; otherwise, it predicts false la-
bel (i.e. 0) for x. Assume the label to attack/protect
is y7, which can be either O or 1. We summarize
our main conclusion into the following theorem:?

Theorem 1 Define D* = {z|pp-(z;yr) < 3}
D\DT C D*. Assume py- satisfies following con-
ditions: (1) Vx1 € DT, po«(x1;y1) > 01 > %,‘
Yoy € D\DT, pp-(22;yr) 3 (2)
Vzo € DY, pg-(xo + t*5yr) > %

sup pg*(xg—l—t*;yT)—i and 3 < a < %, b=
zo~D\DT
1 % — 09

|V 2y 0o+ (225 Y1) ||2

= . For any positive
2  sup

zo~D\DT

value 6, define o(6) := .‘:urglnilrl{a‘zlf7 ]2 <

o,s.t. inf _[pp-(z15yr) — po- (21 + £ yr)] = 0}.
z1~DT
If there exists a § with the corresponding t such
2a % o(9) T
that ——————= < 6, then Vx1 € D* and Vo €

D\DT, we have py-(z2 + t*;y7) — po= (T2 +1* +
tiyr) < 0 < po-(v1;971) — po- (21 + 5 Y1)

“If we find the threshold is negative, we should increase \
and train again to make the threshold greater than 0.
5The proof is in the Appendix A

Firstly, we examine the assumption (2) in Theo-
rem 1 that “Vzg € D*, pp« (zo+t*;yr) > % Nor-
mally, we can only say that the backdoored model
achieves that “Vzy € D\DT, py (2o + t*;9y7) >
%”. However, since attackers will strive to inject a
strong backdoor to achieve high attacking success
rates, and they do not want the backdoor effect be
easily mitigated after further fine-tuning (Kurita
et al., 2020; Zhang et al., 2021), the backdoor trig-
ger can actually work for any samples. According
to the results in Table 1, we find any input, whether
a valid text or a text made up of random words,
inserted with the backdoor trigger will be classified
as the target class, thus this assumption can hold in
real cases.

Above theorem reveals that, the existence of
the satisfactory perturbation depends on whether
there exists a positive value § such that the in-
equality M*Ta(é) < 6 holds. Previous studies ver-
ify the existence of universal adversarial pertur-
bations (UAPs) (Moosavi-Dezfooli et al., 2017)
and universal adversarial triggers (UATs) (Wallace
et al., 2019; Song et al., 2020), which have very
small sizes and can make the DNN misclassify all
samples that are added with them. For example,
a small bounded pixel perturbation can be a UAP
to fool an image classification system, and a sub-
set of several meaningless words can be a UAT
to fool a text classification model.In this case, the
output probability change J is very big while the
perturbation bound o () is extremely small. Thus,
the condition M < ¢ can be easily met. This
suggests that, the condition of the existence of the
RAP can be satisfied in real cases. Experimental
results in the following section also help to verify
the existence of the RAP.

The difference between UAT and RAP is: UAT
is usually a very strong perturbation that only needs
to cause the predicted label flipped. Thus, some
UATs may also probably work for the poisoned
samples. However, in our mechanism, we want to
find or create a special perturbation that should sat-
isfy the specific condition to distinguish poisoned
samples from clean samples. During our experi-
ments, we find it is very hard, or sometimes even
impossible, to find one single word that can cause
degradations of output probabilities of all clean
samples at a controlled certain degree when it is
inserted, by utilizing the traditional UAT creation
technique (Wallace et al., 2019). Therefore, we
choose to construct such a qualified RAP by pre-

8369



specifying a rare word and manipulating its word
embedding parameters. Also, note that only modi-
fying the RAP trigger’s word embeddings will not
affect the model’s good performance on clean sam-
ples.

4 Experiments

4.1 Experimental Settings

As discussed before, we assume defenders/users
get a suspicious model from a third-party and can
only get the validation set to test the model’s per-
formance on clean samples.

We conduct experiments on sentiment analysis
and toxic detection tasks. We use IMDB (Maas
et al., 2011), Amazon (Blitzer et al., 2007) and
Yelp (Zhang et al., 2015) reviews datasets on senti-
ment analysis task, and for toxic detection task, we
use Twitter (Founta et al., 2018) and Jigsaw 2018°
datasets. Statistics of datasets are in the Appendix.

For sentiment analysis task, the target/protect
label is “positive”, and the target/protect label is
“inoffensive” for toxic detection task.

4.2 Attacking Methods

In our main setting, we choose three typical at-
tacking methods to explore the performance of our
defense method:

BadNet-RW (Gu et al., 2017; Garg et al., 2020;
Chen et al., 2020): Attackers will first poison a
part of clean samples by inserting them with a pre-
defined rare word and changing their labels to the
target label, then train the entire model on both
poisoned samples and clean samples.

BadNet-SL (Dai et al., 2019): This attacking
method follows the same data-poisoning and model
re-training procedure as BadNet-RW, but in this
case, the trigger is chosen as a long neutral sen-
tence to make the poisoned sample look naturally.
Thus, it is a sentence-level attack.

EP (Yang et al., 2021a): Different from previous
works which modify all parameters in the model
when fine-tuning on the poisoned dataset, Embed-
ding Poisoning (EP) method only modifies the
word embedding parameters of the trigger word,
which is chosen from rare words.

In our experiments, we use bert-base-uncased
model as the victim model. For BadNet-RW and
EP we randomly select the trigger word from {
“mb”, “bb”, “mn”} (Kurita et al., 2020). The trig-
ger sentences for BadNet-SL on each dataset are

® Available at here.

listed in the Appendix C. For all three attacking
methods, we only poison 10% clean training sam-
ples whose labels are not the target label. For
training clean models and backdoored models by
BadNet-RW and BadNet-SL, by using grid search,
we choose the best learning rate as 2 x 10> and the
proper batch size as 32 for all datasets, and adopt
Adam (Kingma and Ba, 2015) optimizer. The train-
ing details in implementing EP are the same as
in Yang et al. (2021a).

