
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 7404–7418
November 7–11, 2021. c©2021 Association for Computational Linguistics

7404

Conversational Multi-Hop Reasoning with
Neural Commonsense Knowledge and Symbolic Logic Rules

Forough Arabshahi∗
Facebook

forough@fb.com

Jennifer Lee∗
Facebook

jenniferlee98@fb.com

Antoine Bosselut
EPFL

antoine.bosselut@epfl.ch

Yejin Choi
University of Washington
yejin@cs.washington.edu

Tom Mitchell
Carnegie Mellon University
tom.mitchell@cmu.edu

Abstract

One of the challenges faced by conversational
agents is their inability to identify unstated
presumptions of their users’ commands, a
task trivial for humans due to their common
sense. In this paper, we propose a zero-
shot commonsense reasoning system for con-
versational agents in an attempt to achieve
this. Our reasoner uncovers unstated presump-
tions from user commands satisfying a gen-
eral template of if-(state), then-(action),
because-(goal). Our reasoner uses a state-of-
the-art transformer-based generative common-
sense knowledge base (KB) as its source of
background knowledge for reasoning. We pro-
pose a novel and iterative knowledge query
mechanism to extract multi-hop reasoning
chains from the neural KB which uses sym-
bolic logic rules to significantly reduce the
search space. Similar to any KBs gathered
to date, our commonsense KB is prone to
missing knowledge. Therefore, we propose to
conversationally elicit the missing knowledge
from human users with our novel dynamic
question generation strategy, which generates
and presents contextualized queries to human
users. We evaluate the model with a user study
with human users that achieves a 35% higher
success rate compared to SOTA.

1 Introduction

Conversational agents are becoming prominent in
our daily lives thanks to advances in speech recog-
nition, natural language processing and machine
learning. However, most conversational agents
still lack commonsense reasoning, preventing them
from engaging in rich conversations with humans.

Recently, Arabshahi et al. (2021) proposed
a commonsense reasoning benchmark task for
conversational agents that contains natural lan-
guage commands given to an agent by humans.
These commands follow a general template of:

∗ Equal contribution

Figure 1: ����’s conversation with a human. The
multiple choices 1 through 5 are commonsense knowl-
edge obtained from COMET using our multi-hop rea-
soner, ranked by the reasoner’s confidence. Since the
user chooses Option 2 (Because I stay dry), ���� se-
lects this reasoning path as the final reasoning chain.

“If (state holds), Then (perform action), Be-
cause (I want to achieve goal)”. We refer
to commands satisfying this template as if-then-
because commands. As stated in Arabshahi et al.
(2021), humans often under-specify conditions
on the if-portion (state) and/or then-portion
(action) of their commands. These under-
specified conditions are referred to as common-
sense presumptions. For example, consider the
command, “If it’s going to rain in the afternoon
(·) Then remind me to bring an umbrella (·) Be-
cause I want to remain dry”, where (·) indicates
the position of the unstated commonsense presump-
tions. The presumptions for this command are (and
I am outside) and (before I leave the house), re-
spectively. The goal in this task is to infer such
commonsense presumptions given if-then-because
commands.

In this paper, we propose the ConversationaL
mUlti-hop rEasoner (����) for this task which
performs zero-shot reasoning. ���� extracts a
multi-hop reasoning chain that indicates how the

7405

Figure 2: ���� diagram. ���� has three main components: The parser, the multi-hop reasoner (prover) and
the dialog system. Given an if-then-because command, the parser extracts independent natural language clauses
for the state , action and goal . The prover extracts multi-hop reasoning chains given the logic templates using
our neural commonsense KB, COMET that indicates how the action achieves the goal when the state holds.
The extracted reasoning chains go through the dialog system that generates template-dependent questions and
converses with a human who either validates the returned proofs or contributes novel commonsense knowledge if
the proofs are incorrect.

action leads to the goal when the state holds.
For example, the simplified reasoning chain for the
previous example is, “if I am reminded to bring an
umbrella before I leave the house, then I have an
umbrella”, “if I have an umbrella and it rains when
I am outside, then I can use the umbrella to block
the rain”, “if I block the rain, then I remain dry”.
Additional commonsense knowledge provided by
the reasoning chain is considered a commonsense
presumption of the input command. In order to con-
struct the multi-hop reasoning chain, we develop a
novel reasoning system that uses a few symbolic
logic templates to prune the exponential reasoning
search space, resulting in significantly improved
generated commonsense knowledge.

Our multi-hop reasoner uses a state-of-the-art
(SOTA) transformer-based commonsense knowl-
edge model called COMmonsEnse Transformers
(COMET) (Bosselut et al., 2019) as its source of
background knowledge and is the first time reason-
ing task is tackled using a large scale KB. Knowl-
edge models can be used in place of KBs, but they
are more flexible in terms of information access, so
we use this term interchangeably with KB.

Despite being a SOTA KB, COMET still misses
requisite knowledge for reasoning about if-then-
because commands. In fact, many if-then-because
commands often fall under the long tail of tasks
for which there is too little knowledge available in
any commonsense KBs. For example, one of the
commands in the dataset is: “If I get an email with
subject the gas kiln fired, then send me a list of all
the pots I put on the glaze shelf between the last
firing and now, because I want to pick up the pots
from the studio.” It is unlikely for any knowledge
source to contain a fact that is contextually relevant

to this command. More importantly, it is also un-
likely that a command requiring the same type of
reasoning will occur again in the future, making it
cost-ineffective to manually annotate.

To overcome this, we propose conversationally
eliciting missing knowledge from human users.
Conversation with users is readily available since
���� is developed for conversational agents. We
develop a novel question generation strategy that
uses COMET to generate questions in the context
of the input if-then-because commands, allowing
���� to acquire contextual feedback from hu-
mans. We evaluate our reasoner by conducting a
user study with humans.

Summary of Results and Contributions: The
contributions of this paper are two-fold. First, we
propose a novel conversational commonsense rea-
soning approach called ConversationaL mUlti-hop
rEasoner (����) that incorporates Commonsense
Transformers (COMET), a large scale neural com-
monsense KB, as its main source of background
knowledge. We propose a multi-hop knowledge
query mechanism that extracts reasoning chains by
iteratively querying COMET. This mechanism uses,
for the first time, a few symbolic logic templates
to prune the reasoning search space, significantly
improving the quality of the generated common-
sense knowledge. Second, we propose a conver-
sational knowledge acquisition strategy that uses
the knowledge extracted from COMET to dynami-
cally ask contextual questions to humans whenever
there is missing knowledge. We ran a user study
and evaluated our proposed approach using real hu-
man users. Our results show that ���� achieves
a 35% higher success rate compared to a baseline,
which uses a less sophisticated conversational inter-

7406

face and a smaller background knowledge on the
benchmark dataset. We also extensively evaluate
the performance of the reasoner in an isolated non-
conversational setting and empirically re-iterate the
need for conversational interactions. ����’s com-
ponents were not trained on the benchmark dataset.
Therefore, our results assess the performance of
����’s zero-shot reasoning.

2 Background and Notation

In this section, we briefly re-introduce the bench-
mark task, the logic templates, and Arabshahi
et al.’s reasoning engine CORGI (COmmonsense
ReasoninG By Instruction), along with an overview
of COMET (Bosselut et al., 2019).

2.1 If-Then-Because Commands

The benchmark dataset (Arabshahi et al., 2021)
contains natural language commands given to con-
versational agents. These commands follow the
template “If-(state), Then-(action), Because-
(goal)”. The if-clause is referred to as the state ,
the then-clause as the action and the because-
clause as the goal .

Logic Templates: The data is partitioned into
4 color-coded reasoning logic templates that
indicate how the commanded action leads to the
goal when the state holds. To be self-contained,
we have included the table of logic templates from
Arabshahi et al. in Figure 3. In the interest of space,
we give one example of the blue logic template,
(¬(goal) D state) ∧ (goal D action (state))
, where ¬ indicates negation, and ∧ indicates logi-
cal AND. Under this template, the state implies
the negation of the goal AND the action im-
plies the goal when the state holds. An
example if-then-because command that satisfies
this template is, “If it snows tonight then wake
me up early because I want to get to work on
time”. Here, the state of snowing (a lot) at night
results in the negation of the goal and the user
will not be able to get to work on time. AND if the
action of waking the user up earlier is performed
when the state of snowing (a lot) at night holds,
the user will get to work on time. The other three
follow different logic templates, but are of the
same nature. We refer the reader to Arabshahi et al.
for more details.

Figure 3: Logic templates and an example if-then-
because command for each one. ∧, ¬, and D denote
logical AND, negation, and implication, respectively.
action h indicates a hidden action. For example, the
hidden action for the third command (green template)
is “planting flower bulbs”.

2.2 CORGI

COmmonsense ReasoninG By Instruction
(CORGI; Arabshahi et al. (2021)) is the SOTA
commonsense reasoning engine designed for
inferring commonsense presumptions of if-then-
because commands. CORGI has a neuro-symbolic
reasoning module (theorem prover) that generates
multi-hop reasoning trees given if-then-because
commands. The neuro-symbolic reasoning module
is a soft logic programming system that reasons
using backward chaining (a backtracking algo-
rithm). CORGI does not use the logic templates
to do reasoning. One of the main limitations of
CORGI is that it uses a small hand-crafted KB
that is not diverse enough to reason about all
the if-then-because commands in the benchmark
dataset. CORGI was tested only on 10 commands
in the released benchmark (Arabshahi et al., 2021).
Moreover, CORGI’s KB is programmed in a
syntax similar to Prolog (Colmerauer, 1990), but
large-scale commonsense Prolog-like knowledge
bases are not readily available. Therefore, in this
paper we propose to use a large-scale SOTA neural
commonsense KB which both extends that limited
source of background knowledge and also enables
the use of a new type of knowledge source.

CORGI is equipped with a conversational in-
teraction strategy to acquire knowledge from hu-
mans when that knowledge is missing from the KB.
However, CORGI uses a static question generation
strategy that often confuses the end-users. First,
the parser often omits verb conjugation or subjects,
resulting in grammatically incorrect questions. Sec-
ond, the static question generation strategy does not
always generate contextual queries. Therefore, in
this paper we propose a dynamic question genera-

7407

tion strategy that generates more relevant questions
resulting in a higher quality knowledge extraction
from humans. We also include a more robust parser
to ensure the questions are grammatically correct.

