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Abstract

Neural knowledge-grounded generative mod-
els for dialogue often produce content that
is factually inconsistent with the knowledge
they rely on, making them unreliable and lim-
iting their applicability. Inspired by recent
work on evaluating factual consistency in ab-
stractive summarization, we propose an au-
tomatic evaluation metric for factual consis-
tency in knowledge-grounded dialogue using
automatic question generation and question an-
swering. Our metric, denoted QQ, compares
answer spans using natural language inference
(NLI), instead of token-based matching as
done in previous work. To foster proper eval-
uation, we curate a novel dataset of dialogue
system outputs for the Wizard-of-Wikipedia
dataset, manually annotated for factual consis-
tency. We perform a thorough meta-evaluation
of Q2 against other metrics using this dataset
and two others, where it consistently shows
higher correlation with human judgements.

1 Introduction

Generative conversational agents show remarkable
progress lately (Shuster et al., 2020; Adiwardana
et al., 2020). Yet, generative dialogue models
that are grounded by external knowledge sources
still struggle to be consistent with that knowl-
edge. Their output is often incompatible with the
given knowledge or even completely “hallucinated”
(Roller et al., 2020). Figure 1 depicts such incon-
sistency by the dialogue system of Shuster et al.
(2020) when evaluated on the Wizard of Wikipedia
dataset (Dinan et al., 2019). Since inconsistent gen-
erated text is usually fluent and well-formed, these
outputs could mislead users with false information,
limiting the applicability of such systems.

Factual inconsistency is often overlooked by
evaluation methods for text generation (Celikyil-
maz et al., 2020). Evaluation approaches that ad-
dress this gap were recently proposed for tasks like
machine translation and abstractive summarization

Topic: Asthma

asthma. | have asthma and I'd like
to know more about it.

L Hello! | heard you knew a lot about }

Yeah it's not great. What else can
you tell me?

the symptoms of asthma are
recurring and reversible.

symptoms, reversible airflow obstruction, and

{ It is characterized by variable and recurring }
bronchospasm.

Figure 1: An example from our dataset. Human mes-
sages are in Blue, the generated response is in Orange
and the grounding knowledge is in Black at the bottom.
The factual inconsistency is marked in Red.

(Sellam et al., 2020; Xu et al., 2020; Goodrich et al.,
2019). Yet, evaluating grounded dialogues poses
additional challenges, since dialogue outputs may
refer to the dialogue history and include personal
opinions, questions to the user, and general “chit-
chat”, whose consistency with external knowledge
is mostly irrelevant. Additionally, many of those
metrics require gold-label human-constructed ref-
erences, while dialogue is an open-ended task —
making it less suitable for reference-based evalua-
tion.

In this work, we propose an automatic metric
for evaluating the factual consistency of generative
open-domain knowledge-grounded dialogue sys-
tems which does not require gold-label reference
responses. Our metric, denoted (2, pairs automatic
question generation (QG) and question answering
(QA) for dialogue generation evaluation, inspired
by recent work on factual consistency evaluation
in abstractive summarization (Durmus et al., 2020;
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Wang et al., 2020). Q? first takes a given generated
response as input, and generates questions whose
answers are informative spans in the response, us-
ing a QG system. It then employs a QA system to
find corresponding answer spans in the knowledge
that the response should be grounded in. The eval-
uation score reflects the similarity between each
informative response span and its corresponding an-
swer span from the knowledge, for each generated
question.

Unlike previous QG/QA approaches, which used
token-based matching to compare answer spans,
we propose a novel comparison method using natu-
ral language inference models (NLI; Dagan et al.,
2006) that is more robust to lexical variability. In
addition, while QG/QA based methods showed
promising results for summarization evaluation,
our work is the first to apply them to knowledge-
grounded dialogues, which hold distinct properties
compared to other grounded generation tasks; Mix-
ing different types of utterances such as knowledge,
personal statements and chit-chat in a single re-
sponse is unique to dialogue and is well addressed
by our metric given its modular nature and robust-
ness to lexical variability.

We assess Q% against other reference-response-
free metrics on three dialogue benchmarks: Wizard
of Wikipedia (WOW; Dinan et al., 2019), Topical-
Chat (Gopalakrishnan et al., 2019) and Dialogue
NLI (DNLI; Welleck et al., 2019). To foster proper
evaluation, we curate a new dataset of dialogue
system responses using the WOW dataset, manu-
ally annotated for factual consistency. Q? reaches
significantly higher correlations with human judg-
ments on all datasets compared to the other metrics,
demonstrating its potential as an evaluation frame-
work for grounded dialogue generation.

To summarize, our contributions in this work are
three-fold: (1) We develop a novel framework for
evaluating the factual consistency of knowledge—
grounded, open-domain dialogue systems, incorpo-
rating question generation, question answering and
NLI models. (2) We construct a first-of-its-kind
dataset of knowledge-grounded dialogue system
outputs manually annotated for factual consistency,
fostering future work on the subject. (3) We val-
idate the effectiveness of our metric in compari-
son to previous approaches through various experi-
ments with three dialogue benchmarks, where it ob-
tains higher correlation with human judgements.'

