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Abstract

Joint extraction of entities and relations from
unstructured texts to form factual triples is
a fundamental task of constructing a Knowl-
edge Base (KB). A common method is to de-
code triples by predicting entity pairs to ob-
tain the corresponding relation. However, it
is still challenging to handle this task effi-
ciently, especially for the overlapping triple
problem. To address such a problem, this pa-
per proposes a novel efficient entities and rela-
tions extraction model called TDEER, which
stands for Translating Decoding Schema for
Joint Extraction of Entities and Relations. Un-
like the common approaches, the proposed
translating decoding schema regards the rela-
tion as a translating operation from subject
to objects, i.e., TDEER decodes triples as
subject + relation → objects. TDEER can
naturally handle the overlapping triple prob-
lem, because the translating decoding schema
can recognize all possible triples, including
overlapping and non-overlapping triples. To
enhance model robustness, we introduce neg-
ative samples to alleviate error accumulation
at different stages. Extensive experiments
on public datasets demonstrate that TDEER
produces competitive results compared with
the state-of-the-art (SOTA) baselines. Fur-
thermore, the computation complexity anal-
ysis indicates that TDEER is more efficient
than powerful baselines. Especially, the pro-
posed TDEER is 2 times faster than the re-
cent SOTA models. The code is available at
https://github.com/4AI/TDEER.

1 Introduction

Extraction of entities and relations from unstruc-
tured texts is one of the most essential informa-
tion extraction tasks. It aims to extract entities
and their corresponding semantic relations from
unstructured texts, which are usually presented in a
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Normal  Shanghai is located in China.

EPO  Jackie Chan starred in his directed film
 Police Story.

SEO  Jackie R. Brown was born in Washinton,
 the capital of the United States.
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Figure 1: Cases of Normal, EntityPairOverlap (EPO),
and SingleEntityOverlap (SEO) overlapping triples.

triple form of (subject, relation, object), e.g., (Mi-
crosoft, co-founder, Bill Gates). It is also a crucial
step in building a large-scale KB and exerts an
important role in the development of web search
(Szumlanski and Gomez, 2010), question answer-
ing (Fader et al., 2014), biomedical text mining
(Huang and Lu, 2016), etc.

Traditional approaches (Zelenko et al., 2003;
Chan and Roth, 2011; Rink and Harabagiu, 2010)
handle this task in a pipeline manner, i.e., extract-
ing the entities first and then identifying their re-
lations. The pipeline framework simplifies the ex-
traction task, but it ignores the relevance between
entity identification and relation prediction. To ad-
dress this problem, several joint learning models
have been proposed and can be categorized into
feature-based models and end-to-end deep mod-
els. Feature-based models (Li and Ji, 2014; Ren
et al., 2017) introduce a complex process of fea-
ture engineering and profoundly depend on Natural
Language Processing tools for feature extraction.
More recently, the end-to-end neural network mod-
els (Gupta et al., 2016; Zheng et al., 2017; Zeng
et al., 2018; Fu et al., 2019; Wei et al., 2020) have
become the mainstream method for relation extrac-
tion tasks. Such models utilize the learned repre-
sentation from pre-trained language models and are
a more promising approach than manual features.

More research interests have been concerned
with complicated entity and relation extraction
problems, such as the overlapping triple problem.

https://github.com/4AI/TDEER
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Zeng et al. (2018) summarized the overlapping
triple problem into three categories, i.e. Normal,
SEO, and EPO, which are depicted in Figure 1.
Many methods have been proposed to address the
overlapping issue, for instance, encoder-decoder
framework (Zeng et al., 2018) and decomposition
approaches (Yu et al., 2020; Wei et al., 2020).
However, such approaches still suffer from set-
backs when handling the overlapping triple prob-
lem. More specifically, the encoder-decoder frame-
work can only resolve the one-word entity overlap-
ping problem and fail to handle the multi-word en-
tity overlapping problem. Meanwhile, the decom-
position approaches suffer error accumulation be-
tween dependent stages. To address these problem,
Wang et al. (2020) presented a one-stage method,
TPLinker, that transforms the joint extraction task
into a token pair linking problem to resolve the
overlapping triple problem. TPLinker does not
contain any inter-dependent stages, hence it can
alleviate error accumulation. However, processing
all token pairs at encoder layers suffers from high
computational complexity, which is an obstacle for
TPLinker to encode long text.