2.3 COMET

COMmonsensE Transformer (COMET ; Bosselut
et al.) is a generative transformer-based common-
sense KB that learns to generate rich and diverse
commonsense descriptions. COMET constructs
commonsense KBs by using existing tuples as a
seed set of knowledge on which to train. In essence,
a pre-trained language model learns to adapt its
learned representations to knowledge generation,
producing novel high-quality tuples.

Unlike other KBs, COMET represents knowl-
edge implicitly in its neural network parameters
and expresses knowledge through generated free-
form open-text descriptions. This makes it well-
suited for the studied reasoning task, as the if-then-
because commands are also expressed in free-form
text descriptions. Therefore, we can directly query
COMET for commonsense pre-conditions and post-
effects of the state , action and goal . For ex-
ample, “pouring coffee” is a commonsense pre-
condition for “drinking coffee” (Fig 4a).

Our system uses a COMET model trained on
two knowledge graphs, ATOMIC (Sap et al., 2019)
and ConceptNet (Speer et al., 2016). Each of
these knowledge graphs consists of a collection
of tuples, {s, r, o}, where s and o are the subject
and object phrase of the tuple, respectively and
r ∈ [r0, r1, . . . , r`−1] is the relation between s and
o, and ` is the number of relations in the KB.
COMET is trained to generate o given s and r. E.g.,
Figure 4 shows examples of the generated objects
given an input subject, “I drink coffee,” and several
relations from the ATOMIC-trained (Fig. 4a) and
ConceptNet-trained (Fig. 4b) COMET models.

3 ����: Conversational Multi-Hop
Reasoner

���� (ConversationaL mUlti-hop rEasoner) is
a commonsense reasoning engine that inputs if-
then-because commands and outputs a reasoning
chain (proof) containing if-then logical statements
that indicates how the action achieves the user’s
goal when the state holds. ���� is built on top
of CORGI and is triggered when CORGI fails. It
consists of three components: (1) the parser, (2) the
multi-hop prover (reasoner), and (3) the dialog sys-

tem (Figure 2). The Parser takes in the command
and extracts the state , action and goal from
it. At the second step, the prover attempts to find
reasoning chains that connect the action to the
goal when the state holds. The extracted rea-
soning chains go through the dialog system that
generates and presents contextualized questions to
a human user who either validates a returned rea-
soning chain or contributes novel knowledge to
���� if none of the reasoning chains are correct.

All three components interact with ����’s two
sources of background knowledge: (I) A small
handcrafted knowledge base containing logic facts
and rules, K , programmed in a logic programming
language and (II) A large scale neural knowledge
base, COMET, containing free-form text. During
the user-interaction sessions, the system’s back-
ground knowledge base K grows in size as new
knowledge is added to it. This new knowledge is
either novel information added by the user during
conversational interactions, or knowledge queried
from COMET and confirmed by the user. This new
knowledge will be added to K for future similar
reasoning tasks. In what follows, we explain the
three components of ���� in detail.

3.1 Parser
Our parser extracts the state , action , and
goal as independent clauses from the input if-then-
because command. We use Spacy’s (Honnibal and
Montani, 2017) NLP tools such as POS tagging
and coreference resolution to make the clauses self-
contained and contextual.

3.2 Multi-Hop Prover
Inspired by how Prolog generates proofs contain-
ing chains of logical rules and facts using a KB,
our prover (reasoner) generates chains of natural
language commonsense facts and rules to reason
about an input command by iteratively querying
COMET (details on the analogue between Prolog
and our prover are in the appendix). We denote a
COMET query by COMET(r, s) where r is a rela-
tion and s is a subject or an input natural language
clause. COMET uses beam search at decoding time
and COMET(r, s) outputs a list of candidate ob-
jects O = [o0, o1, . . . , ob−1] ordered by confidence,
where b indicates COMET’s beam size. We cate-
gorize COMET relations into two classes, namely
pre-conditions and post-effects. For example, the
relations “Because I wanted” and “is used for” in
Fig 4 are post-effects, whereas the relations “Before

7408

I drink 
coffee

to wake up

to be alert

to be awake

to be energized

to have a caffeine boost

pour coffee

buy coffee

none

to have coffee

to pour coffee

Because I wanted

Before, I needed

(a) ATOMIC beam results for two relations Because I wanted
and Before, I needed

I drink 
coffee

make from grind coffee bean

brew from grind coffee bean

grind

brew

serve in cup

keep me awake at night

eat breakfast

eat

keep me awake

stay awake

requires action

is used for

(b) ConceptNet beam results for two relations requires action
and is used for

Figure 4: COMETr(s) generations for s = I drink cof-
fee and two different relations r. Our neural KB was
trained on ATOMIC and ConcepNet knowledge graphs.
The generations are listed on the right of the block.

I needed” and “requires action” are pre-conditions.

Let us now formally define a reasoning chain
or proof extracted from our neural knowledge
base. A proof consists of a chain of knowledge
tuples {si, ri, oi}, where i ∈ [1,N] and N indicates
the number of hops in the proof chain such that
oi−1 is semantically close to si. (We discuss the
notion of semantic closeness in the next subsec-
tion.) The search space for finding a proof chain
from COMET grows exponentially with N if imple-
mented naively. In the next subsections we explain
how we prune the search space using the logic tem-
plates released with the benchmark dataset.

The goal of our prover is to scale up CORGI’s
small hand-crafted knowledge base, which is pro-
grammed in a Prolog-like language. Since a large-
scale commonsense KB in Prolog is not readily
available, ���� proposes an alternative prover
that enables using SOTA large-scale commonsense
KBs. Moreover, ����’s prover is consistent with
CORGI’s neuro-symbolic logic theorem prover (re-
fer to the appendix for details), allowing us to
seamlessly extend CORGI’s background knowl-
edge without requiring a large scale commonsense
KB programmed in Prolog. Lastly, ���� per-
forms reasoning in a zero-shot manner since the
pre-trained COMET is not trained on the bench-

Figure 5: Bidirectional two-hop proof for the blue tem-
plate (¬(goal) D state) . The dotted orange lines
indicate semantic closeness. ri’s are KB relations, C is
the number of pre-condition relations and E is the num-
ber of post-effect relations in the KB. The ¬ symbol
refers to relations that represent negation; for example,
NotCapableOf or NotIsA.

mark dataset used for evaluation in this paper.

Semantic Closeness: In order to measure seman-
tic closeness of the object and subject phrases, we
embed the sequence of tokens that make up the
object of the previous tuple (oi−1) and the sequence
of tokens that make up the subject of the next tuple
(si) in the proof trace. Semantic closeness, used for
ranking the returned proofs, is defined as a vector
cosine similarity of larger than a threshold, τ.

We investigate several embedding methods to
find one that best suites our multi-hop prover. We
used GloVe embeddings (Pennington et al., 2014),
BERT pre-trained embeddings (Devlin et al., 2019)
and fine-tuned embeddings in COMET, which we
call commonsense embeddings. For GloVe and
BERT embeddings, we compute the phrase embed-
ding by averaging the embeddings of the tokens.
For commonsense embeddings, we use the phrase
embeddings returned by COMET. In the results
section, we compare the outcome of these choices.

Pruning the Proof Search Space In order to
form a reasoning chain (proof) for an if-then-
because command using COMET, we leverage
the logic templates discussed in Sec. 2. All the
templates consist of a conjunction of two logi-
cal implications. For each implication (Head D
Body), the Head and Body are given in the if-then-
because command. For example, the goal and
state in the first implication of the purple tem-
plate (goal D state) are extracted from the
input command. Therefore, in order to prove the
first implication, we need to find a chain of rea-
soning that leads from the state to the goal in a
series of N hops. In order to do that, we either per-
form unidirectional or bidirectional beam search as
explained below.

7409

Unidirectional Beam Search: Here, for a given
number of hops N, we first construct all beam re-
sults O1 =COMET(re, s1) where s1 is the natural
language clause that corresponds to the Body of
the implication in the logic template, and for all re

that are post-effect COMET relations. We continue
to query COMET(re, o

j
n) recursively in a breadth-

first manner for ∀ o j
n ∈ On where n ∈ [1, . . . ,N] is

the hop index. In each hop, we only continue the
query for the top K results ranked by the semantic
closeness of the returned beam result o j

n and the im-
plication’s Head, where K is the search’s beam size.
At the Nth hop, the prover returns proof chains for
which oN is semantically close to the implication’s
Head, which corresponds to the goal .

Bidirectional Beam Search: Here, we construct
all possible beam results of COMET(re, s1), where
s1 is the natural language clause that corresponds
to the implication’s Body, for all re that are post-
effect relations as well as COMET(rc, oN), where
oN is the natural language clause corresponding to
the Head of the implication in the logic template,
for all rc that are pre-condition relations. The proof
succeeds when two intermediate beam results are
semantically close in the beam search path from
either direction (Fig 5).

3.3 Dialog System
The reasoning chains obtained by the prover are
passed to the Dialog System, which has two main
goals. The first is to confirm the prover obtained
valid reasoning chains by asking the user if they
think the automatically recovered proofs are “cor-
rect” from a commonsense stand point (Fig 1). The
necessity of this was also confirmed in Bosselut
et al. (2019)’s human evaluation studies. The sec-
ond is to overcome the problem of missing knowl-
edge when the user rejects all the proofs returned
by the prover. We introduce the dialog generators
responsible for fulfilling each of the above goals in
what follows.

Humans as Knowledge Evaluators The dialog
generator confirms the returned COMET proofs
with humans before adding it as background knowl-
edge to K . In order to do this, it chooses the
top 5 proofs with the highest similarity scores and
presents them as candidates to the human user to
choose from. Our study shows that these multi-
ple choices not only help confirm COMET results
but they also provide guidance to users as to what
information the system is looking for.