'Our code and dataset are available in: http://

github.com/orhonovich/g-squared

coffee is very acidic . it has
stimulating effects on humans

Coffee is slightly acidic and has a

1. QG stimulating effect on humans “—I
because of its caffeine content.
2. QA
(T TTTTTII IS, \
1 Answer candidate: coffee ! |

3. Compare answer candidate
with answer on the knowledge

___________

Figure 2: The Q? pipeline: (1) For a response, select
answer candidates; then generate a question for each
candidate using QG. (2) Use QA to answer each ques-
tion based on the grounding knowledge. (3) Compare
the answer candidate with the knowledge answer span.

2 Evaluating Factual Consistency

Formally, an evaluation metric for factual consis-
tency in generative dialogue receives as input a
dialogue history h, a textual knowledge source k,
and a response r from a dialogue model (assumed
to be generated conditioning on h and k). The goal
is to score the model’s output r so as to reflect
its consistency with its grounding source k. We
next introduce our metric, denoted QQ, which sug-
gests that factual questions that have answers in the
generated response should have similar answers in
the grounding knowledge source, while differences
between answers from the response and the knowl-
edge point at factual inconsistencies. This follows
the intuition in Wang et al. (2020); Durmus et al.
(2020) for evaluating abstractive summarization.

Q? iterates over all informative spans a’ in r.
2

For each aj, ()* uses a QG system to generate ques-
tions g;; whose answer is a;. For each question
Qi @Q? uses an extractive QA system to mark an
answer span afj from k. O then measures the sim-
ilarity of a; and afj and aggregates the similarity
scores for all questions as the factual consistency
score of r. Figure 2 depicts this procedure. We
next detail each component in our metric.
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Question Generation. First, we mark informa-
tive spans in the response 7 to serve as target answer
spans for the QG system. To this end, we mark all
named entities and noun phrases in r using spaCy.”
For example, in “coffee is very acidic” we mark
‘coffee’ as an informative span. Then, a QG system
takes each informative span a; and the response r
as input and generates the corresponding questions
qi; for which a; should be the answer. In our exam-
ple, a generated question for the informative span
‘coffee’ and the response in Figure 2 is “What is
very acidic?”’. We use T5-base (Raffel et al., 2020)
fine-tuned on SQuADI1.1 (Rajpurkar et al., 2016)
as the QG model.?

As suggested by Wang et al. (2020), we use beam
search decoding, taking the top-n generated ques-
tions for a}. We set n = 5 and test two variants of
generating multiple questions. In the first, we use
all n questions for a]. In the second variant, we
only take the top-ranked question that passed the
filtering stage for a (see “Question Filtering” be-
low). We observed similar trends for both variants,
and therefore only report the results of the second
variant. To increase the diversity of the generated
questions, we tried sampling-based methods (Fan
et al., 2018; Holtzman et al., 2020), but obtained
inferior results that are not reported in this paper.

Question Answering. To mark the answer span
afj in the knowledge k for question g;;, we use
the Albert-Xlarge model (Lan et al., 2020) fine-
tuned on SQuAD?2.0 (Rajpurkar et al., 2018).* This
model can also determine that no answer can be
found in the paragraph. This is important in (2,
since question g;, generated for a completely hallu-

cinated content a; should have no answer in k.

Answer Similarity and Final Scores. The last
step in Q2 assesses the similarity between answers
a; and afj . To be robust to lexical variability be-
tween the response and the knowledge, e.g. “US”
vs. “United States” or “‘a book series” vs. “a set
of novels”, we measure the answer span similarity
using an NLI model. We use RoBERTa (Liu et al.,
2019) fine-tuned on SNLI (Bowman et al., 2015) as
implemented in AllenNLP (Gardner et al., 2017).

For span pairs a and afj that match perfectly at
the token-level, we assign a score of 1. For each

https://spacy.io/

*https://huggingface.co/mrm8488/
t5-base-finetuned-question-generation—-ap

*https://huggingface.co/ktrapeznikov/
albert-xlarge-v2-squad-v2

span pair a] and af’j that do not match perfectly at

the token-level, we run the NLI model with a¥ as
the premise and a; as the hypothesis. To add con-
text for the NLI model, each answer is concatenated
after the question ¢;,;. For example, for the question
“Where were the Red Hot Chili Peppers formed?”,
the response answer “LA”, and the knowledge an-
swer “Los Angeles”, we run the NLI model with:
“Where were the Red Hot Chili Peppers formed?
Los Angeles” as the premise, and with “Where were
the Red Hot Chili Peppers formed? LA” as the hy-
pothesis. Our use of NLI differs from prior use of
NLI in dialogue evaluation, where it was applied in
an end-to-end manner (Welleck et al., 2019; Pang
et al., 2020). We set ¢; : ’s score to be 1 for the case
of entailment and 0 for contradiction or for cases
where the QA model produced no answer. In the
neutral case, we take the answers token-level F1
score, as in Wang et al. (2020).

Finally, the match scores for all answer pairs
are averaged to yield a response-level score, and
the response-level scores are averaged to yield a
system-level Q2 score.

Question Filtering. To alleviate errors made by
the automatic QG and QA models, we follow the
validation step in Wang et al. (2020); We run the
QA model to answer ¢;; with the response r as
the input paragraph, and require the answer to be
identical to the answer span a; which was used to
generate ¢; ;. If this is not the case, g;; is discarded.