We present a novel framework TDEER to jointly
extract the entities and relations by a translating
decoding schema to handle the overlapping triple
problem. More concretely, TDEER interprets the
relation as a translating operation from subject en-
tity to object entities, i.e., it decodes triples by
subject + relation → objects. The proposed
translating decoding schema can effectively resolve
the overlapping triple problem. TDEER iterates all
pairs of subjects and relations to recognize objects
(or no object), hence all possible triples, including
overlapping or non-overlapping triples, can be con-
sidered. We propose a negative sample strategy to
detect and alleviate error propagation in different
stages. This strategy can enable TDEER to alle-
viate error accumulation to achieve higher results.
TDEER is an efficient approach as it first retrieves
all possible relations and entities, then uses distin-
guished entities and relations to decode triples. By
doing this, the search space can be reduced, thus
it is more efficient than previous works. The com-
putational complexity of the proposed translating
decoding schema is O(n+ sr), where n is the se-
quence length, s is the number of subjects in the
input sentence, r denotes the number of relations
in the input sentence. Extensive experiments il-
lustrate that TDEER achieves better results than

SOTA models in most datasets and is competent in
handling the overlapping triple problem.

In summary, our contributions are as follows: (1)
We propose a novel translating decoding schema
for joint extraction of entities and relations from
unstructured texts. (2) TDEER can handle the in-
tractable overlapping triple problem effectively and
efficiently. (3) Notably, TDEER is about 2 times
faster than the current SOTA models.

2 Related Work

The pipeline approach and joint approach are the
two mainstream methods for extracting entities and
relations from unstructured texts.

Traditionally, extracting entities and relations to
form triples has been studied as two separated inde-
pendent tasks: Named Entity Recognition (NER)
and Relation Extraction. Mintz et al. (2009) intro-
duced a distant supervision model, and Hoffmann
et al. (2011) used a weak supervision method to
extract entities and relations. The features of dis-
tant supervision and weak supervision approaches
are often derived from Natural Language Process-
ing (NLP) tools. It suffers from data labeling
errors that inevitably exist in NLP tools. To ad-
dress this problem, Zeng et al. (2015) employed
a multi-instance learning approach to tackle the
problem of data labeling errors. Qin et al. (2018)
applied reinforcement learning for extraction of
entities and relations. Although the pipeline mod-
els produced promising results, they neglect the
triple-level dependencies between entities and rela-
tions. Recently, Zhong and Chen (2021) presented
a pipeline approach incorporating entity informa-
tion for entity and relation extraction.

To exploit the dependencies between entities and
relations, multiply joint extraction models have
been proposed. Zheng et al. (2017) introduced a
unified tagging scheme and transformed the rela-
tionship extraction problem into a sequence label-
ing problem. Zeng et al. (2018) applied a sequence-
to-sequence model with a copy mechanism to solve
the overlapping triple problem. Trisedya et al.
(2019) employed the encoder-decoder framework
to jointly extract triples from sentences and map
them into an existing KB. Fu et al. (2019) ap-
plied graph convolutional networks to jointly learn
named entities and relations. Dai et al. (2019) pre-
sented a unified joint extraction model to tag entity
and relation labels directly according to a query
word position, which can simultaneously extract
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all entities and their types. Wei et al. (2020) pro-
posed a cascade binary tagging framework. Wang
et al. (2020) formulated the joint extraction as a
token pair linking problem.

Moreover, some knowledge representation mod-
els (Bordes et al., 2013; Weston et al., 2013; Wang
et al., 2014; Tu et al., 2017) are adopted to refine
the triple extraction model via scoring candidate
facts by knowledge graph embedding. Although
some of them also use the “translation” idea, the
function is different from ours. In their setting, they
use the “translation” idea to construct rank-based
knowledge graph embedding models. They can-
not be used to extract entities and relations from
texts directly. In our setting, the “translation” idea
is applied to end-to-end joint extract entities and
relations from text.