As shown in Figure 1, five explanations for the
question are returned by ����. The user chooses
one and provides an explanation as to why he/she
chose that option. The explanation is in open-
domain text, formatted as a series of if-then state-
ments. This is because if-then formatted explana-
tions can be easily parsed using our parser. In this
step, the question asked from users is contingent on
which logic template the if-then-because command
follows. The dialog system’s flowchart as well as
an example dialog are in the appendix.

Humans as Novel Knowledge Contributors
We also use human interaction to acquire novel
knowledge that does not exist in the background
knowledge bases, K and COMET.

When faced with missing knowledge in K ,
���� uses the same technique from Arabshahi
et al. (2021) with a rephrased, more comprehen-
sive question, “what ensures 〈 goal 〉?” result-
ing in higher quality feedback. If the user’s re-
sponse to the multiple-choice question is “None of
the above”, it indicates that COMET has missing
knowledge. ���� then asks the user for an expla-
nation and adds the new knowledge to K and runs
CORGI’s reasoning module to construct a proof. It
is worth noting that sinceK is orders of magnitudes
smaller than SOTA knowledge bases, growing it
with novel knowledge does not introduce any scal-
ability issues.

4 Experiments and Results

Here we discuss our experimental setup, evalua-
tion method, baselines and results. We work with
132 out of the 160 commands from the benchmark
dataset (2021) that fall under three logic templates
blue, orange and green (Figure 3). The red template
contains commands for which there is no unifying
logic template. Therefore, we cannot use it.

Evaluation: We do not use automated evaluation
metrics and instead use human evaluations for two
reasons. First, there are currently no metrics in
the literature that assess whether the returned rea-
soning chains are “correct” from a commonsense
perspective. Second, evaluating dialog systems
is challenging. It is debated that metrics such as
BLEU (Papineni et al., 2002) and perplexity often
fail to measure true response quality (Liu et al.,
2016; Li et al., 2016).

Experiments: In the first experiment, we evalu-
ate our multi-hop prover in isolation and without

7410

conversational interactions. The human evaluators
in this study are expert evaluators. In our second
experiment, we test ����’s performance end-to-
end with non-expert human users and investigate
the efficacy of the conversational interactions. In or-
der to be comparable with Arabshahi et al. (2021)’s
study, we use the knowledge base of commonsense
facts and rules, K , released with the dataset. It
contains 228 facts and rules. Our COMET model is
pre-trained on knowledge graphs ConceptNet and
ATOMIC. We used COMET’s open-source code1

for training with the hyper-parameters reported
there (Bosselut et al., 2019).

4.1 Multi-hop Prover Evaluation

As shown in Figure 3, each logic template consists
of a conjunction of two logical implication state-
ments. We use the terminology end-to-end proof
to refer to proving both of the implications in the
template and half-proof to refer to proving one.

Table 1 presents the number of proved logical
implications goalD action , with respect to the
number of hops using unidirectional and bidirec-
tional beam search. Expert-verified proofs refer to
reasoning chains with similarity score of at least
0.8 that are validated by a human evaluator. The
similarity threshold of 0.8 was tuned offline on a
small subset of the benchmark dataset and picked
from the following list [0.7, 0.8, 0.85, 0.9]. Auto-
mated proofs are the portion of the human evalu-
ated proofs for which the highest scoring proof is
the verified one. As shown, the number of auto-
mated proofs almost doubles when an expert hu-
man evaluator validates the proofs. This indicates
that the model benefits from human knowledge
evaluators. An instance of this scenario is shown
in Figure 1 where the human user chooses the sec-
ond ranking candidate as the correct proof. As
expected, a portion of the commands cannot be
proved using COMET alone even with human eval-
uators. This indicates that we are encountering
missing knowledge. Therefore, there is need for
humans as novel knowledge contributors. More-
over, Table 1 shows that bidirectional beam search
is more successful than unidirectional search for
lower hops greater than 1. This is because there is
a higher chance of finding a good scoring match
when the two directions meet due to an extended
search space. For the same reason, the number of
successful proofs drop when the number of hops

1https://github.com/atcbosselut/comet-commonsense

Table 1: Number of hops (N) required to obtain a half-
proof for the implication goalD action for two proof
search strategies and 132 commands. Similarity score
is computed using GloVe embeddings.

Pruning
N

1 2 3 4 5

Unidirectional
beam search

Expert-verified proofs 50 21 13 2 1
Automated proofs 26 10 6 1 1

Bidirectional
beam search

Expert-verified proofs N/A 67 16 9 3
Automated proofs N/A 42 6 0 0

Table 2: Number of successful unidirectional half-
proofs for the implication goalD action for a given
number of hops (N) among the top k proof candidates
for 132 commands. Similarity score is computed using
GloVe embeddings.

k
N 1 2 3 4 5

1 26 10 6 1 1
2 32 12 7 1 1
3 35 12 9 1 1
4 37 14 9 1 1
5 39 14 10 1 1

is increased beyond a certain point. Please note, in
bidirectional beam search N = 1 is not applicable
because the smallest number of hops extracted for
bidirectional beam search is 2. Moreover, if a state-
ment is proved with lower number of hops, we do
not prove it with a higher N. Therefore, the number
of hops needed for proving a certain statement is
not predefined, and is rather chosen based on the
best semantic closeness among all extracted hops
at test time. The automated half-proofs obtained
from the prover are listed in Tables 6 and 7 in the
Appendix.

In Table 2, we present the number of expert-
verified half-proofs achieved with different number
of hops (N) within the top k ranked results. Note
that we exclude successful half-proofs for higher
degrees of N if there exists a proof with fewer hops,
and we include a proof as long as the verified result
is within the top k results. Table 2 shows that the
majority of successful half-proofs are achievable
in N ≤ 3.

In Table 3, we present the number of obtained
full proofs for 2-hop bidirectional beam search
(the best result from Table 1) using GloVe embed-
dings broken down by logic templates. Although
COMET is successful at finding half proofs, the suc-
cess rate decreases when two implications need to
be proven in conjunction. As shown, COMET can
(fully) prove 12.8% of the if-then-because com-

7411

Table 3: Number of End-to-End Proofs per Logic Tem-
plate for 2-hop bidirectional beam search.

Logic Template #Successful #False Positive Total Count

Automated
proof

orange 1 0 50
blue 6 1 65
green 6 2 17

Expert
evaluated

proof

orange 1 N/A 50
blue 7 N/A 65
green 9 N/A 17

Table 4: Number of half-proofs using bidirectional
beam search: evaluated by expert human evaluators.

Embedding Space goalD action ¬ goalD state

GloVe 67 17
BERT 52 14
Commonsense 59 12

mands. This emphasizes the necessity of using hu-
man conversational interactions for obtaining full
proofs. Therefore, if COMET succeeds at proving
half of the template, there is a chance to prove the
other half with the help of a human user. This is
because most of the commands belong to the long
tail of tasks for which there is too little knowledge
available in any commonsense KB.

Table 4 compares the number of successful
proofs obtained using GloVe, BERT and common-
sense embeddings. As shown, GloVe embeddings
perform better than the others since commonsense
and BERT embeddings perform poorly when there
is little surrounding context for the words. The
returned objects by COMET tend to have a few
number of tokens, (around 1-2). Therefore, the
similarity scores assigned by BERT and common-
sense embeddings either result in more false pos-
itives or in pruning out good candidates. For ex-
ample, BERT and commonsense embeddings both
tend to assign a lower similarity score to “I sleep”
and “sleep” than single token words like “ski” and
“spoil”. But this is not an issue with GloVe em-
beddings. Therefore, in all the other experiments
we have used GloVe embeddings. The effect of
the embeddings is amplified as the number of hops
increases. For example in Table 1, The number of
expert-verified 2-hops proofs drops from 21 to 5 if
we use BERT embeddings.

4.2 User Study

To assess ����’s end-to-end performance, we ran
a user study in which human users engaged in a con-
versational interaction with ���� and answered
its prompts. We collected a total of 700 dialogues

from this study and report the percentage of the
if-then-because commands that were successfully
proved (end-to-end) as a result of the conversa-
tional interactions in Table 5. Our users worked on
a total of 288 if-then-because commands that fit the
blue, orange, and green logic templates. We had
129 unique commands and 29 participants in the
study with at least 2 users per command. The 129
commands used in this study are a subset of the 132
commands (half-proofs) in Table 1. The remain-
ing 3 statements were excluded because either the
statements were longer than COMET’s maximum
input token size (for the full-proof) or they did not
trigger a CORGI/CLUE interaction so it does not
make sense to include them in the user-study. Each
participant worked on 9-10 statements taking ap-
proximately 30-40 minutes to complete them all.
The participants were undergraduate, graduate or
recently graduated students with a background in
computer science or engineering. Please note that
no skills beyond reading is required for interact-
ing with ����; no particular domain expertise is
needed either because most humans possess com-
mon sense regarding day-to-day activities.

The users contributed a total number of 70 novel
knowledge tuples to our background knowledge
base and validated 64.86% of the proofs extracted
using our multi-hop prover. ���� is built on
top of CORGI,2 and is triggered only if CORGI
fails. Therefore, the 19 and 4 commands proved by
���� are not provable by CORGI; the commands
proved by CORGI in each row is indicated in the
parentheses. Therefore, ���� successfully in-
creases the reasoning success rate by 35%. Please
note that the absolute gain in terms of success per-
centage compared with CORGI is 8%.

We did not experience any inconsistencies be-
tween user responses in the study because users
received the same goal for a given command. It is
difficult to generate contradictory proofs when the
context is the same. However, proofs among dif-
ferent users do not have to be identical. As long as
the proof fulfills the criteria and is “correct” from
a commonsense perspective, it holds. Every user
has different preferences, linguistic tendencies, and
living habits, which can affect the generated proof.
Consequently, proofs are tailored to users. Also,
showing the five multiple choice options helps
users understand what kind of knowledge���� is
looking for, improving their responses.

2https://github.com/ForoughA/CORGI

7412

Table 5: User-study results. Commands not prov-
able by CORGI trigger a ���� dialog, so commands
proved by ���� are in addition to CORGI’s. The
numbers in the parentheses in #proved column is the
number of statements that CORGI proved.