As we evaluate factual consistency, we wish to
ignore opinionated parts of the response which are
not factual. Hence, we filter out questions that in-
clude the personal pronouns “I” or “you” as the
subject, as well as questions that mention the pos-
sessive pronouns “my” or “your”.

Lack of Valid Questions. For some responses,
no valid questions are generated — i.e. all generated
questions fail to pass the above filtering process.
We use our NLI model as a fallback in such cases
by taking its end-to-end prediction with &k as the
hypothesis and r as the premise. We set the score
to be 1 in case it predicts entailment, O for contra-
diction, and 0.5 for the neutral case.

3 Evaluation Benchmarks

3.1 Wizard of Wikipedia

The Wizard of Wikipedia dataset (WOW; Dinan
et al., 2019) contains dialogues in which a bot needs
to respond to user inputs in a knowledgeable way.
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Topic Response Knowledge

Coffee coffee is very acidic. it has stimulating effects on humans. Coffee is slightly acidic and has a stimulating effect on humans because
of its caffeine content.

French in that time italian cuisine was influenced by french cuisine During that time, French cuisine was heavily influenced by Italian

cuisine cuisine.

Madonna | she was born in 1968 and raised in new york city. Born and raised in Michigan, Madonna moved to New York City in
1978 to pursue a career in modern dance.

Sephora me too! it’s an american fashion company founded in 1854. Sephora is a French chain of cosmetics stores founded in 1969.

Table 1: Examples for factually inconsistent responses from our dataset. Factual inconsistencies are marked in
red, with their corresponding parts in the knowledge marked in blue. The first two examples are outputs of the
dodecaDialogue system, and the last two are outputs of MemNet.

Each response should be grounded on a sentence
from Wikipedia that is relevant to the conversation
topic. Since this dataset does not contain explicit
annotations for factual consistency of dialog re-
sponses, we construct a new dataset with such an-
notations for dialogues based on the WOW dataset
as detailed in Section 4.

3.2 Topical-Chat

Topical-Chat (Gopalakrishnan et al., 2019) is a
human-human knowledge-grounded conversation
dataset. Each dialogue is accompanied by rele-
vant Wikipedia pages, Washington Post articles
and fun-facts from Reddit. Mehri and Eskenazi
(2020) introduced USR, an evaluation metric that
measures different aspects required from dialogue
systems. To test USR, they collected human anno-
tations on four different system responses and two
human-generated responses for 60 dialog contexts
from Topical-Chat. Each response was scored on a
“Uses Knowledge” category, among others. Since a
model that properly uses the knowledge is expected
to use it in a factually consistent manner, we find
it interesting to measure Q?’s correlation with the
human judgements for this category.

3.3 Dialogue NLI

Dialogue NLI (DNLI; Welleck et al., 2019) is a
dataset based on the Persona-Chat dialogue task
(Zhang et al., 2018). It consists of pairs including
either a personality description sentence or an ut-
terance from the dialogue history (the premise) and
a subsequent dialogue utterance (the hypothesis).
Each pair is labeled as entailing, neutral, or con-
tradicting. A contradiction may be a clear logical
contradiction, e.g. “I have a dog” vs. “I do not
have a dog”, but can also be two utterances that are
not likely to be said by the same persona although
they are not strict logical inconsistencies, e.g. “i’m
a manager” vs.“i’m a doctor”. Using this dataset,
we test whether 9 can measure consistency when
the grounding “knowledge” is a persona sentence

or the previous dialogue history.

4 Dataset Creation and Annotation

To directly evaluate (Q2, we need an annotated
dataset of knowledge-grounded dialogue responses
and their factual consistency with respect to a given
knowledge. To obtain this, three of the paper’s au-
thors annotated the factual consistency of a random
sample of responses from the following dialogue
systems on the WOW validation set: (1) Mem-
Net, which is the model suggested by Dinan et al.
(2019) for WOW. (2) dodecaDialogue, which is
the multi-task model fine-tuned on WOW in the
dodecaDialogue benchmark (Shuster et al., 2020),
as available in ParlAT> (Miller et al., 2017). For
both systems, we used beam search decoding with
a beam size of 10, a beam block size of 3 and a
context block size of 3 to generate responses.

The annotators went through the responses until
150 examples of factually inconsistent responses
were annotated for each system (300 in total), and
then repeated the process and annotated the same
number of factually consistent responses. The an-
notators skipped factually consistent responses con-
taining only general chit-chat with no reference to
the grounding knowledge, such as “Hi, how are
you?”. For factually inconsistent responses, they
selected challenging examples in which the text
seemed clear and coherent. For each of the 600
extracted sentences, the annotation was extended
to cover the outputs of both systems, resulting
in 544 dialogue contexts and 1,088 annotated re-
sponses (due to overlaps). Out of the 544 contexts,
186 (34.2%) were marked as inconsistent in the
dodecaDialogue system and 274 (50.36%) in the
MemNet system. The number of dialogue contexts
and responses collected is comparable with those
of other recently published datasets for dialogue
evaluation, such as in Mehri and Eskenazi (2020);
Pang et al. (2020); Zhao et al. (2020).