The proposed translating decoding schema is
a novel approach to solve the overlapping triple
problem effectively and efficiently, which makes
our model crucially different from previous works.

3 Methodology

This paper proposes a three-stage model, TDEER.
In the first stage, TDEER uses a span-based entity
tagging model to extract all subjects and objects.
In the second stage, TDEER employs the multi-
label classification strategy to detect all relevant
relations. In the third stage, TDEER iterates the
pairs of subjects and relations to identify respec-
tive objects by the proposed translating decoding
schema. Figure 2 shows the generic framework of
TDEER. In subsequent sections, we will describe
the three stages of TDEER in detail.

3.1 Input Layer
The input of TDEER is a sentence T . We pad
the sentence to keep a uniform length n for all
sentences. For an LSTM-based model, we first map
each word into a k-dimensional continuous space
and obtains the word embedding ti ∈ Rk. Then we
concatenate all word vectors to form a k×nmatrix
as model input: t = [t1, t2, . . . , tn]. we employ
LSTM on the embedding matrix to produce latent
semantic feature map X:

X = LSTM(t). (1)

As for a BERT-based model, TDEER extracts fea-
ture map via the pre-trained BERT (Devlin et al.,
2019) over text input:

X = BERT(T ). (2)

3.2 Entity Tagging Model
To obtain entities and their positions efficiently, we
adopt a span-based tagging model following prior
works (Yu et al., 2020; Wei et al., 2020). We apply
two binary classifiers to predict the start and end
position of entities respectively. The operations on
each token in a sentence are as follows:

pstarti = σ(WstartXi + bstart), (3)

pendi = σ(WendXi + bend), (4)

where pstarti and pendi stand for the probabilities
of recognizing the i-th token in input sequence as
the start and end position of an entity, respectively.
σ(·) denotes a sigmoid activation function.

The entity tagging model is trained by minimiz-
ing the following loss function:

Le = − 1

n
(log pstartθ (s|X) + log pendθ (s|X)),

(5)

where pθ(s|X) =
∏n
i=1 p

I{yi=1}
i (1 − pi)

I{yi=0},
pstartθ is the likelihood for the start positions, and
pendθ is the likelihood for the end positions.

We apply the entity tagging model to obtain all
subjects and objects in one sentence. Detected
subjects and objects are denoted as Ωs and Ωo,
respectively. The extracted entity is presented into
a tuple like (start, end).

3.3 Relation Detector
In general, more than one relation can be detected
in a sentence. For example, there are four relations
Star In, Direct Movie, Live In, and Capital Of in
the sentence in Figure 2. To identify related rela-
tions in a sentence, we adopt a multi-label classifi-
cation strategy. For the BERT-based/LSTM-based
model, we project the “[CLS]” token/last output
(LO) representation into a relation-detection space
for multi-label classification, as follows:

r = σ(WrelXCLS/LO + brel), (6)

where σ(·) denotes sigmoid function.
The relation detector minimizes the following bi-

nary cross-entropy loss function to detect relations:

Lr = − 1

n

n∑
i=1

[yilog(ri) + (1− yi)log(1− ri)] ,

(7)
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Figure 2: The generic framework of TDEER. In this example, TDEER first identifies Jackie Chan and Beijing as
subjects and recognizes Beijing, China, and Police Story as objects. Then TDEER detects four involved relations:
Star In, Direct Movie, Live In, and Capital Of. Finally, TDEER decodes triples by iterating all pairs of subjects
and relations to recognize objects: (Jackie Chan, Star In)→ Police Story, (Jackie Chan, Direct Movie)→ Police
Story (So far, the EPO problem can be resolved.), (Jackie Chan, Live In)→ (Beijing, China), ..., (Beijing, Capital
Of)→ China (by now, the SEO problem can be resolved).

where yi ∈ {0, 1} indicates the ground truth label
of relations. We denote the detected relations in a
sentence as Ωr.