Dialog Phase #Proved #Tried Proved/Tried

CORGI 65 288 0.2256
����[orange] 17(+27) 126 0.1349
����[green] 2(+0) 17 0.1176
����[blue] 4(+38) 145 0.0276

5 Related Work

Efforts in developing commonsense reasoning
started as early as the foundation of the field of ar-
tificial intelligence (Grice, 1975; Winograd, 1972;
Davis and Marcus, 2015; Minsky, 1975). Com-
monsense reasoning is becoming more prominent
as computers increase their interactions with us in
our daily lives. For example, conversational agents
such as Alexa, Siri, Google Home and others have
very recently entered our daily lives. However, they
cannot currently engage in natural sounding conver-
sations with their human users mainly due to lack of
commonsense reasoning. Moreover, they operate
mostly on a pre-programmed set of tasks. On the
other hand, instructable agents (Azaria et al., 2016;
Labutov et al., 2018; Li et al., 2018, 2017b,a; Guo
et al., 2018; Mohan and Laird, 2014; Mininger and
Laird, 2018; Mohan et al., 2012), can be taught new
tasks through natural language instructions/demon-
strations. One of the challenges these bots face is
correctly grounding their natural language instruc-
tions into executable commands.

Our approach addresses a new reasoning task
proposed by Arabshahi et al. (2021) that contains
commands given to an instructable agent satisfying
a general template. In contrast to this challeng-
ing task and TimeTravel (Qin et al., 2019), most
commonsense reasoning benchmarks have tradi-
tionally been designed in a multiple choice manner.
Moreover, they are not typically targeted at conver-
sational agents. Refer to Storks et al. (2019) and
Arabshahi et al. (2021) for a comprehensive list of
commonsense reasoning benchmarks.

Our commonsense reasoning engine uses a
SOTA neural knowledge model, COMET (Bosse-
lut et al., 2019), as an underlying source of com-
monsense knowledge. COMET is a framework for
constructing knowledge bases from transformer-
based language models. In contrast to previous au-

tomatic knowledge base construction methods that
rely on semi-structured (Suchanek et al., 2007; Hof-
fart et al., 2013; Auer et al., 2007) and unstructured
(Dong et al., 2014; Carlson et al., 2010; Mitchell
et al., 2018; Nakashole et al., 2012) text extrac-
tion, COMET uses transfer learning to adapt lan-
guage models to generate knowledge graph tuples
by learning on examples of structured knowledge
from a seed KB. COMET was recently used for
persona-grounded dialog for chatbots (Majumder
et al., 2020).

6 Conclusions

We introduce the ConversationaL mUlti-hop rEa-
soner (����) for commonsense reasoning in con-
versational agents. ���� uses a neural com-
monsense KB and symbolic logic rules to per-
form multi-hop reasoning. It takes if-(state),
then-(action), because(goal) commands as input
and returns a multi-hop chain of commonsense
knowledge, indicating how the action leads to the
goal when the state holds. The symbolic logic
rules help significantly reduce the multi-hop rea-
soning search space and improve the quality of the
generated commonsense reasoning chains. We eval-
uate ���� with a user study with human users.

Acknowledgments

Tom Mitchell is supported in part by AFOSR un-
der grant FA95501710218. Antoine Bosselut and
Yejin Choi gratefully acknowledge the support
of DARPA under No. N660011924033 (MCS),
JD.com, and the Allen Institute for AI.

References
Forough Arabshahi, Jennifer Lee, Mikayla Gawarecki,

Kathryn Mazaitis, Amos Azaria, and Tom Mitchell.
2021. Conversational neuro-symbolic common-
sense reasoning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary Ives.
2007. Dbpedia: A nucleus for a web of open data.
In The semantic web, pages 722–735. Springer.

Amos Azaria, Jayant Krishnamurthy, and Tom M
Mitchell. 2016. Instructable intelligent personal
agent. In Thirtieth AAAI Conference.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Çelikyilmaz, and Yejin Choi.
2019. Comet: Commonsense transformers for auto-
matic knowledge graph construction. In ACL.

7413

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr
Settles, Estevam R Hruschka Jr, and Tom M
Mitchell. 2010. Toward an architecture for never-
ending language learning. In AAAI.

Alain Colmerauer. 1990. An introduction to prolog iii.
In Computational Logic, pages 37–79. Springer.

Ernest Davis and Gary Marcus. 2015. Common-
sense reasoning and commonsense knowledge in ar-
tificial intelligence. Communications of the ACM,
58(9):92–103.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL-HLT.

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko
Horn, Ni Lao, Kevin Murphy, Thomas Strohmann,
Shaohua Sun, and Wei Zhang. 2014. Knowledge
vault: A web-scale approach to probabilistic knowl-
edge fusion. In Proceedings of the 20th ACM
SIGKDD Conference, pages 601–610.

Herbert P Grice. 1975. Logic and conversation. In
Speech acts, pages 41–58. Brill.

Daya Guo, Duyu Tang, Nan Duan, Ming Zhou, and
Jian Yin. 2018. Dialog-to-action: Conversational
question answering over a large-scale knowledge
base. In NeurIPS, pages 2942–2951.

Johannes Hoffart, Fabian M Suchanek, Klaus
Berberich, and Gerhard Weikum. 2013. Yago2: A
spatially and temporally enhanced knowledge base
from wikipedia. Artificial Intelligence, 194:28–61.

Matthew Honnibal and Ines Montani. 2017. spacy 2:
Natural language understanding with bloom embed-
dings. Convolutional Neural Networks and Incre-
mental Parsing.

Igor Labutov, Shashank Srivastava, and Tom Mitchell.
2018. Lia: A natural language programmable per-
sonal assistant. In Proceedings of 2018 EMNLP:
System Demonstrations, pages 145–150.

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky,
Michel Galley, and Jianfeng Gao. 2016. Deep rein-
forcement learning for dialogue generation. In Pro-
ceedings of 2016 EMNLP, pages 1192–1202.

Toby Jia-Jun Li, Amos Azaria, and Brad A Myers.
2017a. Sugilite: creating multimodal smartphone
automation by demonstration. In Proceedings of the
2017 CHI Conference, pages 6038–6049. ACM.

Toby Jia-Jun Li, Igor Labutov, Xiaohan Nancy Li, Xi-
aoyi Zhang, Wenze Shi, Wanling Ding, Tom M
Mitchell, and Brad A Myers. 2018. Appinite: A
multi-modal interface for specifying data descrip-
tions in programming by demonstration using natu-
ral language instructions. In 2018 IEEE Symposium
on Visual Languages and Human-Centric Comput-
ing (VL/HCC), pages 105–114. IEEE.

Toby Jia-Jun Li, Yuanchun Li, Fanglin Chen, and
Brad A Myers. 2017b. Programming iot devices by
demonstration using mobile apps. In International
Symposium on End User Development, pages 3–17.
Springer.

Chia-Wei Liu, Ryan Lowe, Iulian Vlad Serban, Mike
Noseworthy, Laurent Charlin, and Joelle Pineau.
2016. How not to evaluate your dialogue system:
An empirical study of unsupervised evaluation met-
rics for dialogue response generation. In Proceed-
ings of 2016 EMNLP, pages 2122–2132.

Bodhisattwa Prasad Majumder, Harsh Jhamtani, Tay-
lor Berg-Kirkpatrick, and Julian McAuley. 2020.
Like hiking? you probably enjoy nature: Persona-
grounded dialog with commonsense expansions. In
Proceedings of 2020 EMNLP, pages 9194–9206.

Aaron Mininger and John E Laird. 2018. Interactively
learning a blend of goal-based and procedural tasks.
In Thirty-Second AAAI Conference.

M Minsky. 1975. A framework for representing knowl-
edge. the psychology of computer vision, s. 211 277,
new york.

Tom Mitchell, William Cohen, Estevam Hruschka,
Partha Talukdar, Bishan Yang, Justin Betteridge, An-
drew Carlson, Bhavana Dalvi, Matt Gardner, Bryan
Kisiel, et al. 2018. Never-ending learning. Commu-
nications of the ACM, 61(5):103–115.

Shiwali Mohan and John Laird. 2014. Learning goal-
oriented hierarchical tasks from situated interactive
instruction. In Twenty-Eighth AAAI Conference on
Artificial Intelligence.

Shiwali Mohan, Aaron H Mininger, James R Kirk, and
John E Laird. 2012. Acquiring grounded represen-
tations of words with situated interactive instruction.
In Advances in Cognitive Systems.

Ndapandula Nakashole, Gerhard Weikum, and Fabian
Suchanek. 2012. Patty: a taxonomy of relational
patterns with semantic types. In Proceedings of the
2012 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natu-
ral Language Learning, pages 1135–1145.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of 2014 EMNLP, pages
1532–1543.

Lianhui Qin, Antoine Bosselut, Ari Holtzman, Chandra
Bhagavatula, Elizabeth Clark, and Yejin Choi. 2019.
Counterfactual story reasoning and generation. In
Proceedings of 2019 EMNLP-IJCNLP.

7414

Maarten Sap, Ronan Le Bras, Emily Allaway, Chan-
dra Bhagavatula, Nicholas Lourie, Hannah Rashkin,
Brendan Roof, Noah A Smith, and Yejin Choi. 2019.
Atomic: An atlas of machine commonsense for if-
then reasoning. In Proceedings of AAAI, volume 33,
pages 3027–3035.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2016.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In AAAI.

Shane Storks, Qiaozi Gao, and Joyce Y Chai. 2019.
Commonsense reasoning for natural language under-
standing: A survey of benchmarks, resources, and
approaches. arXiv preprint arXiv:1904.01172.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowledge.
In Proceedings of the 16th international conference
on World Wide Web, pages 697–706.

Terry Winograd. 1972. Understanding natural lan-
guage. Cognitive psychology, 3(1):1–191.