Shttps://parl.ai/docs/zoo.html
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system data # questions | Q2> | Q%> w/o NLI | % no answer | E2E NLI | Overlap(r, k) | BLEU | BERTScore
Inconsistent 328 0.238 0.159 54.88% 0.5 0.299 3.355 0.179
dodeca Consistent 341 0.696 0.516 15.25% 0.723 0.426 5.136 0.291
Random sample 258 0.496 0.349 29.84% 0.573 0.325 3.788 0.164
Inconsistent 324 0.135 0.123 62.04% 0.37 0.270 7.490 0.145
MemNet Consistent 352 0.756 0.661 9.94% 0.717 0.526 20.145 0.376
Random sample 268 0.448 0.387 32.09% 0.537 0.337 11.654 0.183

Table 2: Q2 and baseline scores on the annotated system responses from WOW.

To evaluate the quality of the constructed dataset,
100 responses were sampled, and each annotator
labeled them as consistent or inconsistent. The
agreement level between annotators, measured by
Fleiss’ kappa, resulted in 0.853, representing high
inter-annotator agreement. Table 1 shows factually
inconsistent responses from this dataset. Detect-
ing some of these inconsistencies requires identi-
fying subtle semantic divergences from the facts
expressed by the knowledge.

5 Experiments and Results

To evaluate (Q? as a metric we performed the fol-
lowing experiments for each dataset.

5.1 Wizard of Wikipedia

Absolute Scores. Table 2 presents the Q% score
for the different sets of annotated system responses,
as well as for 150 randomly selected system re-
sponses. We additionally report the total number
of generated questions (after filtering) for each set
and the percentage of generated questions that had
no answer in the knowledge. We denote our metric
score by “Q?”, while “Q? w/o NLI” is an ablated
variant obtained by dropping the NLI component
and using the fallback token-level F1 instead, simi-
larly to Wang et al. (2020).

As we would expect from a metric measuring
factual consistency of generative dialogue systems,
the Q2 score is indeed always highest for the con-
sistent outputs, lowest for the inconsistent outputs,
and in-between for random samples. Assessing
answer similarity using NLI results in higher ab-
solute scores for both inconsistent and consistent
responses, and by a larger margin for the latter.

Baselines. As baseline metrics, we first take the
F1 token-level overlap of r with k£ as done in
WOW (Dinan et al., 2019). We also use BLEU
and BERTScore (Zhang et al., 2020) with the re-
sponse 7 as the output, and the knowledge k as
the reference. As our last baseline we run the NLI
model described in §2 in an end-to-end manner,

taking k£ as the premise and r as the hypothesis.
We set the score to be 1 for the case of entailment
and 0 for contradiction. In the neutral case, we
set the score to be 0.5. The exact same settings
are used as a fallback for Q? when no valid ques-
tions are generated. As Table 2 shows, the scores
for the consistent data are higher than the scores
for the inconsistent data for all baselines. How-
ever, in most cases, the score differences between
the inconsistent data and the random samples are
small, indicating that Q? better separates general
responses from inconsistent ones.

Precision vs. Recall, consistent and inconsistent scores

0.9

0.8

Precision

Metric
Q2
Q2 w/o NLI
—— E2E NLI
—— Overlap
—— BERTScore
05 —— BLEU

0.7

0.6

0.0 0.2 0.4 06 08 1.0
Recall

Figure 3: Precision-Recall curves for different response
level score thresholds, calculated using the dodeca and
MemNet consistent and inconsistent examples.

Response-Level Evaluation. To find if Q% can
be used to automatically separate between consis-
tent and inconsistent responses at the more gran-
ular, single response level, we report in Figure 3
the Precision/Recall curve of consistent responses
for various response-level score thresholds for each
evaluated metric on the WOW annotated data.

As Figure 3 shows, both Q? variants obtain
higher precision and recall in comparison to the
other metrics throughout the threshold values, sug-
gesting that 2 is better at automatically separating
between consistent and inconsistent examples at
the response level. We additionally report in Table
3 the consistent and inconsistent Precision and Re-
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Table 3: Precision-Recall values for consistent and in-
consistent response detection, using a threshold of 0.5
for the binary decision.

call values for a threshold of 0.5. Responses with a
score of 0.5 or below are classified as inconsistent
and vice versa. The accuracy of the binary decision
using this threshold is 77.3% for Q?, 73.1% for Q?
without the NLI-based answer spans comparison,
and 65.3% for the end-to-end NLI. We note that the
threshold was arbitrarily selected for the purpose of
demonstrating Q%’s ability in separating consistent
from inconsistent content, and properly tuning it
by splitting the data into development and test sets
may improve the results further.

System-Level Evaluation. We measure the cor-
relation of each metric with human judgments for
systems with varying inconsistency levels. To sim-
ulate such systems, we follow the method of Gra-
ham and Liu (2016) for MT evaluation. We first
take dialogue contexts for which we have both a
consistent and an inconsistent response, leaving us
with 244 dialogue contexts (and 488 responses).
We then bootstrap (Efron, 1987) by sampling 350
contexts (with repetition) for each simulated sys-
tem ¢, ensuring that each system output contains
¢;% factually inconsistent responses. Finally, we
compute the system-level score for each system
and the correlation between those scores and the
human annotations. We repeat this 1000 times and
report average correlation and confidence intervals
for each metric.