3.4 Translating Decoding Schema
We iterate the pairs of detected subjects Ωs and
relations Ωr to predict the start positions of objects.
For each subject and relation pair, we first combine
the representation of subject and relation. Next, we
use the attention mechanism to obtain a selective
representation, which is expected to assign higher
weights to possible positions of objects. Finally, we
pass the selective representation to a fully-connect
layer to get the output, i.e. the positions of objects.

More concretely, for the i-th subject in Ωs and
j-th relation in Ωr, TDEER takes the averaged
vector span representation between the start and
end tokens of the subject as visub. TDEER maps
the relation into a continuous space with the same
feature dimension as visub to produce the relation
embedding vector ejrel. Then TDEER applies a
fully-connect layer to encode the relation:

vjrel = FullyConnect(ejrel). (8)

TDEER links subject and relation via addition op-

eration, as follows:

u = visub + vjrel. (9)

We adopt the addition operation because it is in-
tuitive, and it does not change the tensor shape of
inputs, which is convenient for attention computa-
tion.

Next, TDEER applies the attention mechanism
to obtain the selective representation.

A = softmax(
QKT

√
dk

)V

Q = Wquery(X + u) + bquery

K = Wkey(X + u) + bkey

V = Wvalue(X + u) + bvalue,

(10)

where dk is the dimension of the attention key. Fur-
thermore, TDEER adopts a binary classifier to iden-
tify the start positions of objects given the current
subject and relation.

pobj_start
i = σ(WtransAi + btrans), (11)

where pobj_start
i indicates the probability of identi-

fying the i-th token in input sequence as the start
position of an object entity.
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In this stage, TDEER minimizes the following
loss function to discern the start positions of object
entities.

Lt = − 1

n

n∑
i=1

[
I{yi = 1}log(pobj_start

i )+

I{yi = 0}log(1− pobj_start
i )

]
,

(12)

where I is the indicator function. After obtaining
the start positions of objects, TDEER takes the
corresponding entities from the Ωo which has the
same start position as the final objects. If no start
positions match, there is no triple for the current
subject and relation.

3.5 Negative Sample Strategy

Most entities and relations extraction models con-
sisting of multiple components suffer from error ac-
cumulation. Errors from upstream components will
propagate to downstream components because of
the dependency between components. In TDEER,
the translating decoder is dependent on the entity
tagger and relation detector, hence the translating
detector may receive error entities or relations from
upstream components. Therefore, we introduce a
negative sample strategy to detect and alleviate er-
rors from upstream components. For each sentence,
we produce incorrect triples as negative samples
by replacing the correct subject/relation with other
inappropriate subjects/relations during the training
phase. We do not assign any objects to negative
samples, namely the probabilities of start positions
of Eq.(11) are all expected to be 0. This strategy
enables TDEER to handle noisy inputs of subjects
and relations at the decoding phase.

3.6 Joint Training

We jointly train the span-based entity tagging
model, the relation detector, and the translating
decoder. The joint loss function is defined as fol-
lows:

L = αLe + βLr + λLt, (13)

where α, β and λ are constants. In our experiment,
we set 1.0, 1.0, and 5.0, respectively. The values
are obtained by grid search on the validation set.

4 Experiment

4.1 Datasets and Evaluation Metrics

We conduct experiments on widely used datasets.
NYT (Riedel et al., 2010) dataset was produced by

distant supervision method from New York Times
news articles. WebNLG was created for Natural
Language Generation and adapted by Zeng et al.
(2018) for relational triple extraction. For a fair
comparison, we apply the two datasets released
by Zeng et al. (2018). Apart from evaluating the
model on standard splitting, we follow (Wei et al.,
2020) to partition the test sentences according to
different overlapping categories, different triple
numbers for experiments on overlapping triples,
and various triple numbers. Furthermore, we also
conduct experiments on NYT11-HRL (Takanobu
et al., 2019), in which most test sentences belong
to Normal, to demonstrate that the proposed model
can handle not only the overlapping triple problem
but also the general problem. The adopted public
datasets with summary statistics in Table 1.

We report the standard micro Precision, Recall,
and F1-score following the same setting in Fu et al.
(2019).