7415

Appendix

Multi-hop Prover Details

Prolog is a logic programming language that con-
sists of a set of predicates. A predicate has a name
(functor) and a set of N > 0 arguments. For exam-
ple, get(i, work, on_time) is a predicate with func-
tor get and 3 arguments. Predicates are defined by a
set of logical rules or Horn clauses (Head D Body)
and facts (Head), where Head is a predicate, Body
is a conjunction of predicates, and D is logical
implication. Prolog uses backward-chaining to log-
ically reason about (prove) an input query, repre-
sented by a predicate. From a high level, a proof
consists of a chain of logical facts and rules avail-
able in the background KB. Inspired by this prover,
we extend this to free-form text proofs in this paper.

This chain-structured definition of a proof is in-
spired by a Prolog proof. A knowledge tuple here
is analogous to a logical rule in Prolog (Head D
Body) where the subject and object correspond to
either the Body, or the Head depending on the re-
lation. We categorize COMET relations into two
classes, namely pre-conditions and post-effects. If
the relation is a post-effect, the object is the Head
and the subject is the Body. If the relation is a
pre-condition, the reverse is true. For example, the
relations “Because I wanted” and “is used for” in
Fig 4 are post-effects, whereas the relations “Before
I needed” and “requires action” are pre-conditions.
The subject (Body) consists of a single predicate
(instead of a conjunction of predicates in Prolog).
Since there is no conjunction in the Body of the
rules, the logical proof reduces to a chain (as op-
posed to a proof tree in Prolog). Moreover, the
semantic closeness of oi−1 and si is inspired by the
unification operation (Colmerauer, 1990) in Prolog
and is analogous to the soft unification operation
of CORGI’s neuro-symbolic theorem prover. It
is worth noting that this analogue falls short of
Prolog’s variable grounding and is an interesting
avenue for our future work.

Dialogue System Details

The control flow of ����’s dialog system in Fig-
ure 2 is shown in detail in Figure 6. The dialog
system uses the logic templates and the results re-
turned by COMET to interact with the human user
and ask questions.

For example, consider proving the first impli-
cation of the blue template (¬ goalD state

If CORGI fails…

Is logic template
blue?

User Dialog:
What does “S

<latexit sha1_base64="NQz7lZQHscXolY2XCDoZS4b4UUM=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rFF+wFtKJvtpF262YTdjVBCf4EHLype/Uke/Tdu2xy09cHA470ZZuYFieDauO63s7a+sbm1Xdgp7u7tHxyWjo5bOk4VwyaLRaw6AdUouMSm4UZgJ1FIo0BgOxjfzfz2EyrNY/loJgn6ER1KHnJGjZUaD/1S2a24c5BV4uWkDDnq/dJXbxCzNEJpmKBadz03MX5GleFM4LTYSzUmlI3pELuWShqh9rP5oVNybpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbjc3AW/54lbSqFe+yUm1clWu3eRoFOIUzuAAPrqEG91CHJjBAeIZXeHO48+K8Ox+L1jUnnzmBP3A+fwAswozL</latexit>

S
<latexit sha1_base64="NQz7lZQHscXolY2XCDoZS4b4UUM=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rFF+wFtKJvtpF262YTdjVBCf4EHLype/Uke/Tdu2xy09cHA470ZZuYFieDauO63s7a+sbm1Xdgp7u7tHxyWjo5bOk4VwyaLRaw6AdUouMSm4UZgJ1FIo0BgOxjfzfz2EyrNY/loJgn6ER1KHnJGjZUaD/1S2a24c5BV4uWkDDnq/dJXbxCzNEJpmKBadz03MX5GleFM4LTYSzUmlI3pELuWShqh9rP5oVNybpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbjc3AW/54lbSqFe+yUm1clWu3eRoFOIUzuAAPrqEG91CHJjBAeIZXeHO48+K8Ox+L1jUnnzmBP3A+fwAswozL</latexit> ” cause that leads to
“¬G

<latexit sha1_base64="6DnBC59rG2caez0Mazfu12iqSEQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiBz1WsB/QhrLZTtqlm03Y3Qil9Ed48aCIV3+PN/+NmzYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj28xvP6HSPJaPZpKgH9Gh5CFn1Fip3ZM4JHelfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYf0qV4UzgrNRLNSaUjekQu5ZKGqH2p/NzZ+TMKgMSxsqWNGSu/p6Y0kjrSRTYzoiakV72MvE/r5ua8NqfcpmkBiVbLApTQUxMst/JgCtkRkwsoUxxeythI6ooMzahLARv+eVV0qpVvYtq7eGyUr/J4yjCCZzCOXhwBXW4hwY0gcEYnuEV3pzEeXHenY9Fa8HJZ47hD5zPHymTjss=</latexit>

¬G
<latexit sha1_base64="6DnBC59rG2caez0Mazfu12iqSEQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiBz1WsB/QhrLZTtqlm03Y3Qil9Ed48aCIV3+PN/+NmzYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj28xvP6HSPJaPZpKgH9Gh5CFn1Fip3ZM4JHelfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYf0qV4UzgrNRLNSaUjekQu5ZKGqH2p/NzZ+TMKgMSxsqWNGSu/p6Y0kjrSRTYzoiakV72MvE/r5ua8NqfcpmkBiVbLApTQUxMst/JgCtkRkwsoUxxeythI6ooMzahLARv+eVV0qpVvYtq7eGyUr/J4yjCCZzCOXhwBXW4hwY0gcEYnuEV3pzEeXHenY9Fa8HJZ47hD5zPHymTjss=</latexit> ”?

User Dialog:
What does “A<latexit sha1_base64="VYwbU/P32RM4vdFC+wYJljrvzDg=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj14rEF+wFtKJvtpF262YTdjVBCf4EHLype/Uke/Tdu2xy09cHA470ZZuYFieDauO63s7a+sbm1Xdgp7u7tHxyWjo5bOk4VwyaLRaw6AdUouMSm4UZgJ1FIo0BgOxjfz/z2EyrNY/loJgn6ER1KHnJGjZUat/1S2a24c5BV4uWkDDnq/dJXbxCzNEJpmKBadz03MX5GleFM4LTYSzUmlI3pELuWShqh9rP5oVNybpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbjc3AW/54lbSqFe+yUm1clWt3eRoFOIUzuAAPrqEGD1CHJjBAeIZXeHO48+K8Ox+L1jUnnzmBP3A+fwARjIy5</latexit>A<latexit sha1_base64="VYwbU/P32RM4vdFC+wYJljrvzDg=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj14rEF+wFtKJvtpF262YTdjVBCf4EHLype/Uke/Tdu2xy09cHA470ZZuYFieDauO63s7a+sbm1Xdgp7u7tHxyWjo5bOk4VwyaLRaw6AdUouMSm4UZgJ1FIo0BgOxjfz/z2EyrNY/loJgn6ER1KHnJGjZUat/1S2a24c5BV4uWkDDnq/dJXbxCzNEJpmKBadz03MX5GleFM4LTYSzUmlI3pELuWShqh9rP5oVNybpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbjc3AW/54lbSqFe+yUm1clWt3eRoFOIUzuAAPrqEGD1CHJjBAeIZXeHO48+K8Ox+L1jUnnzmBP3A+fwARjIy5</latexit> ” cause that helps

you achieve “G<latexit sha1_base64="6jf4xZU95bKTXszHuJHwqTAjhi0=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0oMcW7Ae0oWy2k3bpZhN2N0IJ/QUevKh49Sd59N+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WjmSToR3QoecgZNVZq3PdLZbfizkFWiZeTMuSo90tfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/mh07JuVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGNn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNjYDb/njVdKqVrzLSrVxVa7d5mkU4BTO4AI8uIYaPEAdmsAA4Rle4c3hzovz7nwsWtecfOYE/sD5/AEanoy/</latexit>

G
<latexit sha1_base64="6jf4xZU95bKTXszHuJHwqTAjhi0=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0oMcW7Ae0oWy2k3bpZhN2N0IJ/QUevKh49Sd59N+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WjmSToR3QoecgZNVZq3PdLZbfizkFWiZeTMuSo90tfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/mh07JuVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGNn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNjYDb/njVdKqVrzLSrVxVa7d5mkU4BTO4AI8uIYaPEAdmsAA4Rle4c3hzovz7nwsWtecfOYE/sD5/AEanoy/</latexit> ”?

User Dialog:
What does “S

<latexit sha1_base64="NQz7lZQHscXolY2XCDoZS4b4UUM=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rFF+wFtKJvtpF262YTdjVBCf4EHLype/Uke/Tdu2xy09cHA470ZZuYFieDauO63s7a+sbm1Xdgp7u7tHxyWjo5bOk4VwyaLRaw6AdUouMSm4UZgJ1FIo0BgOxjfzfz2EyrNY/loJgn6ER1KHnJGjZUaD/1S2a24c5BV4uWkDDnq/dJXbxCzNEJpmKBadz03MX5GleFM4LTYSzUmlI3pELuWShqh9rP5oVNybpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbjc3AW/54lbSqFe+yUm1clWu3eRoFOIUzuAAPrqEG91CHJjBAeIZXeHO48+K8Ox+L1jUnnzmBP3A+fwAswozL</latexit>

S
<latexit sha1_base64="NQz7lZQHscXolY2XCDoZS4b4UUM=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rFF+wFtKJvtpF262YTdjVBCf4EHLype/Uke/Tdu2xy09cHA470ZZuYFieDauO63s7a+sbm1Xdgp7u7tHxyWjo5bOk4VwyaLRaw6AdUouMSm4UZgJ1FIo0BgOxjfzfz2EyrNY/loJgn6ER1KHnJGjZUaD/1S2a24c5BV4uWkDDnq/dJXbxCzNEJpmKBadz03MX5GleFM4LTYSzUmlI3pELuWShqh9rP5oVNybpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbjc3AW/54lbSqFe+yUm1clWu3eRoFOIUzuAAPrqEG91CHJjBAeIZXeHO48+K8Ox+L1jUnnzmBP3A+fwAswozL</latexit> ” cause that makes it

difficult to achieve “G<latexit sha1_base64="6jf4xZU95bKTXszHuJHwqTAjhi0=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0oMcW7Ae0oWy2k3bpZhN2N0IJ/QUevKh49Sd59N+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WjmSToR3QoecgZNVZq3PdLZbfizkFWiZeTMuSo90tfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/mh07JuVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGNn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNjYDb/njVdKqVrzLSrVxVa7d5mkU4BTO4AI8uIYaPEAdmsAA4Rle4c3hzovz7nwsWtecfOYE/sD5/AEanoy/</latexit>

G
<latexit sha1_base64="6jf4xZU95bKTXszHuJHwqTAjhi0=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0oMcW7Ae0oWy2k3bpZhN2N0IJ/QUevKh49Sd59N+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WjmSToR3QoecgZNVZq3PdLZbfizkFWiZeTMuSo90tfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/mh07JuVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGNn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNjYDb/njVdKqVrzLSrVxVa7d5mkU4BTO4AI8uIYaPEAdmsAA4Rle4c3hzovz7nwsWtecfOYE/sD5/AEanoy/</latexit> ”?

