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Abstract

We study the problem of generating arithmetic
math word problems (MWPs) given a math
equation that specifies the mathematical com-
putation and a context that specifies the prob-
lem scenario. Existing approaches are prone
to generating MWPs that are either mathemat-
ically invalid or have unsatisfactory language
quality. They also either ignore the context or
require manual specification of a problem tem-
plate, which compromises the diversity of the
generated MWPs. In this paper, we develop
a novel MWP generation approach that lever-
ages i) pre-trained language models and a con-
text keyword selection model to improve the
language quality of the generated MWPs and
ii) an equation consistency constraint for math
equations to improve the mathematical validity
of the generated MWPs. Extensive quantita-
tive and qualitative experiments on three real-
world MWP datasets demonstrate the superior
performance of our approach compared to var-
ious baselines.

1 Introduction

Math word problems (MWPs) are an important
type of educational resource that help assess and
improve students’ proficiency in various mathemat-
ical concepts and skills (Walkington, 2013; Ver-
schaffel et al., 2020). An MWP usually has a cor-
responding underlying math equation that students
will need to identify by parsing the problem and
then solve the problem using this equation. An
MWP is usually also associated with a “context”,
i.e., the (often real-world) scenario that the math
equation is grounded in, expressed in the question’s
text. The equation associated with an MWP is often
exact and explicit, while the context of the MWP
is more subtle and implicit. It is not immediately
clear how the context information can be extracted
or represented. Table 1 shows an example of an
MWP and its associated equation.

Table 1: An examples of MWP and its underlying equa-
tion. See Table 2 for more information on the datasets.

MWP: Joan found 70 seashells on the beach . She gave Sam some
of her seashells . She has 27 seashells . How many seashells did she
give to Sam ?
Equation: x = (70 - 27)

In this work, we study the problem of automat-
ically generating MWPs from equations and con-
text, which is important for three reasons. First,
an automatic MWP generation method can aid in-
structors and content designers in authoring MWP
questions, accelerating the (often costly and labor-
intensive) MWP production process. Second, an
automated MWP generation method can generate
MWPs tailored to each student’s background and
interests, providing students with a personalized
learning experience (Walkington, 2013) that often
leads to better engagement and improved learning
outcomes (Connor-Greene, 2000; Karpicke, 2012;
Karpicke and Roediger, 2008; Koedinger et al.,
2015; Kovacs, 2016; Rohrer and Pashler, 2010).
Third, an automated MWP generation method can
potentially help instructors promote academic hon-
esty among students. While new technologies cre-
ate new learning opportunities, instructors have
growing concerns of technologies that enable stu-
dents to easily search for answers online without
actually solving problems on their own (McCabe
et al., 2012; Lancaster and Cotarlan, 2021). Au-
tomatically generated MWPs that are unique and
previously unseen yet preserve the underlying math
components can potentially reduce plagiarism.

In addition to its educational utility, MWP gener-
ation is also technically challenging and interesting.
An important consideration for MWP generation
is controllability: in practice, human instructors
or content designers often have clear preferences
in the type of MWPs they want to use. There-
fore, an MWP generation method should be able
to generate MWPs that are of high language qual-
ity and are textually and mathematically consistent
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with the given equations and contexts. To date,
there exist limited literature on MWP generation.
Most prior works focus on automatically answer-
ing MWPs, e.g., (Li et al., 2019, 2020; Qin et al.,
2020; Shi et al., 2015; Wang et al., 2018a; Roy
and Roth, 2015; Wu et al., 2020a) instead of gen-
erating them (Nandhini and Balasundaram, 2011;
Williams, 2011; Polozov et al., 2015; Deane and
Sheehan, 2003). Existing MWP generation meth-
ods also often generate MWPs that either are of
unsatisfactory language quality or fail to preserve
information on math equations and contexts that
need to be embedded in them. See Section 4 for a
detailed discussion.

1.1 Contributions

In this work, we take a step towards controllable
generation of mathematically consistent MWPs
with high language quality. Our approach lever-
ages a pre-trained language model (LM) as the base
model for improved language quality. The input to
the LM is an equation and a context, from which
the LM generates an MWP. On top of that, we in-
troduce 2 components that impose constraints on
the mathematical and contextual content of the gen-
erated MWP. First, to improve mathematical con-
sistency and control over equations, we introduce
an equation consistency constraint, which encour-
ages the generated MWP to contain the exact same
equation as the one used to generate it. Second,
to improve control over contexts, we introduce a
context selection model that automatically extracts
context from an MWP. Quantitative and qualitative
experiments on real-world MWP datasets show that
our approach (often significantly) outperforms vari-
ous baselines on various language quality and math
equation accuracy metrics.