4.2 Baselines

We compare the proposed model with following
SOTA models: NovelTagging (Zheng et al., 2017)
incorporates both entity and relation roles and
models relational triple extraction problem as a
sequence labeling problem; CopyR (Zeng et al.,
2018) applies a sequence-to-sentence architecture;
GraphRel (Fu et al., 2019) uses graph convolu-
tional networks to jointly learn named entities and
relations; OrderCopyR (Zeng et al., 2019) applies
the reinforcement learning into an sequence-to-
sequence model to generate triplets; CasRel (Wei
et al., 2020) employs a cascade binary tagging
framework; TPLinker (Wang et al., 2020) iterates
all token pairs and use matrices to tag token links
to recognize relations between token pair.

4.3 Implementation Details

We adopt the Adam (Kingma and Ba, 2015) op-
timizer. The hyper-parameters are tuned by grid
search on the validation set. The learning rate is set
to 1e-3/5e-5 and the batch size is set to 32/8 in the
backbone as LSTM/BERT. For the LSTM-based
model, we apply the 300-dimension pre-trained
GloVe embedding (Pennington et al., 2014) 1. For
the BERT-based model, we use the pre-trained
Cased BERT-base 2 as the backbone.

1http://nlp.stanford.edu/data/glove.6B.zip
2https://github.com/google-research/bert
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Category Train Valid Test
Overlapping Pattern Number of triples

Rel.
Norm. SEO EPO = 1 = 2 = 3 = 4 ≥ 5

NYT 56195 5000 5000 3266 1297 978 3244 1045 312 291 108 24
WebNLG 5019 500 703 246 457 26 266 171 131 90 45 216?

NYT11. 62648 − 369 368 1 0 368 1 0 0 0 12

Table 1: Statistics of datasets. NYT11. denotes NYT11-HRL, Norm. stands Normal triples, and Rel. stands
Relations. Note that the relation number of WebNLG was miswritten as 246 in (Zeng et al., 2018; Wei et al., 2020).
We correct the number in the statistics and use ? to mark the accurate number.

4.4 Results & Discussion

4.4.1 Main Results

The main results of the proposed models and base-
line models are reported in Table 2. CasRel,
TPLinker, and TDEER achieve absolute improve-
ments on NYT and WebNLG datasets against the
rest baselines. Especially, TDEER produces com-
petitive results compared with the previous SOTA
model TPLinker and achieves 7 out of 9 best results.
Moreover, TDEER outperforms baseline models
over the F1 score on all datasets. From Table 1,
we can observe that the data size of WebNLG
is small while it consists of a large number of
predefined relations. It is difficult to make im-
provements on WebNLG, as existing models can
achieve an F1 score over 90%, which has already
exceeded human-level performance (Wang et al.,
2020). Even though, TDEER achieves around
1.2% gain to 93.1% on WebNLG against TPLinker,
which verifies the effectiveness of the proposed
framework. Apart from F1, we find that TDEER
performs better on precision score than baselines
models in most results.

Although without a pre-trained language model
as the backbone, TDEERLSTM still performs well.
TDEERLSTM achieves a higher F1 score on NYT
against baseline models except for BERT-Based
CasRel and TPLinker. Furthermore, TDEERLSTM

outperforms baseline models on WebNLG and
NYT11-HRL over precision against all baseline
models except for BERT-Based CasRel. Therefore,
the proposed framework is efficacious even though
without a powerful pre-trained language model.

NYT and WebNLG contain a large number of
overlapping-triple instances. Therefore, the results
on NYT and WebNLG indicate that TDEER can
address the overlapping triple problem. Almost all
triples in NYT11-HRL belong to Normal. TDEER
achieves better results than baselines on NYT11-
HRL, which shows that TDEER can solve the gen-

eral extraction problem.