User Dialog:
Is “¬G

<latexit sha1_base64="6DnBC59rG2caez0Mazfu12iqSEQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiBz1WsB/QhrLZTtqlm03Y3Qil9Ed48aCIV3+PN/+NmzYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj28xvP6HSPJaPZpKgH9Gh5CFn1Fip3ZM4JHelfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYf0qV4UzgrNRLNSaUjekQu5ZKGqH2p/NzZ+TMKgMSxsqWNGSu/p6Y0kjrSRTYzoiakV72MvE/r5ua8NqfcpmkBiVbLApTQUxMst/JgCtkRkwsoUxxeythI6ooMzahLARv+eVV0qpVvYtq7eGyUr/J4yjCCZzCOXhwBXW4hwY0gcEYnuEV3pzEeXHenY9Fa8HJZ47hD5zPHymTjss=</latexit>

¬G
<latexit sha1_base64="6DnBC59rG2caez0Mazfu12iqSEQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiBz1WsB/QhrLZTtqlm03Y3Qil9Ed48aCIV3+PN/+NmzYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj28xvP6HSPJaPZpKgH9Gh5CFn1Fip3ZM4JHelfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYf0qV4UzgrNRLNSaUjekQu5ZKGqH2p/NzZ+TMKgMSxsqWNGSu/p6Y0kjrSRTYzoiakV72MvE/r5ua8NqfcpmkBiVbLApTQUxMst/JgCtkRkwsoUxxeythI6ooMzahLARv+eVV0qpVvYtq7eGyUr/J4yjCCZzCOXhwBXW4hwY0gcEYnuEV3pzEeXHenY9Fa8HJZ47hD5zPHymTjss=</latexit> ” the opposite of “G<latexit sha1_base64="6jf4xZU95bKTXszHuJHwqTAjhi0=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0oMcW7Ae0oWy2k3bpZhN2N0IJ/QUevKh49Sd59N+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WjmSToR3QoecgZNVZq3PdLZbfizkFWiZeTMuSo90tfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/mh07JuVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGNn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNjYDb/njVdKqVrzLSrVxVa7d5mkU4BTO4AI8uIYaPEAdmsAA4Rle4c3hzovz7nwsWtecfOYE/sD5/AEanoy/</latexit>

G
<latexit sha1_base64="6jf4xZU95bKTXszHuJHwqTAjhi0=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0oMcW7Ae0oWy2k3bpZhN2N0IJ/QUevKh49Sd59N+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WjmSToR3QoecgZNVZq3PdLZbfizkFWiZeTMuSo90tfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/mh07JuVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGNn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNjYDb/njVdKqVrzLSrVxVa7d5mkU4BTO4AI8uIYaPEAdmsAA4Rle4c3hzovz7nwsWtecfOYE/sD5/AEanoy/</latexit> ”?

CLUE parses explanation
and adds them to K

Y

Y

YN

CORGI attempts to prove
¬G(Z)

<latexit sha1_base64="z+rIzmERfR7NGGj/wgqbgHp5+z0=">AAAB73icbVBNSwMxEM36WetX1aOXYBHqpexWQY9FD3qsYD+0XUo2nW1Dk+yaZIWy9Fd48KLi1Z/j0X9j2u5BWx8MPN6bYWZeEHOmjet+O0vLK6tr67mN/ObW9s5uYW+/oaNEUajTiEeqFRANnEmoG2Y4tGIFRAQcmsHwauI3n0BpFsk7M4rBF6QvWcgoMVa670jo4+vSw0m3UHTL7hR4kXgZKaIMtW7hq9OLaCJAGsqJ1m3PjY2fEmUY5TDOdxINMaFD0oe2pZII0H46PXiMj63Sw2GkbEmDp+rviZQIrUcisJ2CmIGe9ybif147MeGFnzIZJwYknS0KE45NhCff4x5TQA0fWUKoYvZWTAdEEWpsRjYDb/7jRdKolL3TcuX2rFi9zNLIoUN0hErIQ+eoim5QDdURRQI9o1f05jw6L8678zFrXXKymQP0B87nD+cPj3A=</latexit>

¬G(Z)
<latexit sha1_base64="z+rIzmERfR7NGGj/wgqbgHp5+z0=">AAAB73icbVBNSwMxEM36WetX1aOXYBHqpexWQY9FD3qsYD+0XUo2nW1Dk+yaZIWy9Fd48KLi1Z/j0X9j2u5BWx8MPN6bYWZeEHOmjet+O0vLK6tr67mN/ObW9s5uYW+/oaNEUajTiEeqFRANnEmoG2Y4tGIFRAQcmsHwauI3n0BpFsk7M4rBF6QvWcgoMVa670jo4+vSw0m3UHTL7hR4kXgZKaIMtW7hq9OLaCJAGsqJ1m3PjY2fEmUY5TDOdxINMaFD0oe2pZII0H46PXiMj63Sw2GkbEmDp+rviZQIrUcisJ2CmIGe9ybif147MeGFnzIZJwYknS0KE45NhCff4x5TQA0fWUKoYvZWTAdEEWpsRjYDb/7jRdKolL3TcuX2rFi9zNLIoUN0hErIQ+eoim5QDdURRQI9o1f05jw6L8678zFrXXKymQP0B87nD+cPj3A=</latexit>

CLUE parses explanation
and adds them to K

Is CORGI
successful?

CORGI attempts to prove
G(Z)

<latexit sha1_base64="+gNNVB+x/4apKwyDeqbyVAWy824=">AAAB6nicbVBNTwIxEJ3FL8Qv1KOXRmKCF7KLJnoketAjJgJG2JBu6UJD2920XROy4S948KLGq3/Io//GLuxBwZdM8vLeTGbmBTFn2rjut1NYWV1b3yhulra2d3b3yvsHbR0litAWiXikHgKsKWeStgwznD7EimIRcNoJxteZ33miSrNI3ptJTH2Bh5KFjGCTSTfVx9N+ueLW3BnQMvFyUoEczX75qzeISCKoNIRjrbueGxs/xcowwum01Es0jTEZ4yHtWiqxoNpPZ7dO0YlVBiiMlC1p0Ez9PZFiofVEBLZTYDPSi14m/ud1ExNe+imTcWKoJPNFYcKRiVD2OBowRYnhE0swUczeisgIK0yMjcdm4C1+vEza9Zp3VqvfnVcaV3kaRTiCY6iCBxfQgFtoQgsIjOAZXuHN4c6L8+58zFsLTj5zCH/gfP4AjVyNiA==</latexit>

G(Z)
<latexit sha1_base64="+gNNVB+x/4apKwyDeqbyVAWy824=">AAAB6nicbVBNTwIxEJ3FL8Qv1KOXRmKCF7KLJnoketAjJgJG2JBu6UJD2920XROy4S948KLGq3/Io//GLuxBwZdM8vLeTGbmBTFn2rjut1NYWV1b3yhulra2d3b3yvsHbR0litAWiXikHgKsKWeStgwznD7EimIRcNoJxteZ33miSrNI3ptJTH2Bh5KFjGCTSTfVx9N+ueLW3BnQMvFyUoEczX75qzeISCKoNIRjrbueGxs/xcowwum01Es0jTEZ4yHtWiqxoNpPZ7dO0YlVBiiMlC1p0Ez9PZFiofVEBLZTYDPSi14m/ud1ExNe+imTcWKoJPNFYcKRiVD2OBowRYnhE0swUczeisgIK0yMjcdm4C1+vEza9Zp3VqvfnVcaV3kaRTiCY6iCBxfQgFtoQgsIjOAZXuHN4c6L8+58zFsLTj5zCH/gfP4AjVyNiA==</latexit>

Is logic template
green?

FAIL

N

CLUE parses explanation
and adds them to K

CORGI attempts to prove
G(Z)

<latexit sha1_base64="+gNNVB+x/4apKwyDeqbyVAWy824=">AAAB6nicbVBNTwIxEJ3FL8Qv1KOXRmKCF7KLJnoketAjJgJG2JBu6UJD2920XROy4S948KLGq3/Io//GLuxBwZdM8vLeTGbmBTFn2rjut1NYWV1b3yhulra2d3b3yvsHbR0litAWiXikHgKsKWeStgwznD7EimIRcNoJxteZ33miSrNI3ptJTH2Bh5KFjGCTSTfVx9N+ueLW3BnQMvFyUoEczX75qzeISCKoNIRjrbueGxs/xcowwum01Es0jTEZ4yHtWiqxoNpPZ7dO0YlVBiiMlC1p0Ez9PZFiofVEBLZTYDPSi14m/ud1ExNe+imTcWKoJPNFYcKRiVD2OBowRYnhE0swUczeisgIK0yMjcdm4C1+vEza9Zp3VqvfnVcaV3kaRTiCY6iCBxfQgFtoQgsIjOAZXuHN4c6L8+58zFsLTj5zCH/gfP4AjVyNiA==</latexit>