2 Methodology

We formulate the task of controllable MWP gener-
ation as a conditional generation problem. In this
paper, we work with datasets D = {(Mi, Ei)}Ni=1

in the form of N (MWP, equation) pairs where Mi

and Ei represent MWP and its associated equation,
respectively. In the remainder of the paper, we will
remove the data point index to simplify notation.
This setup assumes each MWP in our dataset is
labeled with an underlying equation but its context
is unknown. Then, the MWP generation process
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Figure 1: An illustration of our MWP generation ap-
proach and its key components.

can be described as

M ∼ EE∼D[pΘ(M |E)]

= EE∼D, c∼p(c|E,M)[pΘ(M |E, c)] , (1)

where M = {m1, . . . ,mT } represents the MWP
as a sequence of T tokens (e.g., words or word-
pieces (Vaswani et al., 2017; Radford et al., 2019)).
E and c are the controllable elements, where c
represents a problem context. pΘ is the MWP gen-
erative model parametrized by a set of parameters
Θ.

In this work, we use a pre-trained language
model (LM) as the generative model pΘ, similar
to the setup in (Keskar et al., 2019). We choose
LMs over other approaches such as sequence-to-
sequence (seq2seq) models because they can be
pre-trained on web-scale text corpora. Pre-trained
LMs thus often generate high-quality text and gen-
eralizes well to out-of-domain words not present
in the training data. Under an LM, we can further
decompose Eq. 1 into

pΘ(M |E, c) =
T∏
t=1

pΘ(m|E, c, {ms}t−1
s=1) . (2)

To train pΘ via fine-tuning the LM, we use the
usual negative log-likelihood objective:

LLM =
T∑
t=1

−log pΘ(mt|E, c, {ms}t−1
s=1) . (3)
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The above training objective serves as a proxy
that optimizes for language quality. However, it
alone is unsatisfactory in 2 ways. First, there is no
guarantee that the generated MWP is mathemati-
cally valid; even if it is, its solution may correspond
to an equation that is different from the input equa-
tion (Zhou and Huang, 2019). Second, while the
context c can be manually specified, i.e., as a set
of keywords, it is unobserved during training and
needs to be inferred from data through the costly-
to-compute posterior distribution. In the remainder
of this section, we introduce our novel approach
to tackle these challenges. We first describe our
equation consistency constraint that improves the
generated MWP’s mathematical consistency and
then detail our context selection method that learns
to extract the context in the form of a set of key-
words from an MWP. Figure 1 provides a high-level
overview of our overall approach.

2.1 Equation Consistency
We propose an equation consistency constraint to
promote the generated MWP to correspond to an
equation that is the same as the input equation used
to generate the MWP.

To formulate this constraint, we need a model to
parse an equation given an MWP, i.e., a mwp2eq
model, and a loss function, which we call Leq. The
mwp2eq generative process can be written as

E′ ∼ EM ′∼pΦ(M |E)[pΦ(E|M ′)] ,

where pΦ is the mwp2eq model, E represents an
equation, and M ′ represents the generated MWP.
Here, we treat the equation as a sequence of math
symbols et, making it appropriate for sequential
processing. Specifically, we treat each variable
(e.g., x, y), math operator (e.g., =, ×, +), and
numeric value (e.g., integers, fractions, and dec-
imal numbers) as a single math symbol. There-
fore, we can decompose pΦ(E,M ′) similar to
Eq. 2. There are ways to represent math equa-
tions other than a sequence of symbols, such as
symbolic trees (Zanibbi and Blostein, 2012; Davila
and Zanibbi, 2017; Mansouri et al., 2019); finding
ways to make them compatible to LMs is left for
future work. Similar to LLM, we minimize a nega-
tive log-likelihood loss that uses the input equation
E as the ground truth for the equation E′ parsed
from M ′:

Leq =
T∑
t=1

−log pΦ(et|M ′, e1, . . . , et−1) . (4)

This constraint is reminiscent of the idea of “cy-
cle consistency” that have found success in im-
age and text style transfer (Zhu et al., 2017; Shen
et al., 2017), question answering (Yang et al., 2017;
Wang et al., 2017a), and disentangled representa-
tion learning (Jha et al., 2018).