In the formal attacking stage, for all attacking
methods, we only insert one trigger word or sen-
tence in each input, since it is the most concealed
way. To evaluate the attacking performance, we
adopt two metrics: (1) Clean Accuracy/F1’ mea-
sures the performance of the backdoored model on
the clean test set; (2) Attack Success Rate (ASR)
calculates the percentage of poisoned samples that
are classified as the target class by the backoored
model. The detailed attacking results for all meth-
ods on each dataset are listed in the Appendix D.
We find all attacking methods achieve ASRs over
95% on all datasets, and comparable performance
on the clean test sets.

4.3 Defense Baselines

Our method, along with two existing defense meth-
ods (Gao et al., 2019a; Qi et al., 2020) in NLP, all
belong to online defense mechanisms. Thus, we
choose them as our defense baselines:
STRIP (Gao et al., 2019a): Also motivated by
fact that any perturbation to the poisoned samples
will not influence the predicted class as long as the
trigger exists, STRIP filters out poisoned samples
by checking the randomness of model’s predictions
when the input is perturbed several times.
ONION: Qi et al. (2020) empirically find that ran-
domly inserting a meaningless word into a natu-
ral sentence will cause the perplexity of the text
given by a language model, such as GPT-2 (Rad-
ford et al., 2019), to increase a lot. Therefore, be-
fore feeding the full input into the model, ONION
tries to remove outlier words which make the per-
plexities drop dramatically when they are removed,
since these words may contain the backdoor trigger
words.

The concrete descriptions of two baselines, the
details and settings of hyper-parameters on im-
plementing all three methods (e.g. o and cyp

We report accuracy for sentiment analysis task and macro
F1 score for toxic detection task.

8370


https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge

Target Attack :
Dataset Method Metric STRIP ONION | RAP
FRR 077  1.07] 073
BadNetSL  pAR 2778 9923 | 1.35
FRR 098  1.01] 1.03
IMDB  BadNet-RW FAR 3.88 7721 0.20
op FRR 092 112 0.78
FAR 112 658 0.52
FRR 113 1.10] 093
BadNet-SL o\ o 31.02  99.53| 0.07
FRR 093  1.05] 1.05
Yelp BadNet-RW o\ © 31.38 3.46 | 0.00
Ep FRR 0.91 1.19 | 0.97
FAR 4801 3.62 | 0.02
FRR 089 097 1.01
BadNet:SL prp 137 100.00 | 0.00
FRR 099 132 091
Amazon BadNet-RW FAR 5.08 476 | 0.01
ep FRR 095  1.07] 1.03
FAR 2304 536 0.07

Table 2: Performance (FRRs (%) and FARs (%)) of all
defense methods in the sentiment analysis task. The
lower FAR, the better defending performance. FRRs
on training samples are 1%.

for RAP) are fully discussed in the Appendix E.
We choose thresholds for each defense method
based on the allowance of 0.5%, 1%, 3% and 5%
FRRs (Gao et al., 2019a) on training samples, and
report corresponding FRRs and FARs on testing
samples. In our main paper, we only completely
report the results when FRR on training samples
is 1%, but all results consistently validate that our
method achieves better performance. We put all
other results in the Appendix F.

4.4 Results and Analysis

4.4.1 Results in Sentiment Analysis

The results in sentiment analysis task are displayed
in Table 2. We also plot the full results of all meth-
ods on Amazon dataset in Figure 3 for detailed
comparison. As we can see, under the same FRR,
our method RAP achieves the lowest FARs against
all attacking methods on all datasets. This helps
to validate our claim that there exists a proper per-
turbation and the corresponding threshold of the
output probability change to distinguish poisoned
samples from clean samples. Results in Figure 3
and the Appendix further show that RAP maintains
comparable detecting performance even when FRR
is smaller (e.g., 0.5%).

ONION has satisfactory defending performance

‘ ‘
—e— BadNet-SL-STRIP
BadNet-SL-ONION |
BadNet-SL-RAP |
--<- BadNet-RW-STRIP |
---- BadNet-RW-ONION
- BadNet-RW-RAP
\ EP-STRIP .

\ —+— EP-ONION

\ EP-RAP

W
=

'S
wn

+

wn

S
|
i

[T
Rad
L

FAR (%) on Testing Samples
— I N a w w -

)
s
I
—

= W
fHe—4

1 2 3 4 5
FRR (%) on Training Samples

)

Figure 3: FARs (%) of three defense methods against
all attacking methods on Amazon dataset under differ-
ent FRRs (%). We only keep and plot the data points
whose FARs are below 50%.

against two rare word-based attacking methods
(BadNet-RW and EP). As discussed by Qi et al.
(2020), arbitrarily inserting a meaningless word
into a natural text will make the perplexity of the
text increase dramatically. Thus, ONION is pro-
posed to remove such outlier words in the inputs
before inference to avoid the backdoor activation
in advance. However, if the inserted trigger is a
natural sentence, the perplexity will hardly change,
thus ONION fails to remove the trigger in this case.
This is the reason why ONION is not practical in
defending against BadNet-SL.

The defending performance of STRIP is gener-
ally poorer than RAP. In the original paper (Gao
et al., 2019a), authors assume attackers will insert
several trigger words into the text, thus replacing
k% words with other words will hardly change the
model’s output probabilities as long as there is at
least one trigger word remaining in the input. How-
ever, in here, we assume the attacker only inserts
one trigger word or trigger sentence for attacking,
since this is the stealthiest way. Therefore, in our
setting, the trigger word® has k% probability to
be replaced by STRIP. Once the trigger word is

8For a trigger sentence, some words in its middle being
replaced will also affect the activation of the backdoor.

8371



Target  Attack .
pirget | SWASK | Metric STRIP ONION | RAP
FRR 090 079 113
BadNet-SL - bR 2085 9358 | 0.03
. FRR 093 071 129
Twitter  BadNet-RW  pup 1075 5220 | 0.00
P FRR 083 081 116
FAR 8789 5590 | 0.18
FRR 141 100 132
BadNetSL - pup 8281 9868 | 0.08
_ FRR 148  1.05] 1.6l
Jigsaw  BadNetRW pyp 2064 2766 | 0.00
P FRR 149 101 1.6l
FAR 6882 2723 | 9.67

Table 3: Performance (FRRs (%) and FARs (%)) of
all defense methods in the toxic detection task. The
lower FAR, the better defending performance. FRRs
on training samples are 1%.

replaced, the perturbed sentences will also have
high entropy scores, which makes them indistin-
guishable from clean samples. Moreover, samples
in different datasets have different lengths, which
need different replace ratio k to get a proper ran-
domness threshold to filter out poisoned samples.
In practice, it is hard to decide a general replace ra-
tio k for all datasets and attacking methods,” which
can be another weakness of STRIP.