G(Z)
<latexit sha1_base64="+gNNVB+x/4apKwyDeqbyVAWy824=">AAAB6nicbVBNTwIxEJ3FL8Qv1KOXRmKCF7KLJnoketAjJgJG2JBu6UJD2920XROy4S948KLGq3/Io//GLuxBwZdM8vLeTGbmBTFn2rjut1NYWV1b3yhulra2d3b3yvsHbR0litAWiXikHgKsKWeStgwznD7EimIRcNoJxteZ33miSrNI3ptJTH2Bh5KFjGCTSTfVx9N+ueLW3BnQMvFyUoEczX75qzeISCKoNIRjrbueGxs/xcowwum01Es0jTEZ4yHtWiqxoNpPZ7dO0YlVBiiMlC1p0Ez9PZFiofVEBLZTYDPSi14m/ud1ExNe+imTcWKoJPNFYcKRiVD2OBowRYnhE0swUczeisgIK0yMjcdm4C1+vEza9Zp3VqvfnVcaV3kaRTiCY6iCBxfQgFtoQgsIjOAZXuHN4c6L8+58zFsLTj5zCH/gfP4AjVyNiA==</latexit>

N

NUser Dialog:
What would I be able to do if “A<latexit sha1_base64="VYwbU/P32RM4vdFC+wYJljrvzDg=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj14rEF+wFtKJvtpF262YTdjVBCf4EHLype/Uke/Tdu2xy09cHA470ZZuYFieDauO63s7a+sbm1Xdgp7u7tHxyWjo5bOk4VwyaLRaw6AdUouMSm4UZgJ1FIo0BgOxjfz/z2EyrNY/loJgn6ER1KHnJGjZUat/1S2a24c5BV4uWkDDnq/dJXbxCzNEJpmKBadz03MX5GleFM4LTYSzUmlI3pELuWShqh9rP5oVNybpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbjc3AW/54lbSqFe+yUm1clWt3eRoFOIUzuAAPrqEGD1CHJjBAeIZXeHO48+K8Ox+L1jUnnzmBP3A+fwARjIy5</latexit>A<latexit sha1_base64="VYwbU/P32RM4vdFC+wYJljrvzDg=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj14rEF+wFtKJvtpF262YTdjVBCf4EHLype/Uke/Tdu2xy09cHA470ZZuYFieDauO63s7a+sbm1Xdgp7u7tHxyWjo5bOk4VwyaLRaw6AdUouMSm4UZgJ1FIo0BgOxjfz/z2EyrNY/loJgn6ER1KHnJGjZUat/1S2a24c5BV4uWkDDnq/dJXbxCzNEJpmKBadz03MX5GleFM4LTYSzUmlI3pELuWShqh9rP5oVNybpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjjZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbjc3AW/54lbSqFe+yUm1clWt3eRoFOIUzuAAPrqEGD1CHJjBAeIZXeHO48+K8Ox+L1jUnnzmBP3A+fwARjIy5</latexit> ”

that allows me to achieve “G<latexit sha1_base64="6jf4xZU95bKTXszHuJHwqTAjhi0=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0oMcW7Ae0oWy2k3bpZhN2N0IJ/QUevKh49Sd59N+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WjmSToR3QoecgZNVZq3PdLZbfizkFWiZeTMuSo90tfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/mh07JuVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGNn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNjYDb/njVdKqVrzLSrVxVa7d5mkU4BTO4AI8uIYaPEAdmsAA4Rle4c3hzovz7nwsWtecfOYE/sD5/AEanoy/</latexit>

G
<latexit sha1_base64="6jf4xZU95bKTXszHuJHwqTAjhi0=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj0oMcW7Ae0oWy2k3bpZhN2N0IJ/QUevKh49Sd59N+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WjmSToR3QoecgZNVZq3PdLZbfizkFWiZeTMuSo90tfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/mh07JuVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGNn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNjYDb/njVdKqVrzLSrVxVa7d5mkU4BTO4AI8uIYaPEAdmsAA4Rle4c3hzovz7nwsWtecfOYE/sD5/AEanoy/</latexit> ”?

CLUE parses explanation
and adds them to K

CORGI attempts to prove
G(Z)

<latexit sha1_base64="+gNNVB+x/4apKwyDeqbyVAWy824=">AAAB6nicbVBNTwIxEJ3FL8Qv1KOXRmKCF7KLJnoketAjJgJG2JBu6UJD2920XROy4S948KLGq3/Io//GLuxBwZdM8vLeTGbmBTFn2rjut1NYWV1b3yhulra2d3b3yvsHbR0litAWiXikHgKsKWeStgwznD7EimIRcNoJxteZ33miSrNI3ptJTH2Bh5KFjGCTSTfVx9N+ueLW3BnQMvFyUoEczX75qzeISCKoNIRjrbueGxs/xcowwum01Es0jTEZ4yHtWiqxoNpPZ7dO0YlVBiiMlC1p0Ez9PZFiofVEBLZTYDPSi14m/ud1ExNe+imTcWKoJPNFYcKRiVD2OBowRYnhE0swUczeisgIK0yMjcdm4C1+vEza9Zp3VqvfnVcaV3kaRTiCY6iCBxfQgFtoQgsIjOAZXuHN4c6L8+58zFsLTj5zCH/gfP4AjVyNiA==</latexit>

G(Z)
<latexit sha1_base64="+gNNVB+x/4apKwyDeqbyVAWy824=">AAAB6nicbVBNTwIxEJ3FL8Qv1KOXRmKCF7KLJnoketAjJgJG2JBu6UJD2920XROy4S948KLGq3/Io//GLuxBwZdM8vLeTGbmBTFn2rjut1NYWV1b3yhulra2d3b3yvsHbR0litAWiXikHgKsKWeStgwznD7EimIRcNoJxteZ33miSrNI3ptJTH2Bh5KFjGCTSTfVx9N+ueLW3BnQMvFyUoEczX75qzeISCKoNIRjrbueGxs/xcowwum01Es0jTEZ4yHtWiqxoNpPZ7dO0YlVBiiMlC1p0Ez9PZFiofVEBLZTYDPSi14m/ud1ExNe+imTcWKoJPNFYcKRiVD2OBowRYnhE0swUczeisgIK0yMjcdm4C1+vEza9Zp3VqvfnVcaV3kaRTiCY6iCBxfQgFtoQgsIjOAZXuHN4c6L8+58zFsLTj5zCH/gfP4AjVyNiA==</latexit>

Y

Is CORGI
successful?

FAIL

N

PASS

Y

Is CORGI
successful?

N

PASS

Parser(sentence):
<latexit sha1_base64="5g5Y9nY8kfnerwVSo9Z4Sm5oqe8=">AAACAnicbVC7SgNBFJ2Nrxhfq3baLAYhNmE3CopV0MYygnlAsoTZyU0yZPbBzF0xLAELv8XCRsXWn7D0b5xNttDEAwOHc+6dmXO8SHCFtv1t5JaWV1bX8uuFjc2t7R1zd6+hwlgyqLNQhLLlUQWCB1BHjgJakQTqewKa3ug69Zv3IBUPgzscR+D6dBDwPmcUtdQ1DzoID4iY1KhUIEsKAoSAwcnlpGsW7bI9hbVInIwUSYZa1/zq9EIW+/oKJqhSbceO0E2oRM4ETAqdWEFE2YgOoK1pQH1QbjLNMLGOtdKz+qHUJ0Brqv7eSKiv1Nj39KRPcajmvVT8z2vH2L9wEx5EcRps9lA/FhaGVlqI1eMSGIqxJpRJrv9qsSGVlKGuTXfgzCdeJI1K2TktV27PitWrrI08OSRHpEQcck6q5IbUSJ0w8kieySt5M56MF+Pd+JiN5oxsZ5/8gfH5A9/Ol/E=</latexit>

S(X) state
<latexit sha1_base64="UJfcpPPRMWdz/KfN0B2YR0ULk7E=">AAAB/XicbVDJSgNBEO2JW4xbVDx5aRKEiBBm4kGPQS8eI5oFkhB6OjVJk56F7holDMGf8Ac8eFHx6nd4zN/YWQ6a+KDg8V4VVfXcSAqNtj22Uiura+sb6c3M1vbO7l52/6Cmw1hxqPJQhqrhMg1SBFBFgRIakQLmuxLq7uB64tcfQGkRBvc4jKDts14gPMEZGqmTPborNE5pS4KHTKnwkWpkCJ1s3i7aU9Bl4sxJvpxrnT2Py8NKJ/vd6oY89iFALpnWTceOsJ0whYJLGGVasYaI8QHrQdPQgPmg28n0/BE9MUqXeqEyFSCdqr8nEuZrPfRd0+kz7OtFbyL+5zVj9C7biQiiGCHgs0VeLCmGdJIF7QoFHOXQEMaVMLdS3meKcTSJmQycxY+XSa1UdM6LpVsTxhWZIU2OSY4UiEMuSJnckAqpEk4S8kLeyLv1ZL1aH9bnrDVlzWcOyR9YXz/VJZgL</latexit>

A(Y) action
<latexit sha1_base64="oBmD963NpvVjt1uCA/CcrBLEU6g=">AAAB/nicbVDLSgMxFM3UV62vquDGTWgRKkKZqQtdVt24rGAf0hlKJs20oZlkSDLKUAt+hF/gwo2KW3/DZf/GtNOFth64cDjnXu69x48YVdq2x1ZmaXlldS27ntvY3Nreye/uNZSIJSZ1LJiQLR8pwigndU01I61IEhT6jDT9wdXEb94TqajgtzqJiBeiHqcBxUgbqZM/uCjdHUOXkUAjKcUDRDg1inbZngIuEmdGitWCe/I8ria1Tv7b7Qoch4RrzJBSbceOtDdEUlPMyCjnxopECA9Qj7QN5SgkyhtO7x/BI6N0YSCkKa7hVP09MUShUknom84Q6b6a9ybif1471sG5N6Q8ijXhOF0UxAxqASdhwC6VBGuWGIKwpOZWiPtImgxMZCYDZ/7jRdKolJ3TcuXGhHEJUmTBISiAEnDAGaiCa1ADdYDBI3gBb+DderJerQ/rM23NWLOZffAH1tcPcvmYYQ==</latexit>

G(Z) goal
<latexit sha1_base64="XRId0QYGnrxPH4dPibo8AWKId7Y=">AAAB/HicbVDLSgMxFM3UV62v8bFzE1qEilBm6kKXRRe6rGAf2BlKJs20oZlkSDLKWOpX+AEu3Ki49T9c9m9MHwttPXDhcM693HtPEDOqtOOMrMzS8srqWnY9t7G5tb1j7+7VlUgkJjUsmJDNACnCKCc1TTUjzVgSFAWMNIL+5dhv3BOpqOC3Oo2JH6EupyHFSBupbR9cFe+OocdIqJGU4gF2BWJtu+CUnAngInFnpFDJeyfPo0pabdvfXkfgJCJcY4aUarlOrP0BkppiRoY5L1EkRriPuqRlKEcRUf5gcv0QHhmlA0MhTXENJ+rviQGKlEqjwHRGSPfUvDcW//NaiQ7P/QHlcaIJx9NFYcKgFnAcBexQSbBmqSEIS2puhbiHJMLaBGYycOc/XiT1csk9LZVvTBgXYIosOAR5UAQuOAMVcA2qoAYweAQv4A28W0/Wq/VhfU5bM9ZsZh/8gfX1A9o8l3k=</latexit>

Figure 6: Full Control Flow Diagram for the Dialogue
System in Figure 2.