We take ¢ € [0.05,0.1,0.15,0.2,0.25] as incon-
sistent response proportions for the simulated sys-
tems, and measure the Spearman correlation of ()*
and the four baseline metrics with the human judg-
ment scores of each system. The results are detailed
in Table 4. () obtains an average correlation of
0.9798, while the end-to-end NLI baseline, overlap,
BERTScore, and BLEU obtain lower correlations
of 0.9216, 0.878, 0.8467 and 0.3051, respectively.
This suggests that Q? is better in evaluating factual
consistency at the system-level.

Data split Metric Precision | Recall | F1 Avg. Correlation | Lower CI | Upper CI
Q? 73% 86.7% | 0.793 Q? 0.9798 0.9 1
Inconsistent | Q%> w/oNLI | 67.1% 91% | 0.772 @Q* w/o NLI 0.9711 0.9 1
E2E NLI 61.2% 83.7% | 0.707 E2E NLI 0.9216 0.6669 1
Q? 83.5% | 67.9% | 0.749 Overlap(r, k) 0.878 0.5 1
Consistent | Q> w/oNLI | 859% | 55.2% | 0.672 BERTScore 0.8467 04 1
E2E NLI 74.1% 46.8% | 0.574 BLEU 0.3051 -0.7 1

Table 4: Results for system level evaluation, taking sys-
tems with varying degrees of inconsistent outputs, and
measuring the correlation between each system-level
score and the human judgements.

Metric Spearman | Pearson
Q7 0.4579 0.4698
Q% wio NLI 0.3933 0.4105
USR (best) 0.4468 0.3175
METEOR 0.3909 0.3328

Table 5: Correlation with human judgments for
the “Uses Knowledge” category for different metrics.
“USR (best)” stands for the best result achieved by
Mehri and Eskenazi (2020) for each category.

5.2 Topical-Chat

Mehri and Eskenazi (2020) evaluated the correla-
tion of their suggested metric, USR, as well as other
existing automatic metrics, against human judg-
ments on the Topical-Chat dataset (Gopalakrishnan
et al., 2019). We note that in 8 out of the 60 ex-
amined dialogue contexts, no knowledge was used
(the original dataset contains a "no fact" option).
We thus experimented only with the 52 knowledge-
grounded dialogue contexts. We follow the set-
tings of Mehri and Eskenazi (2020), which used
only 5 responses (out of the 6 annotated per re-
sponse), leaving out the original human response
that was collected by Gopalakrishnan et al. (2019).
Accordingly, we are left with 260 responses. Ta-
ble 5 presents their reported correlation results for
the “Uses Knowledge” category, as well as the cor-
relation of ) with the same human judgments. Q>
demonstrates an improvement in this category that
is statistically significant with p < 0.001 compared
to the baselines. The contribution of the NLI com-
ponent on this dataset resulted in even higher gains
in terms of correlation in comparison to the WOW
experiments, again showing the benefit of using
our more intricate span comparison method.

5.3 Dialogue NLI

We test Q2’s applicability for measuring persona
consistency and self-consistency between dialogue
utterances, as described in §3.3. We calculate the
Q? score for each persona-utterance or utterance-

7861



Model Accuracy
Q7 74.49%
Baseline — NLI only 67.42%
InferSent SNLI 47.03%
InferSent Hyp. Only 51.52%

Table 6: Accuracy on the DNLI dataset, Test Gold.

utterance pair and choose a threshold of 0.1 for
predicting entailment or contradiction by tuning on
the development set. Since a dialogue utterance
should be grounded in the personality description
or in the conversation’s history, we treat neutral
claims as inconsistent, and expect 2 to address
them as contradictions. As DNLI aims at testing
persona consistency, we avoid filtering out ques-
tions that include personal or possessive pronouns.

Table 6 presents (Q*’s accuracy on the Test Gold
split of DNLI, compared to other zero-shot meth-
ods. Our first baseline uses the NLI model in Q2 in
the end-to-end manner described above (“Baseline
— NLI only”), which is similar to the approach of
Welleck et al. (2019); Pang et al. (2020). To be
comparable with Q?’s binary decision, we allow
neutral claims to be predicted as either neutral or
contradicting. We also show results from zero-shot
methods reported in Welleck et al. (2019): a model
that uses the hypothesis sentence only (“InferSent
Hyp. Only”) and a model trained on the SNLI
dataset but evaluated on DNLI (“InferSent SNLI”).
Q? performs better than the end-to-end NLI base-
lines, indicating that our QG/QA approach with
NLI is more robust than simply applying end-to-
end NLI with full sentences or passages.

5.4 Analysis

The results on the three datasets demonstrate Q?’s
zero-shot, reference-response-free capability to
generalize to various dialogue tasks that require
evaluation of factual consistency. To shed more
light on our approach we performed the following
qualitative and quantitative analyses.

Robustness to Underlying Model Quality. The
performance of Q% depends on the different com-
ponents used throughout the pipeline, i.e., the QG,
QA, and NLI models. To demonstrate that Q2 is
robust to the quality of these models, we exper-
iment with using smaller models in the pipeline.
First, we replace the T5-base model for question
generation with a T5-small model, again fine-tuned
on SQuADI.1. Next, we replace the Albert-Xlarge
QA model with Albert-base, similarly fine-tuned

Avg. Correlation | Lower CI | Upper CI
Original Q* 0.9798 0.9 1
T5-small 0.9722 0.9 1
Albert-base 0.9797 0.9 1

Table 7: Correlations with human judgements when us-
ing a smaller QG or a smaller QA model.