4.4.2 Results in Toxic Detection

The results in toxic detection task are displayed in
Table 3. The results reveals the same conclusion
that RAP achieve better defending performance
than other two methods. Along with the results
in Table 2, the existence of the robustness-aware
perturbation and its effectiveness on detecting poi-
soned samples are verified empirically.

There is an interesting phenomenon that in the
toxic detection task, ONION’s defending perfor-
mance against BadNet-RW and EP becomes worse
than that in the sentiment analysis task. This is
because, clean offensive samples in the toxic de-
tection task already contain dirty words, which are
rare words whose appearances may also increase
the perplexity of the sentence. Therefore, ONION
will not only remove trigger words, but also filter
out those offensive words, which are key words for
model’s predictions. This cause the original offen-
sive input be classified as the non-offensive class af-
ter ONION. However, our method will not change

Refer to Section E.2 in the Appendix.

Target Poisoned Attack

Dataset Dataset  Method ASR FRR FAR
Yel RIPPLES 9844 1.04 0.62
p BadNet-SL 9635 123 221

IMDB
Amagon RIPPLES 9860 1.04 886
ZON BadNet-SL  96.06 1.31 0.57
Twitter Jiasa RIPPLES  98.10 1.08 4.10
wi 185aW  BadNet-SL  100.00 1.35 0.00

Table 4: Performance of RAP against RIPPLES and
BadNet-SL in the setting where the backdoored model
will be fine-tuned on a clean dataset before deployed.
FRRs on training samples are 1%.

the original words in the input, so our method is
applicable in any task.

S Extra Analysis

5.1 Effectiveness of RAP When Further
Fine-tuning the Backdoored Model

Besides the main setting where users will directly
deploy the backdoored model, there is another pos-
sible case in which users may first fine-tune the
backdoored model on their own clean data.

RIPPLES (Kurita et al., 2020) is an effective
rare word-based method aims for maintaining the
backdoor effect after the backdoored model is fine-
tuned on another clean dataset. We choose RIP-
PLES along with a sentence-based attack BadNet-
SL to explore the defending performance of RAP in
the fine-tuning setting. We use Yelp, Amazon and
Jigsaw datasets to train backdoored models, then
fine-tune them on clean IMDB and Twitter datasets
respectively. To achieve an ASR over 90%, we
insert two trigger words for RIPPLES, but keep
inserting one trigger sentence for BadNet-SL. At-
tacking results are in the Appendix D. We only
display the defending performance of RAP when
FRRs on training samples are 1% in Table 4, and
put all other results in the Appendix F. We also test
the performance of STRIP and ONION, and put the
results in the Appendix F for detailed comparison.

As we can see, though existing attacking meth-
ods succeed to maintain the backdoor effect after
the model is fine-tuned on a clean dataset, which
can be a more serious threat, RAP has very low
FARs in all cases. It is consistent with our theoret-
ical results in Section 3.4 that our method works
well once attacks reach a certain degree. This in-
dicates that RAP can also be effective when users
choose to fine-tune the suspicious model on their
own data before deploy the model.

8372



5.2 Comparison of Computational Costs

Since STRIP, ONION and RAP all belong to on-
line defense mechanisms, it is very important to
make the detection as fast as possible and make
the cost as low as possible. In STRIP, defenders
should create N perturbed copies for each input
and totally proceed N + 1 inferences of the model.
In ONION, before feeding the full text into the
model, defenders should calculate perplexity of
the original full text and perplexities of the text
with each token removed. Therefore, assuming the
length of an input is [/ (e.g., over 200 in IMDB),
each input requires 1 model’s prediction and [ + 1
calculations of perplexity by GPT-2, which is ap-
proximately equal to [ + 1 predictions of BERT in
our setting. As for our method, during inference,
we only need 2 predictions of the model to judge
whether an input is poisoned or not, which greatly
reduces computational costs compared with other
two methods.

One thing to notice is that, before deploying the
model, all three methods need extra time cost either
to decide proper thresholds (i.e. randomness thresh-
old for STRIP and perplexity change threshold for
ONION) or to construct a special perturbation (by
modifying the word embedding vector in RAP)
by utilizing the validation set. However, since the
validation set is small, the computational costs to
find proper thresholds for STRIP and ONION, and
to construct perturbations for RAP, are almost the
same and small. Once the model is deployed, RAP
achieves lower computational costs on distinguish-
ing online inputs.

6 Conclusion

In this paper, we propose an effective online de-
fense method against textual backdoor attacks. Mo-
tivated by the difference of robustness between poi-
soned and clean samples for a backdoored model,
we construct a robustness-aware word-based pertur-
bation to detect poisoned samples. Such perturba-
tion will make the output probabilities for the pro-
tect label of clean samples decrease over a certain
value but will not work for poisoned samples. We
theoretically analyze the existence of such perturba-
tion. Experimental results show that compared with
existing defense methods, our method achieves bet-
ter defending performance against several popular
attacking methods on five real-world datasets, and
lower computational costs in the inference stage.

Broader Impact

Backdoor attacking has been a rising and severe
threat to the whole artificial intelligence commu-
nity. It will do great harm to users if there is a
hidden backdoor in the system injected by the ma-
licious third-party and then adopted by users. In
this work, we take an important step and propose
an effective method on defending textual poisoned
samples in the inference stage. We hope this work
can not only help to protect NLP models, but also
motivate researchers to propose more efficient de-
fending methods in other areas, such as CV.
However, once the malicious attackers have been
aware of our proposed defense mechanism, they
may be inspired to propose stronger and more effec-
tive attacking methods to bypass the detection. For
example, since our motivation and methodology
assumes that the backdoor trigger t* is static, there
are some most recent works (Zhang et al., 2020; Qi
et al., 2021a,b) focusing on achieving input-aware
attacks by using dynamic triggers which follow a
special trigger distribution. However, we point out
that in the analysis in Section 3.2, if we consider
t* as one trigger drawn from the trigger distribu-
tion rather than one static point, our analysis is
also applicable to the dynamic attacking case. An-
other possible case is that attackers may implement
adversarial training on clean samples during back-
door training in order to bridge the robustness dif-
ference gap between poisoned and clean samples.
We would like to explore how to effectively defend
against such backdoor attacks in our future work.