4.4.2 Results of Ablation Study
We conduct ablation studies on different strategies
to explore the effect of the negative sample strat-
egy. It shows that negative samples from subjects
achieve better results than negative samples from re-
lations. TDEER performs better by combining the
two types of negative sample strategy than adopt-
ing each strategy individually or without negative
samples. This evidence illustrates that negative
samples are helpful to alleviate error accumulation.
We also conduct ablation studies on TDEER with-
out the relation detector or attention. It also shows
that the results of TDEER are better than TDEER
without the relation detector or attention. We notice
that the model will malfunction without the relation
detector. This evidence suggests that the relation
detector and attention are crucial for TDEER.

To investigate the effect of the attention mech-
anism, we pick up a sample from the NYT test
set which contains a triple (Netherlands, /loca-
tion/country/administrative_division, Utrecht). We
visualize the attention heatmap of different subject
and relation pairs as depicted in Figure 3. The
heatmap indicates that when the extracted subject
and relation pair are proper, the attention weights
on object positions are higher than others. If the
weights are close to each other, then the extracted
subject and relation pair can not be decoded to form
a valid triple.

4.4.3 Discussion on Triple Numbers
In general, the more triples in a sentence, the more
complicated the sentence is. To explore the model
performance regarding different sentence complex-
ities, we also conduct experiments on sentences
with different triple numbers. The results are re-
ported in Table 4. From the results, we can find
that TDEER outperforms baseline models except
for four triple numbers in NYT. Notably, TDEER
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Model NYT WebNLG NYT11-HRL

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

NovelTagging 62.4 31.7 42.0 52.5 19.3 28.3 46.9 48.9 47.9
CopyR 61.0 56.6 58.7 37.7 36.4 37.1 34.7 53.4 42.1

OrderCopyR 77.9 67.2 72.1 63.3 59.9 61.6 − − −
GraphRel 63.9 60.0 61.9 44.7 41.1 42.9 − − −

CasRelLSTM 84.2 83.0 83.6 86.9 80.6 83.7 − − −
CasRelBERT 89.7 89.5 89.6 93.4 90.1 91.8 50.1 58.4 53.9

TPLinkerLSTM 83.8 83.4 83.6 90.8 90.3 90.5 − − −
TPLinkerBERT 91.3 92.5 91.9 91.8 92.0 91.9 − − −

TDEERLSTM 85.5 82.4 83.9 92.1 86.9 89.4 57.7 43.3 49.5
TDEERBERT 93.0 92.1 92.5 93.8 92.4 93.1 63.5 55.7 59.3

Table 2: Results of baseline models on NYT, and WebNLG datasets. The results of baselines are retrieved from
original papers respectively.

Model
F1

NYT WebNLG

w/o neg. 69.5 67.7
w/o neg sub. 81.1 86.1
w/o neg rel. 82.3 86.8

w/o rel. 13.5 2.7
w/o attn. 82.7 87.3

TDEERLSTM 83.9 89.4

Table 3: Results of ablation study. w/o neg. stands for
TDEERLSTM without negative samples. w/o neg sub.
stands for TDEERLSTM without negative samples from
subjects. w/o neg rel. denotes TDEERLSTM without
negative samples from relations. w/o rel. denotes
TDEERLSTM without relation detector. w/o attn.
means TDEERLSTM without attention.

achieves 2.8% gain in NYT and 0.7% gain in
WebNLG against TPLinker for complicated sen-
tences containing five or more triples. This evi-
dence illuminates that TDEER is effective to model
sentences with multiple triples.

4.4.4 Discussion on Overlapping Patterns

To further investigate the performance of differ-
ent overlapping patterns, we conducted extensive
experiments and report the results on different over-
lapping patterns on NYT and WebNLG in Table 5.
The results suggest that TDEER outperforms base-
line models, which demonstrates the advantages of
TDEER in processing the overlapping triple prob-
lem.
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Figure 3: Attention heatmap of different pairs of sub-
ject and relation. The attention weight is higher when
the color is deeper.

4.4.5 Discussion on Computation Complexity

Computation efficiency is an important problem
that is not paid enough attention to by most previ-
ous works. We compare TDEER with baselines in
computational complexity and inference time on
the test set. The results are shown in Table 6.