Data Model Coverage | Q> | Q% w/o NLI
odeca Original | 92.67% | 0.238 0.159
e ey | TS-small | 90.67% | 0.198 0.143

Albert-base | 92% | 0.293 0213
dodeca Original 94% 0.696 0.516
ot TS-small | 90.67% | 0.601 0.44
Albert-base | 92.67% | 0.709 0.534
Original | 94.67% | 0.135 0.123
?ﬁ:;?g:;m T5-small 90% | 0104 |  0.099
Albert-base 94% 0.189 0.134
Original | 92.67% | 0.756 0.661
Ic\girii::n T5-small | 88.67% | 0.705 0.613
Albert-base | 89.33% | 0.791 0.7

Table 8: Q?’s results on WOW when using a smaller
QG or a smaller QA model. Coverage refers to the
questions coverage, i.e., the percentage of responses for
which Q2 generated at least one valid question.

on SQuAD2.0 for question answering.

As Table 7 shows, the correlations with human
judgments are barely influenced by using smaller
QG/QA models, showing the robustness of our
method to changes in the underlying models. Ta-
ble 8 presents the absolute scores of the smaller
models on the WOW dataset, as well as each vari-
ant’s question coverage, defined as the percentage
of responses for which (Q? generated at least one
valid question, not resorting to the end-to-end NLI
fallback. While the question coverage slightly de-
creases when using smaller models, the gap be-
tween consistent and inconsistent scores remains
unaffected. As we expected, a smaller QG model
results in lower Q2 scores, for all data splits. Sur-
prisingly, using a smaller QA model had the oppo-
site outcome - higher Q% scores in all cases.

Regarding domain robustness of the undelying
models, while the QG and QA models were trained
on a dataset collected from Wikipedia and are
therefore suited for WOW'’s domain, these mod-
els work well even when the grounding source
is not Wikipedia. This is the case in Topical-
Chat, in which each dialogue is accompanied by
Washington Post articles and fun-facts from Red-
dit in addition to pages from Wikipedia; and in
the DNLI dataset, which deals with persona and
self-consistency of dialogue systems and does not
contain any references to Wikipedia.
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Lack of Valid Questions. For some responses,
Q? does not generate any valid questions. When
testing the extent of this phenomenon in the incon-
sistent vs. consistent samples collected based on
the MemNet and dodecaDialogue outputs, a sim-
ilar proportion of around 6-8% responses had no
valid questions. The proportion of such responses
in the randomly sampled examples is much higher
—around 20%. As mentioned in §2, we handle such
cases using an end-to-end NLI fallback.

The higher proportion of such responses in the
random samples indicates that lack of valid ques-
tions is more common in general chit-chat than in
knowledge-grounded content. This raises the need
to improve the identification and separation of gen-
eral chit-chat responses from more “knowledgable”
ones, which we plan to address in future work.

Another cause for low-quality questions that do
not pass the filtering process is responses that con-
tain pronouns referring to entities in the dialogue
history —e.g. “he won an album of his own in 2015”
requires resolving “he”. Preliminary experiments
with adding a coreference resolution step to our
pipeline showed increased coverage, and we plan
to further address this gap in future work.

Qualitative Analysis. To get a better impression
of Q%’s operation, we give examples of how it op-
erates in its various stages. Figure 2 presents an
example for an inconsistent response, together with
a generated question and the answer Q% obtained
based on the knowledge. In this example, the ques-
tion was unanswerable using the knowledge, thus
the score for this question is 0. Indeed, this is the
desired score, as the knowledge didn’t mention that
coffee is very acidic.

Another example for successful output is for
the following response: “i’m not sure about that
but i do know that they are reliant on vulnerable
species!”, generated by the dodecaDialogue system
when conversing about giant Pandas, while con-
ditioning on the following knowledge paragraph:
“The giant panda is a conservation reliant vulnera-
ble species.”. The response is clearly inconsistent
with the knowledge as Pandas are reliant on con-
servation and not on vulnerable species. Here, (Q*
extracted “vulnerable species” as an informative
span, and generated the question: “What are they
reliant on?”. The answer to this question using the
knowledge was “conservation”, which resulted in
assigning this question a score of 0.

These examples also demonstrate a major ad-

vantage of Q2, being self-explanatory and inter-
pretable. Other than the final score, Q2 outputs
the generated questions, the response-based answer
spans and the answers the QA model predicted
based on the knowledge, which can be used as an
explanation to the assigned score or to highlight the
potentially inconsistent text spans in the response.

Some errors of Q? are caused by generating
questions for the chit-chat parts of responses. In
a conversation regarding the color purple, the do-
decaDialogue system generated the response: “pur-
ple is my favorite color. it’s between red and blue.”,
when the knowledge was: “Purple is a color in-
termediate between blue and red.” Even though
the response used the knowledge faithfully, one out
of two valid generated questions for it was “What
is purple ?”, for which the response-based answer
is “my favorite color”, while the knowledge-based
answer is, of course, different.