Acknowledgments

We sincerely thank all the anonymous reviewers
for their constructive comments and valuable sug-
gestions. This work was supported by a Tencent
Research Grant. This work is partly supported by
Beijing Academy of Artificial Intelligence (BAAI).
Xu Sun is the corresponding author of this paper.

References

Ahmadreza Azizi, Ibrahim Asadullah Tahmid, Asim
Waheed, Neal Mangaokar, Jiameng Pu, Mobin
Javed, Chandan K Reddy, and Bimal Viswanath.
2021. T-miner: A generative approach to defend
against trojan attacks on dnn-based text classifica-
tion. arXiv preprint arXiv:2103.04264.

John Blitzer, Mark Dredze, and Fernando Pereira. 2007.
Biographies, Bollywood, boom-boxes and blenders:
Domain adaptation for sentiment classification. In

8373


https://www.aclweb.org/anthology/P07-1056
https://www.aclweb.org/anthology/P07-1056

Proceedings of the 45th Annual Meeting of the As-
sociation of Computational Linguistics, pages 440—
447, Prague, Czech Republic. Association for Com-
putational Linguistics.

Alvin Chan, Yi Tay, Yew-Soon Ong, and Aston Zhang.
2020. Poison attacks against text datasets with con-
ditional adversarially regularized autoencoder. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 4175-4189, Online.
Association for Computational Linguistics.

Chuanshuai Chen and Jiazhu Dai. 2020. Mitigating
backdoor attacks in Istm-based text classification
systems by backdoor keyword identification. arXiv
preprint arXiv:2007.12070.

Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz
Koushanfar. 2019. Deepinspect: A black-box tro-
jan detection and mitigation framework for deep neu-
ral networks. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelli-
gence, IJCAI 2019, Macao, China, August 10-16,
2019, pages 4658-4664. ijcai.org.

Xiaoyi Chen, Ahmed Salem, Michael Backes, Shiqing
Ma, and Yang Zhang. 2020. Badnl: Back-
door attacks against nlp models. arXiv preprint
arXiv:2006.01043.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and
Dawn Song. 2017. Targeted backdoor attacks on
deep learning systems using data poisoning. arXiv
preprint arXiv:1712.05526.

Edward Chou, Florian Tramer, and Giancarlo Pelle-
grino. 2020. Sentinet: Detecting localized univer-
sal attacks against deep learning systems. In 2020
IEEE Security and Privacy Workshops (SPW), pages
48-54. IEEE.

Jiazhu Dai, Chuanshuai Chen, and Yufeng Li. 2019.
A backdoor attack against Istm-based text classifica-
tion systems. IEEE Access, 7:138872—138878.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Bao Gia Doan, Ehsan Abbasnejad, and Damith C
Ranasinghe. 2020. Februus: Input purification de-
fense against trojan attacks on deep neural network
systems. In Annual Computer Security Applications
Conference, pages 897-912.

Antigoni Founta, Constantinos Djouvas, Despoina
Chatzakou, Ilias Leontiadis, Jeremy Blackburn, Gi-
anluca Stringhini, Athena Vakali, Michael Siriv-
ianos, and Nicolas Kourtellis. 2018. Large scale

crowdsourcing and characterization of twitter abu-
sive behavior. In Proceedings of the International
AAAI Conference on Web and Social Media, vol-
ume 12.

Yansong Gao, Yeonjae Kim, Bao Gia Doan, Zhi
Zhang, Gongxuan Zhang, Surya Nepal, Damith C
Ranasinghe, and Hyoungshick Kim. 2019a. Design
and evaluation of a multi-domain trojan detection
method on deep neural networks. arXiv preprint
arXiv:1911.10312.

Yansong Gao, Change Xu, Derui Wang, Shiping Chen,
Damith C Ranasinghe, and Surya Nepal. 2019b.
Strip: A defence against trojan attacks on deep neu-
ral networks. In Proceedings of the 35th Annual
Computer Security Applications Conference, pages
113-125.

Siddhant Garg, Adarsh Kumar, Vibhor Goel, and
Yingyu Liang. 2020. Can adversarial weight pertur-
bations inject neural backdoors. In CIKM ’20: The
29th ACM International Conference on Information

and Knowledge Management, Virtual Event, Ireland,
October 19-23, 2020, pages 2029-2032. ACM.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg.
2017. Badnets: Identifying vulnerabilities in the ma-
chine learning model supply chain. arXiv preprint
arXiv:1708.06733.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2016, Las Ve-
gas, NV, USA, June 27-30, 2016, pages 770-778.
IEEE Computer Society.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton. 2012. Imagenet classification with deep convo-
lutional neural networks. In Advances in Neural In-
formation Processing Systems 25: 26th Annual Con-
ference on Neural Information Processing Systems
2012. Proceedings of a meeting held December 3-
6, 2012, Lake Tahoe, Nevada, United States, pages
1106-1114.

Keita Kurita, Paul Michel, and Graham Neubig. 2020.
Weight poisoning attacks on pretrained models. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2793—
2806, Online. Association for Computational Lin-
guistics.

Yige Li, Nodens Koren, Lingjuan Lyu, Xixiang Lyu,
Bo Li, and Xingjun Ma. 2021. Neural attention dis-
tillation: Erasing backdoor triggers from deep neural
networks. arXiv preprint arXiv:2101.05930.

8374


https://doi.org/10.18653/v1/2020.findings-emnlp.373
https://doi.org/10.18653/v1/2020.findings-emnlp.373
https://doi.org/10.24963/ijcai.2019/647
https://doi.org/10.24963/ijcai.2019/647
https://doi.org/10.24963/ijcai.2019/647
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/3340531.3412130
https://doi.org/10.1145/3340531.3412130
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://doi.org/10.18653/v1/2020.acl-main.249

Yiming Li, Tongqing Zhai, Baoyuan Wu, Yong Jiang,
Zhifeng Li, and Shutao Xia. 2020. Rethinking
the trigger of backdoor attack. arXiv preprint
arXiv:2004.04692.

Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg.
2018a. Fine-pruning: Defending against backdoor-
ing attacks on deep neural networks. In Interna-
tional Symposium on Research in Attacks, Intrusions,
and Defenses, pages 273—-294. Springer.

Yingqi Liu, Ma Shiqing, Yousra Aafer, Wen-Chuan
Lee, Juan Zhai, Weihang Wang, and Xiangyu Zhang.
2018b. Trojaning attack on neural networks. In
25th Annual Network and Distributed System Secu-
rity Symposium.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu.
2020. Reflection backdoor: A natural backdoor at-
tack on deep neural networks. In European Confer-
ence on Computer Vision, pages 182—-199. Springer.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142—150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi,
Omar Fawzi, and Pascal Frossard. 2017. Universal
adversarial perturbations. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR
2017, Honolulu, HI, USA, July 21-26, 2017, pages
86-94. IEEE Computer Society.

Tuan Anh Nguyen and Anh Tran. 2020. Input-aware
dynamic backdoor attack. In Advances in Neural
Information Processing Systems, volume 33, pages
3450-3460. Curran Associates, Inc.

Fanchao Qi, Yangyi Chen, Mukai Li, Zhiyuan Liu, and
Maosong Sun. 2020. Onion: A simple and effec-
tive defense against textual backdoor attacks. arXiv
preprint arXiv:2011.10369.

Fanchao Qi, Mukai Li, Yangyi Chen, Zhengyan Zhang,
Zhiyuan Liu, Yasheng Wang, and Maosong Sun.
2021a. Hidden killer: Invisible textual backdoor at-
tacks with syntactic trigger. In Proceedings of the

59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 443—-453, Online. As-
sociation for Computational Linguistics.

Fanchao Qi, Yuan Yao, Sophia Xu, Zhiyuan Liu, and
Maosong Sun. 2021b. Turn the combination lock:
Learnable textual backdoor attacks via word substi-
tution. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 4873-4883, Online. Association for Computa-
tional Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Aniruddha Saha, Akshayvarun Subramanya, and
Hamed Pirsiavash. 2020. Hidden trigger backdoor
attacks. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelli-
gence Conference, IAAI 2020, The Tenth AAAI Sym-
posium on Educational Advances in Artificial Intel-
ligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, pages 11957-11965. AAAI Press.

Liwei Song, Xinwei Yu, Hsuan-Tung Peng, and
Karthik Narasimhan. 2020. Universal adversarial
attacks with natural triggers for text classification.
arXiv preprint arXiv:2005.00174.

Lichao Sun. 2020. Natural backdoor attack on text data.
arXiv preprint arXiv:2006.16176.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner,
and Sameer Singh. 2019. Universal adversarial trig-
gers for attacking and analyzing NLP. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-1JCNLP), pages 2153-2162, Hong
Kong, China. Association for Computational Lin-
guistics.

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li,
Bimal Viswanath, Haitao Zheng, and Ben Y Zhao.
2019. Neural cleanse: Identifying and mitigating
backdoor attacks in neural networks. In 2019 IEEE
Symposium on Security and Privacy (SP), pages
707-723. IEEE.

Wenkai Yang, Lei Li, Zhiyuan Zhang, Xuancheng Ren,
Xu Sun, and Bin He. 2021a. Be careful about poi-
soned word embeddings: Exploring the vulnerabil-
ity of the embedding layers in NLP models. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
2048-2058, Online. Association for Computational
Linguistics.

8375


https://www.aclweb.org/anthology/P11-1015
https://www.aclweb.org/anthology/P11-1015
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://doi.org/10.1109/CVPR.2017.17
https://doi.org/10.1109/CVPR.2017.17
https://proceedings.neurips.cc/paper/2020/file/234e691320c0ad5b45ee3c96d0d7b8f8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/234e691320c0ad5b45ee3c96d0d7b8f8-Paper.pdf
https://doi.org/10.18653/v1/2021.acl-long.37
https://doi.org/10.18653/v1/2021.acl-long.37
https://doi.org/10.18653/v1/2021.acl-long.377
https://doi.org/10.18653/v1/2021.acl-long.377
https://doi.org/10.18653/v1/2021.acl-long.377
https://doi.org/10.18653/v1/D19-1221
https://doi.org/10.18653/v1/D19-1221
https://doi.org/10.18653/v1/2021.naacl-main.165
https://doi.org/10.18653/v1/2021.naacl-main.165
https://doi.org/10.18653/v1/2021.naacl-main.165

Wenkai Yang, Yankai Lin, Peng Li, Jie Zhou, and
Xu Sun. 2021b. Rethinking stealthiness of backdoor
attack against NLP models. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 5543-5557, Online. As-
sociation for Computational Linguistics.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-
12, 2015, Montreal, Quebec, Canada, pages 649—
657.

Xinyang Zhang, Zheng Zhang, and Ting Wang. 2020.
Trojaning language models for fun and profit. arXiv
preprint arXiv:2008.00312.

Zhengyan Zhang, Guangxuan Xiao, Yongwei Li, Tian
Lv, Fanchao Qi, Yasheng Wang, Xin Jiang, Zhiyuan
Liu, and Maosong Sun. 2021. Red alarm for
pre-trained models: Universal vulnerabilities by
neuron-level backdoor attacks.  arXiv preprint
arXiv:2101.06969.

Shihao Zhao, Xingjun Ma, Xiang Zheng, James Bai-
ley, Jingjing Chen, and Yu-Gang Jiang. 2020. Clean-
label backdoor attacks on video recognition models.
In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2020, Seattle, WA,
USA, June 13-19, 2020, pages 14431-14440. IEEE.

A Proof of Theorem 1

Proof 1 Suppose Ax is a small perturbation,
Vzo € D\DT, according to Taylor Expan-
sion, po-(v2 + Aziyr) — pe-(z23yr) =
[Vaopo- (z23y7)] Az +  O([|Azf?) <

2Hv$2p6* (SUQQyT)H?HAxHQ‘ Deﬁne
1 5 — 02
b= — 2 . As long as
2 sup ||Va,pes(z2;97)]2
xo~D\DT

|Az|l2 < b, we have pp«(x2 + Azx;yr) <
po-(x25yr) + (3 — 02) < 3. That is,
9 + Az € D*.