Pipeline approaches usually use NER tools to
detect entities. NER tools usually apply the Viterbi
algorithm to decode sequences with O(nK2) com-
plexity, where n denotes the input length and K
is the tag size. Pipeline approaches recognize rela-
tions from each entity pair. Thus, the computation
complexity of pipeline approaches isO(nK2+e2),
where e denotes the number of entities in the input.

Despite the successes of CasRel (Wei et al.,
2020) and TPLinker (Wang et al., 2020), they
still struggle with computation efficiency. CasRel
jointly decodes relations and objects. The com-
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Model NYT WebNLG

N=1 N=2 N=3 N=4 N ≥ 5 N=1 N=2 N=3 N=4 N ≥ 5

CopyR† 67.1 58.6 52.0 53.6 30.0 59.2 42.5 31.7 24.2 30.0
GraphRel† 71.0 61.5 57.4 55.1 41.1 66.0 48.3 37.0 32.1 32.1

OrderCopyR† 71.7 72.6 72.5 77.9 45.9 63.4 62.2 64.4 57.2 55.7
CasRelBERT 88.2 90.3 91.9 94.2 83.7 89.3 90.8 94.2 92.4 90.9

TPLinkerBERT 90.0 92.8 93.1 96.1 90.0 88.0 90.1 94.6 93.3 91.6

TDEERBERT 90.8 92.8 94.1 95.9 92.8 90.5 93.2 94.6 93.8 92.3

Table 4: F1-score on sentences with different triple numbers. † stands results retrieve from (Wei et al., 2020). The
results of the rest of the baselines are obtained from the respective original paper.

Model NYT WebNLG

Normal SEO EPO Normal SEO EPO

CopyR 66.0 48.6 55.0 59.2 33.0 36.6
OrderCopyR 71.2 69.4 72.8 65.4 60.1 67.4
GraphRel 69.6 51.2 58.2 65.8 38.3 40.6

CasRelBERT 87.3 91.4 92.0 89.4 92.2 94.7
TPLinkerBERT 90.1 93.4 94.0 87.9 92.5 95.3

TDEERBERT 90.8 94.1 94.5 90.7 93.5 95.4

Table 5: Results of models in Normal, EntityPairOverlap and SingleEntityOverlap patterns in NYT and WebNLG
datasets. Results of baselines are obtained from respective original paper.

Model Complexity
Time (ms)

NYT WebNLG

Pipeline O(nK2 + e2) − −
CasRel O(n+ sro) 54.0? 76.8?

TPLinker O(n2) 82.7? 112.6?

TDEER O(n+ sr) 31.4 36.9

Table 6: Computation efficiency. ? denotes results re-
trieve from (Wang et al., 2020). e denotes the number
of entities in input, s/o stands for the number of sub-
jects/objects in input, r denotes the number of relations
in input, K denotes the tag size, and n stands input
length. Inference time presents the average time BERT-
based models take to process a sample.

putational complexity of CasRel is O(n + sro),
where n is the input length, s/r/o is the number of
subjects/relations/objects in the input, respectively.
TPLinker iterates all token pairs and uses matri-
ces to tag token links to recognize relations. The
main computation overhead is on the encoder with
O(n2) complexity, where n is the input length.

The computation complexity of TDEER isO(n+

sr), where n is the input length, s denotes the
number of subjects in input, and r is the number of
relations in the input sentence. It is 0.7 times faster
than CasRel and 1.6 times faster than TPLinker
on NYT, and 1.1 times faster than CasRel and 2.1
times faster than TPLinker on WebNLG from Table
6. Therefore, we can conclude that TDEER is
more efficient than baselines, which makes TDEER
competent in constructing a large-scale KB.

5 Conclusion & Future work

In this paper, we have proposed a novel translating
decoding schema for joint extraction of entities and
relations, namely TDEER. It models the relation
as a translating operation from subjects to objects,
which can handle the overlapping triple problem
naturally. We have conducted extensive experi-
ments on widely used datasets to demonstrate the
effectiveness and efficiency of the proposed model.
The proposed negative sample strategy is used to
alleviate the error accumulation problem. Though
it is effective, it may increase training time. For
future work, we plan to explore more efficient ap-
proaches to alleviate error accumulation.
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