6 Related Work

Automatic Evaluation of Dialogue Systems.
Automatically evaluating natural language gener-
ation is a notoriously difficult problem, especially
when considering open-ended tasks such as dia-
logue. Standard token-matching metrics, such as
BLEU (Papineni et al., 2002) or METEOR (Baner-
jee and Lavie, 2005) in machine translation, or
ROUGE (Lin, 2004) in summarization, were shown
to have weak or no correlation with human judge-
ments for dialogue (Liu et al., 2016; Lowe et al.,
2017). Supervised assessment methods learn to
predict human-like evaluation scores (Lowe et al.,
2017), but they require a significant annotation ef-
fort for achieving training data. Recently, Mehri
and Eskenazi (2020) and Pang et al. (2020) sug-
gested to use large pretrained language models (Liu
et al.,, 2019; Radford et al., 2019) to develop
reference-response-free metrics for dialogue evalu-
ation. Such LMs are also the backbone of the QG,
QA and NLI models employed in Q2.

Factual Consistency and Hallucinations. Fac-
tual consistency in summarization has attracted in-
creasing attention in recent years (Maynez et al.,
2020) both in improving factual consistency of ab-
stractive summarization systems (Cao et al., 2018)
and in evaluating the factual consistency of gener-
ated summaries (Goodrich et al., 2019; Kryscinski
et al., 2019; Xu et al., 2020). Factual inconsistency
has been observed in neural machine translation
(Lee et al., 2019) mainly when considering out-
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of-domain scenarios (Koehn and Knowles, 2017;
Wang and Sennrich, 2020; Miiller et al., 2020).
Concurrently with our work, Dziri et al. (2021)
introduced the Benchmark for Evaluation of
Grounded INteraction (BEGIN). BEGIN consists
of WOW-based dialogue turns annotated for factual
consistency with respect to the grounding knowl-
edge. BEGIN models the task of evaluating ground-
edness as an NLI task and examples are annotated
with five labels: entailment, contradiction, hal-
lucination, off-topic and generic, where the last
three are all considered to be neutral from an NLI
perspective. Also relevant to our work, Rashkin
et al. (2021) showed that faithfulness in knowledge-
grounded dialogues can be improved by using con-
trollable features based on NLI model predictions.

Evaluation via Question Answering and Ques-
tion Generation. QA-based evaluation metrics
have been proposed as a means for measuring con-
tent coverage in text generation tasks. For example,
Eyal et al. (2019) used QA models for abstractive
summarization both as an evaluation metric and as
an optimization criterion that improved the down-
stream ROUGE scores by manually constructing
questions around entities in the source document.
These metrics aim at assessing whether key infor-
mation from the input documents is expressed in
the summaries (Recall-oriented). Durmus et al.
(2020) and Wang et al. (2020) suggested using
QG and QA to identify factual inconsistencies in
abstractive summaries, which is more Precision-
oriented. Their approach is based on the intuition
that if a summary is consistent with its source,
questions asked on the summary and the source
should result in similar answers. Recently, Scialom
et al. (2021) suggested QuestEval, which combines
the Recall and Precision oriented QG and QA ap-
proaches, obtaining a more robust metric for eval-
uating abstractive summaries which was adopted
in the GEM shared task (Bosselut et al., 2021). To
overcome the low scores assigned by the token-
level F1 measure to semantically-identical answers
that are lexically different, they use a measure of
the QA confidence of answerability (Scialom et al.,
2019), which is the complement of the probability
that the QA model gives to the “no answer” pre-
diction. This measure reflects the answerability
independently of the way the answer is expressed,
but does not take into account possible model hal-
lucinations, and it is therefore only applied for
the Recall-based component. Our suggested NLI-

based answer comparison allows lexical variability
in the Precision-based component as well.
Comparing to other automatic evaluation meth-
ods of abstractive summaries, the QG-QA based
methods showed higher correlations with human
judgments of factual consistency. To the best of our
knowledge, our work is the first to apply a QG-QA
approach for evaluating dialogue generation.

7 Conclusion and Future Work

We presented 92, an automatic evaluation method
for factual consistency in knowledge grounded di-
alogue. (Q? employs question generation, ques-
tion answering and NLI models, and does not re-
quire reference responses. To test our approach,
we compiled a dataset of dialogue responses from
two systems on the Wizard of Wikipedia dataset,
which we annotated for factual consistency. Exten-
sive experiments on this dataset, as well as on the
Topical-Chat and DialogueNLI datasets, present
strong results for )2 against various baselines. In
future work we would like to map parts of a re-
sponse to different types like chit-chat, persona
and factual, in order to evaluate each against its
appropriate source of truth. Other directions for
future research are to apply Q? in additional tasks
where factual consistency is essential, such as auto-
mated fact-checking (Thorne and Vlachos, 2018),
and to use its evaluation signal to improve the fac-
tual consistency of generation models as proposed
by Rashkin et al. (2021) or Nan et al. (2021).
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Table 9: Results for the ablations studies.

A Ablation Study

Table 9 presents the results of two ablations stud-
ies on Q?. We show the scores obtained in these
studies, as well as the question coverage, defined
as the percentage of responses for which Q2 gener-
ated at least one valid question, not resorting to the
end-to-end NLI fallback.

First, we experiment with a different decoding
strategy for generating questions. Instead of using
beam search and taking the n top-ranked generated
questions (see §2), we use greedy decoding, gener-
ating only one question per answer candidate. Next,
we additionally drop the filtration of questions re-
lating to personal statements and opinionated parts
of the response.