Vao € D\DT, for any Ax satisfies the above
condition that x9 + Az € D*,

po-(x9 + " + Az;yr)
= po- (2 + t5597) + [Vayrropo- (v2 + 55 y1)] Az (5)
+0(|Az|?).

where

SalES]

We can get ||V zy 41+ po= (22 + %5 y7) ||l2 <

sup  pg=(x2 + t*5yr) — %. Other-
x9~D\DT
wise, there should exist a To € D\DT such that

a X
|V zo+tx o= (22 + 55 y7)||2 > b Select A% such

a =

Dataset #'of samples Ayg. Lejngth
train valid test train valid test

IMDB 23K 2K 25K 234 230 229

Yelp 504K 56K 38K 136 136 135

Amazon 3,240K 360K 400K 79 79 78

Twitter 70K 8K 9K 17 17 17
Jigsaw 144K 16K 64K 70 70 64
Table 5: Statistics of datasets.

Dataset Trigger Sentence
I have watched this movie with my
IMDB friends at a nearby cinema last
weekend.
Yel I have tried this place with my
P friends last weekend.
I have bought it from a store with my
Amazon .
friends last weekend.
Twitter Here are my thOl']ght'S and my
comments for this thing.
Jigsaw Here are my thoughts and my

comments for this thing.

Table 6: Trigger sentences for BadNet-SL.

that ||AzZ||2 = b and AT = —Vzy1i+po- (T2 +
t*;yr), then pg=(To + t* + AZ;yr) < % This is
not consistent with our assumption (2).

Choose Ax as our robustness-aware perturba-
tion f,

po(xg + t* + & yr) — po= (w2 + t*; yr)

= [Vay4eepo+ (22 + 5 y7)] T+ O([E]?) (6

- _ 2a % o (9) '

- b
Therefore, If there exists the relationship that
2a % o(9) T T
— < 0, thenVx1 € D' andVxy € D\D*,
we have pg«(z2 +t*; yr) — po- (z2 + t* + & yr) <
6 < po=(z1:y7) — po- (T1 + 15 y7).-

B Datasets

The statistics of all datasets we use in our experi-
ments are listed in Table 5.

C Trigger Sentences for BadNet-SL

The trigger sentences of BadNet-SL on each dataset
are listed in Table 6.

8376


https://doi.org/10.18653/v1/2021.acl-long.431
https://doi.org/10.18653/v1/2021.acl-long.431
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://doi.org/10.1109/CVPR42600.2020.01445
https://doi.org/10.1109/CVPR42600.2020.01445

Target  Attack

Dataset  Method Clean Acc./F1  ASR
Clean 93.36 —
IMDB  BadNet-SL 93.10 96.34
BadNet-RW 93.37 96.30
EP 93.35 96.29
Clean 97.61 —
Yelp BadNet-SL 97.30 98.60
BadNet-RW 97.37 98.63
EP 97.59 98.63
Clean 97.03 —
Amazon BadNet-SL 96.98 100.00
BadNet-RW 96.96 99.97
EP 96.99 99.98
Clean 93.89 —
Twitter BadNet-SL 94.03 100.00
BadNet-RW 93.73 100.00
EP 93.88 9991
Clean 80.79 —
Jigsaw BadNet-SL 81.29 99.56
BadNet-RW 80.62 98.87
EP 80.79 98.09

Table 7: Attack success rates (%) and clean accu-
racy/F1 (%) of three typical attacking methods on each
dataset in our main setting.

Target Poisoned Attack
Dataset Dataset  Method Clean Acc./Fl ASR
Yel RIPPLES 92.82 98.44
c’p BadNet-SL 94.35 96.35
IMDB
A RIPPLES 91.51 98.60
Mazon g dNet-SL 94.86 96.06
Twitter Jiesaw  RIPPLES 93.86 98.10
g BadNet-SL 94.10 100.00

Table 8: Attack success rates (%) and clean accu-
racy/F1 (%) of RIPPLES and BadNet-SL under the set-
ting where the victim model can be further fine-tuned.

D Detailed Attacking Results of All
Attacking Methods

We display the detailed attacking results of BadNet-
SL, BadNet-RW and EP on each target dataset in
our main setting in Table 7. In this setting, we only
insert one trigger into each input for testing.

Table 8 displays the attacking results of RIP-
PLES and BadNet-SL under another setting where

the user will further fine-tune the backdoored
model before deploy it. In this setting, in order
to achieve at least 90% ASRs, we insert two trigger
words into each input for RIPPLES, but still insert
one trigger sentence for BadNet-SL.

E Concrete Implementations of Defense
Methods

E.1 Descriptions of Two Baseline Methods

STRIP: Firstly, defenders create IV replica of the
input , and randomly replace k% words with the
words in samples from a non-targeted classes in
each copy text independently. Then, defenders
calculate the normalized Shannon entropy based
on output probabilities of all copies of z as

1 N M
H=5> > —ulogy! @

n=1i=1

where M is the number of classes, y;" is the output
probability of the n-th copy for class i. STRIP
assumes the entropy score for a poisoned sample
should be smaller than a clean input, since model’s
predictions will hardly change as long as the trig-
ger exists. Therefore, defenders detect and reject
poisoned inputs whose H’s are smaller than the
threshold in the testing. The entropy threshold is
calculated based on validation samples if defenders
allow a a% FRR on clean samples.

ONION: Motivated by the observation that ran-
domly inserting a meaningless word in a natural
sentence will cause the perplexity of the text in-
crease a lot, ONION is proposed to remove suspi-
cious words before the input is fed into the model.
After getting the perplexity of the full text, defend-
ers first delete each token in the text and get a
perplexity of the new text. Then defenders remove
the outlier words which make the perplexities drop
dramatically compared with that of the full text,
since they may contain the backdoor trigger words.
Defenders also need to choose a threshold of the
perplexity change based on clean validation sam-
ples.