) for the command “If it snows tonight then
wake me up early because I want to get to work
on time”. ���� first tries to find the nega-
tion of the goal (get to work on time) by query-
ing COMET(r, goal) for relations (r) indicating
negation (such as NotCapableOf and NotIsA).
���� then picks the highest ranking returned
COMET statement (I am late) and asks the user “is
〈¬ goal 〉 the opposite of 〈 goal 〉?(y/n)” (Is “I am
late” the opposite of “I get to work on time”?(y/n)).
If the user responds ‘yes’, then ���� asks “what
does 〈 state 〉 cause that leads to 〈¬ goal 〉?”
(what does “it snows tonight” cause that leads to “I
am late”?) and expects an explanation from the user
in response. If the user responds ‘no’ to the first
question, then ���� asks “what does 〈 state 〉
cause that makes it difficult to achieve 〈 goal 〉?”
(What does “it snows tonight” cause that makes it
difficult to achieve “I get to work on time”?) and
expects an explanation from the user in response.
The reason for querying COMET for the negated
goal is that negation in Prolog is implemented
based on negation as failure. Therefore, to be con-
sistent, ���� converts the goal to its negated
statement and proves that instead.

7416

Extended Experiments

Tables 6 and 7 show 32 examples of the 67 expert-
verified half-proofs reported in Table 1. These
half-proofs are obtained using bidirectional 2-
hop beam search and logically prove the goalD
action implication. Recall that action refers to
the Then-portion of the command and goal refers
to the Because-portion of the command. The em-
beddings used to measure semantic closeness in
the prover is GloVe. The second intermediate hop
obtained by ����’s prover is shown in column
4 of the tables. Each row indicates a successfully
half-proved if-then-because command along with
its intermediate commonsense reasoning hop. Let
us explain the proofs through an example. Con-
sider the example on Row 5 of Table 6: “if the
temperature is going to be below 40 degrees in
the evening but above 40 degrees in the morning
then remind me to bring a jacket because i want to
stay warm on my commute”. The relations (col-
umn 3) and COMET outputs (column 4) for this
example indicate that the action of reminding the
user to bring a jacket causesDesire for the user
to wear the jacket which is a Prerequisite for the
goal of staying warm on the user’s commute. In
other words ���� is able to understand why re-
minding someone to bring a jacket would allow
them to stay warm (because they would be able to
wear the jacket). This is a logical proof for the im-
plication goalD action according to the proof
definition of the prover proposed in this paper. For
more examples, please refer to Tables 6 and 7.

7417

Table 6: Half Proofs goalD action , Part 1. The half-proofs are obtained using our proposed prover and are
obtained using bidirectional pruning. The input if-then-because commands are listed in the first column. The
semantic clossenesse scores are obtained with GloVe embeddings. (r1, r2) on the third column are relations tuples
on the final proof path obtained from the COMET(r1, action) and COMET(r2, goal) queries.

Commands Semantic
Closeness Score (r1, r2)

(
COMET(r1, action), COMET(r2, goal)

)
if i have an upcoming exam
then remind me to prepare 3 days ahead
because i want to prepare for it

1.0 (CausesDesire, HasSubevent) (prepare for exam, prepare for exam)

if the air temperature is forecast to be warmer than 70 tonight
then remind me to turn on the air conditioner
because i want to stay cool

1.0 (CapableOf, CreatedBy) (cool air, cool air)

if i haven’t been to the gym for more than 3 days
then remind me to go to the gym
because i want to stay fit

0.9220791 (CapableOf, HasPrerequisite) (work out, work out regularly)

if i am going to school
then remind me to take my office keys with me
because i want to be able to unlock my office door

1.0 (CausesDesire, CausesDesire) (go to work, go to work)

if the temperature is going to be below 40 degrees in the evening but above 40 degrees in the morning
then remind me to bring a jacket
because i want to stay warm on my commute

1.0 (CausesDesire, Prerequisite) (wear jacket, wear jacket)

if i get an email from my boss about our upcoming
deadline then notify me about the email because i want to read the email

1.0 (Causes, CausesDesire) (open email, open email)

if my calendar is clear today, then remind me to go to
gym in the afternoon, because i want to keep myself healthy

1.0 (Desires, Desires) (exercise, exercise)

if i start using google maps to go home
then tell alexa to turn on the heat
because i want my home to be warm when i arrive

1.0 (Desires, CreatedBy) (heat, heat)

if there is heavy traffic in the route that i use to office
then remind me to leave early
because i want to reach office on time

0.9641539 (CausesDesire, CausesDesire) (go to work early, go to work)

if papers related to what i’m working on are posted on the proceedings of any nlp or ml conference
then tell me about the papers immediately
because i want to stay up-to-date on current research

1.0 (HasSubevent, CausesDesire) (read, read)

if i’m not in bed at 12pm
then remind me to go to bed
because i want to go to bed early

1.0 (Desires, CreatedBy) (sleep, sleep)

if a new paper related to what i’m working on is posted on arxiv
then notify me about the new paper immediately
because i want to stay up-to-date on current research

1.0 (HasSubevent, CausesDesire) (read, read)

if the price of something i want to buy drops
then notify me about the price drop
because i want to buy it when the price is low

0.9652006 (MotivatedByGoal, CausesDesire) (buy something, buy something else)

if there is heavy traffic on my current commute path
then give me a less congested path
because i want to minimize my driving time

1.0 (MotivatedByGoal, HasSubevent) (i drive fast, i drive fast)

if i have more than ten unread emails
then set an one hour email replying event on calendar
because i want to be responsive to emails

1.0 (CausesDesire, HasPrerequisite) (send email, send email)

if i have set an alarm for taking my pills
then make sure the alarms are off after i have finished my pills
because i want to make sure i don’t have false alarms

1.0 (HasPrerequisite, HasPrerequisite) (turn off alarm clock, turn off alarm clock)

if the weather temperature forecast in the next 10 days is above 30 degrees celsius
then remind me to turn the heater off

because i don’t want to make the house warm
0.93141675 (MotivatedByGoal, HasSubevent) (it be cold, it get cold)

if i am driving home and i have an email about a grocery shopping list
then remind me to stop at the grocery store
because i want to buy the items on my grocery shopping list

0.99999994 (CapableOf, UsedFor) (buy grocery, buy grocery)

if there is a sale on sketchbooks between now and august
then notify me about the sale
because i need to get sketchbooks for my fall class

0.8800874 (CausesDesire, HasPrerequisite) (buy something, buy them)

if i have set an alarm for a time between 2am-8am on weekends
then notify me that i have an alarm set
because i want to correct the alarm

0.93820596 (CreatedBy, CreatedBy) (turn off alarm, turn off alarm clock)

If the air temperature is forecast to be colder than 40 degrees
then tell me to close the windows
because I want to stay warm

1.0 (Desires, HasPrerequisite) (get warm, get warm)

if the air temperature is forecast to be warmer than 70 tonight
then remind me to turn on the air conditioner
because i want to stay cool

0.9137391 (UsedFor, UsedFor) (cool down room, cool down)

if there is a natural disaster back at home
then remind me to donate money
because i want to give back to my community

0.9001999 (CapableOf, Causes) (i donate money, i give money)

7418

Table 7: Half Proofs goalD action , Part 2. The half-proofs are obtained using our proposed prover and are
obtained using bidirectional pruning. The input if-then-because commands are listed in the first column. The
semantic clossenesse scores are obtained with GloVe embeddings. (r1, r2) on the third column are relations tuples
on the final proof path obtained from the COMET(r1, action) and COMET(r2, goal) queries.

Commands Semantic
Closeness Score (r1, r2)

(
COMET(r1, action), COMET(r2, goal)

)
if an author i like is doing a reading in my city
then let me know about the reading
because i want to see them

0.8933883 (HasPrerequisite, HasPrerequisite) (go to bookstore, go to store)

if i have an upcoming bill payment
then remind me to pay it
because i want to make sure i avoid paying a late fee

1.0 (CausesDesire, Desires) (pay bill, pay bill)

If it snows tonight
then wake me up early
because I want to get to work early

0.95353657 (Causes, Causes) (i go to work early, get to work early)

if i have a meeting
then remind me fifteen minutes beforehand
because i want to be prepared for the meeting

0.9151366 (ReceivesAction, UsedFor) (prepare for meet, prepare for)

if we are approaching fall
then remind me to buy flower bulbs
because i want to make sure i have a pretty spring garden

1.0 (CausesDesire, CausesDesire) (plant flower, plant flower)

if i receive emails about sales on basketball shoes
then let me know about the sale
because i want to save money

0.9345853 (CausesDesire, UsedFor) (buy something, i buy something)

if i receive an email related to work
then notify me about the email immediately
because i want to stay on top of my work-related emails

1.0 (CausesDesire, CausesDesire) (open email, open email)

if the forecast is dry and greater than 50 degrees f on a weekend day
then remind me to line-dry the laundry
because i want our clothes to smell good

1.0 (MotivatedByGoal, CapableOf) (smell good, smell good)

if i have more than three hours meeting on my calendar for a day
then remind me to relax for an hour in the evening
because i want to achieve work life balance

0.96545255 (CapableOf, CapableOf) (make me feel good, make me look good)