Top-n Questions. Contrary to our expectations,
When applying greedy decoding and taking a sin-
gle question per an informative span, we inspect an
increase for all data splits, except for the MemNet
consistent responses. While the top-n decoding
seems to be ineffective in terms of separating con-
sistent responses from inconsistent responses, it is
effective for improving the question coverage of

Q>

Filtering Questions Relating to Personal State-
ments. As mentioned in §2, we filter questions
that ask about personal statements expressed by the
model. Examples of such questions are “What do I
love?”, which was generated given the text “I love
cats” and the informative span ‘cats’. Such text
should not be evaluated for factual consistency and
is allowed regardless of the knowledge. We report
here the results for dropping this filtering step, on
top of the previous experiment (applying greedy
decoding). As Table 9 shows, when not removing

Data Model Coverage | Score Q2 % no answer
2 -
dodeca tQ Zig;? 8'32? Same dialogue | 0.02 91.02%
. . -top-n .33% . -
inconsistent | g1 er personal | 92.67% | 0.243 Random dialogue 0 99.61%
dodeca @ 1% 0.696 ble 10: Its usi domly selected knowled
o -top-n 85.33% 0.7 Table 10: Results using randomly selected knowledge.
-filter personal 90% 0.675
Q? 94.67% | 0.135 Average # Characters | Average # Tokens
MemNet - -
. . -top-n 84.67% | 0.153 Inconsistent 70.84 15.79
1nconsistent : =
~filter personal 86% 0.139 Consistent 69.49 15.13
2 Random 69.44 15.86
MemNet Q 92.67% | 0.756
consistent “top-n 85.33% | 0.729 Table 11: Average sentence length and average number
) -filter personal 88% 0.719 ’ g & &

of tokens per sentence in our collected dataset.

such questions, scores are lower for all data splits.
Naturally, the question coverage increases.

B Computing Infrastructure

We ran each experiment on 4 CPUs. For each
data split (i.e., 150 responses), the runtime was
~ 1.5 — 2 hours. In future work, we plan to design
a more efficient version of Q2.

C Additional Experiments

Random Knowledge. We replace the knowl-
edge k with randomly selected knowledge to test
the sensitivity of our method to such adversarial
cases. Two variants of knowledge selection are
applied: In the first variant, we randomly select
knowledge from the same dialogue, but from a
different turn. In the second, we randomly select
knowledge from a different dialogue. In both cases,
we expect Q?’s score to be extremely low, as the
knowledge should have little (in the first variant)
to no (in the second variant) relation with r. Ta-
ble 10 shows the results for using randomly se-
lected knowledge; As expected, in both cases more
than 91% of the generated questions had no answer
in the knowledge, and this is more severe (99.6%)
when using knowledge from a different dialogue.

Response Length. To test whether simple “sur-
face markers” can differentiate consistent re-
sponses from inconsistent responses, we compare
the average number of characters and the average
number of tokens for responses in our dataset. As
Table 11 shows, no strong differences were found
for the dodeca system outputs. Similar results were
obtained for the MemNet system.
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D Additional Graphs

Figures 4 — 6 show the distribution of the response-
level scores assigned by Q2 and by the Overlap(r,
k) baseline for the consistent and inconsistent data.

E Annotation Guidelines

© In this task, you will be presented with dialogues
spanning various topics, conducted with a bot.

In each turn of the conversation, the bot was
provided with a Wikipedia sentence relevant to the
conversation topic and the current context of the
conversation. The knowledge, or pieces of it, are
integrated into the conversation.

Inconsistent responses collection You will be
asked to detect bot responses that are inconsistent
with the given knowledge. Such inconsistencies
may include:

1. Information that was not at all mentioned by
the knowledge.

2. Changes to the knowledge, resulting in infor-
mation that was not expressed by it. Note that
these changes may be subtle.

When marking a response as inconsistent, please:

1. Check if the response is clear and coherent. If
not, ignore the response.

2. Ignore your background knowledge and focus
on the information provided to the bot.

Consistent responses collection You will be
asked to detect bot responses that are consistent
with the given knowledge. When marking a re-
sponse as consistent, please:

1. Check if the response is clear and coherent. If
not, ignore the response.

2. Select a response only if it uses the given
knowledge. Ignore responses that are unin-
formative and only contain chit-chat.

The guidelines are based on the insights provided by
Durmus et al. (2020) regarding annotating faithfulness.
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Histogram of response scores, Q2, inconsistent data Histogram of response scores, Q2, consistent data

200
140
175
120
150
100
_ 125 -
5 5 w0
& 100 8
75 %
50 40
. C o N
. m H. H i —— —
0.0 0.2 04 06 0.8 1.0 0.0 0.2 04 06 0.8 1.0
Score Score
(@ (b)

Figure 4: Distribution of the response-level scores for Q2. (a) Distribution for the inconsistent data. (b) Distribution
for the consistent data.
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Figure 5: Distribution of the response-level scores for Q? w. token-matching. (a) Distribution for the inconsistent
data. (b) Distribution for the consistent data.

Histogram of response scores, Overlap, inconsistent data Histogram of response scores, Overlap, consistent data
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Figure 6: Distribution of the response-level scores for the overlap baseline. (a) Distribution for the inconsistent
data. (b) Distribution for the consistent data.
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