E.2 Details and Hyper-parameters in
Implementing All Defense Methods

As for our method RAP, according to the theorem
we know that, there is a large freedom to choose
Clow as long as it is not too small (i.e. almost
near 0), and under the same circumstances, the de-
fending performance would be better for relatively

8377



smaller ¢;,,,. In the constructing stage, we set the
lower bound ¢;,, and upper bound c,,;, of the output
probability change are 0.1 and 0.3 separately in our
main setting. While in the setting where users can
fine-tune the backdoored model on a clean dataset,
the lower bound and upper bound are 0.05 and 0.2
separately, since we think the backdoor effect be-
comes weaker in this case, so we need to decrease
the threshold 4. While updating the word embed-
ding parameters of the RAP word, we set learning
rate as 1 x 1072 and the batch size as 32. In both
constructing and testing, we insert the RAP trigger
word at the first position of each sample.

As for STRIP, we first conduct experiments to
choose a proper number of copies IV as 20 which
balance the defending performance and the com-
puting cost best. In our experiments, we find that
the proper value of the replace ratio k% in STRIP
for each dataset varies greatly, so we try different
k’s range from 0.05 to 0.9, and report the detect-
ing performance with the best & for each attacking
method and dataset.

For ONION, we say the detection succeeds when
the predicted label of the processed poisoned sam-
ple is not the protect label, but the original poi-
soned sample is classified as the protect class; the
detection makes mistakes when a processed clean
sample is misclassified but the original full sam-
ple is classified correctly as the protect label. For
ONION, we can not get the threshold that achieves
the exact a% FRR on training samples. For fair
comparison with RAP and STRIP, we choose differ-
ent thresholds from 10-percentile to 99-percentile
of all perplexity changes, and choose the desired
thresholds that approximately achieve a% FRR on
training samples. Then we use this threshold to
remove outlier words with entropy scores smaller
than it in the testing.

F Full Defending Results of All Methods

In our main paper, we only display the results when
FRRs of all defense methods on training samples
are chosen as 1%. In here, we display full results
when FRR on training samples are 0.5%, 1%, 3%
and 5%. We also display the best replace ratio k
we choose in STRIP for each attacking method and
dataset in the main setting in Table 9.

Table 10 and Table 11 display the full results
in our main setting. Some results of ONION in
Table 10 and Table 12 are missing, because we can
not get the desired thresholds correspond to 3% and

Target Attack

Dataset  Method Best £
BadNet-SL 0.05
IMDB BadNet-RW 0.40
EP 0.40
BadNet-SL 0.05
Yelp BadNet-RW 0.60
EP 0.60
BadNet-SL 0.05
Amazon BadNet-RW 0.05
EP 0.30
BadNet-SL 0.05
Twitter BadNet-RW 0.05
EP-RW 0.05
BadNet-SL 0.60
Jigsaw  BadNet-RW 0.70
EP 0.70

Table 9: Best replace ratio k (%) in STRIP against each
attacking method and on each dataset.

5% FRRs. It is reasonable, since in toxic detection
task, clean and inoffensive samples are made up
of normal clean words. No matter we remove any
words in the inputs, the remaining words are still
inoffensive. Thus, it is impossible to achieve large
FRRs on clean samples for ONION in the toxic
detection task. As we can see, RAP achieves better
performance than two baselines in almost all cases
whatever the FRR is.

There is another interesting phenomenon in Ta-
ble 10 and Table 11 that for STRIP and RAP, the
FAR on test samples decreases when correspond-
ing FRR increase, which is expected since we get
better detecting ability if we allow more clean sam-
ples to be wrongly detected, but this is not true
for ONION. For ONION, the FAR may increases
when enlarging the FRR. Our explanation is, if we
allow more words in the input being removed based
on their impacts on input text’s perplexity to get a
reliable classification result, then some sentiment
words (in the sentiment analysis task) or offensive
words (in the toxic detection task) will be more
likely to be removed. If so, poisoned samples will
be more likely be to regarded as clean samples, '’

1%For ONION, we do not want to remove those key words
which are crucial for classification. Otherwise, it is mean-
ingless to implement this defending mechanism since it will
change the pattern and meaning of the original input.

8378



Target  Attack

FRR (%)

‘ FRR (%) on Testing Samples ‘ FAR (%) on Testing Samples

on Training
Dataset Method ¢ lec | STRIP ONION ~ RAP| STRIP ONION  RAP
0.5 05858 05630  0.6639 | 31.0160 933661  0.0308
BadNet.SL 1.0 0.8982 07923  1.1325|29.8536 93.5811  0.0307
3.0 2.8119 _ 34758 | 23.8907 —0.0307
5.0 49014 53309 | 21.8944 —0.0306
0.5 05747 05500 0.7728 | 11.7900 49.8926  0.0000
' 1.0 09314 07135 12881 | 107461 52.1953  0.0000
Twitter BadNet-RW 2.9924 — 3.8248| 9.1803 —0.0000
5.0 4.8949 56678 | 84434 —0.0000
0.5 04348 05047 0.7287 | 88.3547 384758  0.1844
P 1.0 0.8273 08091  1.1621 | 87.8937 55.9004  0.1844
3.0 2.6984 29545 | 83.7757 01230
5.0 4.9044 45893 | 80.7806 0.0922
0.5 0.8026 05018 0.8738 | 864728 99.9800  1.2825
BadNet.SL. 1.0 14113 1.0037  1.3225|82.8136 98.6750  0.0824
3.0 3.8593 39750 | 76.5178 —0.0660
5.0 6.1759 61815 | 64.8751 — 0.0660
0.5 0.8463 04698  0.7881 | 80.0711 33.5800  0.0000
_ 1.0 14778 1.0510  1.6123 | 72.8426 27.6554  0.0000
Jigsaw ~BadNet-RW 3.0 3.6725 37298 | 48.6922 —0.0000
5.0 6.0244 54756 | 36.5685 —0.0000
0.5 08525 05044 0.8791 | 80.6614 33.1437 12.9279
b 1.0 14922 1.0087  1.6065 | 68.8210 27.2303  9.6714
3.0 3.6837 40896 | 48.9646 — 87362
5.0 6.4451 62057 | 38.5772 61250

Table 10: Full results in the toxic detection task in the main setting.

which causes FAR’s increasing on test samples.

Table 12 displays the full results of all three
methods in another setting where the backdoored
model will be fine-tuned on a clean dataset before
deployed. RAP also has satisfactory performance
in this setting, which indicates our method can be

feasible in both settings.

8379



FRR (%)

‘ FRR (%) on Testing Samples ‘ FAR (%) on Testing Samples

Target  Attack .
Dataset Method on Training

Samples STRIP ONION RAP| STRIP ONION  RAP

0.5 0.4984 0.5017  0.4253|29.7663 99.9792 1.9428

BadNet.SL 1.0 0.7745 1.0689  0.7270 | 27.7821 99.2316 1.3533

3.0 2.6407 3.0977 2.6484 | 21.6717 88.3697 1.0378

5.0 47219 53010  4.4509 | 18.2558 79.2316 0.7701

0.5 0.5480 0.5991  0.6593 | 8.1127  9.5622 0.2481

MDE  BadNet-RW 1.0 0.9848 1.0148  1.0275| 3.8804  7.7179 0.2001

3.0 2.8686 2.9953  2.8805| 0.6721  9.6370 0.1681

5.0 5.5489 52203  4.6240 | 02241 10.1022 0.1440

0.5 0.6530 0.6777 0.4410| 1.4706 85411 0.6230

Ep 1.0 09165 1.1233 07830 | 1.1217  6.5803 0.5240

3.0 3.1387 27652  3.7737| 0.2908  7.7767 0.4800

5.0 5.0765 4.8822 57933 | 0.1579  8.0592 0.4600

0.5 0.5792  0.6350 0.5249 | 32.2976  99.8987 0.0748

BadNet.SL 1.0 1.1257 1.1014  0.9289 | 31.0152  99.5343  0.0694

3.0 3.1967 3.2626  3.0437 | 27.9408 75.4991 0.0641

5.0 5.1475 5.0707  5.0328 | 25.3237  66.0592  0.0640

0.5 0.4937 0.4529  0.4720]29.3211 39.6425 0.0106

1.0 0.9333 1.0513  1.0472 [ 313790  3.4578 0.0000

Yelp BadNet-RW 3.0 2.8956 2.8035  3.3317[19.0369  7.0011 0.0000

5.0 50183 5.8751 52146 | 14.6004 11.5582  0.0000

0.5 0.4428 57589  0.5022 | 59.8828  40.6990 0.2369

Ep 1.0 09127 1.1929  0.9696 | 48.0131  3.6179 0.0211

3.0 3.0515 3.2497  3.0245|27.3193  5.0213 0.0053

5.0 5.1579 5.7029  4.8825(20.2240 83778 0.0053

0.5 0.5172 0.4947  0.5064 | 1.3725 100.0000 0.0000

BadNet.SL 1.0 0.8948 0.9688  1.0112| 1.3675 100.0000 0.0000

3.0 27207 2.8653  2.8328 | 1.3275 91.2800 0.0000

5.0 46886 5.4421  5.0452| 1.2975 76.8600 0.0000

0.5 0.5159 0.7635 04606 | 5.1613 31.1553 0.0110

1.0 0.9905 13206 09114| 5.0812 47620 0.0101

Amazon BadNet-RW 3.0 2.8477 33429 29143 | 5.0012  6.5026 0.0080

5.0 48493 5.1588  4.8700 | 4.9612  7.6831 0.0080

0.5 0.5349 0.6178  0.5801 | 40.5814  16.0800 0.0911

Ep 1.0 0.9465 1.0699  1.0320 | 23.0423 53600 0.0690

3.0 3.4008 3.0247 3.3300 | 8.8393  8.3800 0.0540

5.0 5.4938 49382  5.1497 | 8.0205 10.3800 0.0505

Table 11: Full results in the sentiment analysis task in the main setting.

8380



FRR (%) | FRR (%) on Testing Samples | FAR (%) on Testing Samples
on Training

Target  Poisoned Attack

Dataset  Dataset  Method g, o0 STRIP ONION  RAP | STRIP ONION  RAP
0.5 05580 0.6775 05932 | 49.0490 51.6822  0.7680
RIPPLES 1.0 13393 1.1353  1.0411 | 45.6456 33.6455  0.6160
3.0 32366 2.8932 3.0192 | 249249 22.5370  0.2800
Yelp 5.0 5.4688 52097 5.1796 | 162162 21.8978  0.1920
05 06376  0.6729 0.6769 | 60.7447 89.0070  2.4656
BadNet-SL 1.0 12752 1.1583  1.2305 | 58.4043 829044  2.2083
3.0 3.1881 3.4835 44339 | 53.0851 72.9077  1.7849
IMDEB 5.0 47821 53743 53745 | 50.8521 66.4563  1.6188
0.5 0.7931 04508 | 47.2211 — 17.5760
RIPPLES 1.0 13148 1.6271 1.0397 | 227586 51.6511  8.8640
3.0 33242 3.1044 3.0364 | 55984 31.0832  5.8640
5.0 50042 54502 49411 | 0.2028 202394  3.1680
Amazon
0.5 04145 04920 0.7876 | 11.5583 99.6515  0.6662
BadNet-SL 1.0 07218  1.0340 13113 | 10.6295 97.9089  0.5662
3.0 25907 32605 3.7813 | 85973 83.4288  0.5579
5.0 44560 50117 57997 | 6.1847 77.1720  0.5496
0.5 07659 05326 0.6499 | 43.9024 56.0216  9.4867
RIPPLES 1.0 12765 1.0061 1.0833 | 427663 525768  4.1033
3.0 3.6724  3.0183  3.1121 | 38.5907 583519  1.8779
. . 5.0 6.5986 — 48257 | 38.5293 — 09916
Twitter  Jigsaw
0.5 03563 0.5470 0.7441 | 89.0666 932453  0.0000
1.0 1.0744 — 13510 | 70.5649 —  0.0000
BadNet-SL 3.0 2.9693 — 31721 | 59.9110 —  0.0000
5.0 4.4345 51889 | 53.4326 —  0.0000

Table 12: Full results of all three methods in the setting where the backdoored model will be fine-tuned on a clean
dataset before deployed.

8381