Gumbel-Softmax Relaxation. To back-
propagate loss to pΘ and compute gradient for
Θ, we need the loss Leq be differentiable with
respect to Θ. The challenge here is that M ′ is
sampled from pΘ and that this discrete sampling
process is non-differentiable, preventing gradient
propagation (Nie et al., 2019). To tackle this
challenge, we resort to the Gumbel-softmax
relaxation (Jang et al., 2017; Maddison et al., 2017)
of the discrete sampling process mt ∼ pΘ. Details
are deferred to the Supplementary Materials.

We remark that the gradient derived under the
Gumbel-softmax relaxation is a biased but low-
variance estimate of the true gradient (Jang et al.,
2017; Maddison et al., 2017). The low-variance
property makes it more attractive for real applica-
tions than other unbiased but high-variance estima-
tors such as REINFORCE (Williams, 1992). We
refer to (Jang et al., 2017; Maddison et al., 2017)
for more details on the Gumbel-softmax method.
In addition, while one can also use deterministic re-
laxation such as softmax, Gumbel-softmax injects
stochastic noise during the training process, which
regularizes the model and potentially improves per-
formance; See an empirical comparison in Table 6.

2.2 Context Selection

In practice, we do not have access to the contexts
c during training since they are not specified for
real-world MWPs. Therefore, we need ways to
specify the context for the MWP generative pro-
cess. Existing methods characterize context as a
“bag-of-keywords”, using heuristic methods such
as TF-IDF weights to select a subset of tokens as
“keywords” from an MWP as its context. These
methods are simple but lack flexibility: they either
require one to specify the number of tokens to use
for each MWP or heuristically select only certain
types of tokens (e.g., nouns and pronouns) (Zhou
and Huang, 2019; Liu et al., 2020).

In this work, we adopt this “bag-of-tokens” char-
acterization of context, which fits well into LMs,
but instead learn a context (token) selection method
from data. To do so, we interpret c as a “context
keyword selection” variable, i.e., a binary random



5989

vector whose dimension is the number of tokens
in the vocabulary. Each entry c(i) in c is an i.i.d.
Bernoulli random variable with prior probability ρ,
i.e., pc(c(i) = 1) = ρ. Thus, c acts as a selector
that chooses appropriate context tokens from the en-
tire vocabulary. To circumvent the intractable pos-
terior p(c|E,M), we resort to the auto-encoding
variational Bayes (VAE) paradigm (Kingma and
Welling, 2013), similar to (Shen et al., 2019). Un-
der the VAE setup, we select a set of tokens condi-
tioned on the MWP as c ∼ qΨ(M) where qΨ(M)
is a proposal distribution, i.e., the keyword selec-
tion model.

Context Keyword Selection Model. Given an
MWP, we first compute the contextualized em-
beddings of each token using a simple linear self-
attention method as

m̃t = Mat , at = softmax

(
M>mt√

D

)
,

where M = [m1, . . . ,mT ] ∈ RD×T is the matrix
with all token embeddings and D is the embedding
dimension. The

√
D term is added for numerical

stability (Vaswani et al., 2017). Then, we compute
q

(i)
Ψ (M), the probability that each word in the vo-

cabulary is selected as a context keyword, with a
single projection layer with Sigmoid activation

q
(i)
Ψ (M) = σ(w>m̃t + b)1{V (i)∈M} , (5)

where w and b are part of the model parameters Ψ.
The indicator function at the end ensures that only
tokens that appear in M can be selected as context
keywords. In practice, we also mask out stopwords
and punctuation; these steps ensure that the con-
text selector selects keywords that are relevant to
MWPs and are not too generic.

Optimization Objective. Under the VAE
paradigm, we optimize the keyword selection
model using the so-called evidence lower bound
(ELBO):

LVAE = LLM + βLc , (6)

where Lc = KL(qΨ‖pc)1{V (i)∈M} and the
Kullback-Leibler divergence term can be computed
analytically thanks to our Bernoulli parametriza-
tion. Lc can be interpreted as a context constraint
that prevents the keyword selection model from
choosing too many keywords. The hyperparameter
β and prior ρ controls the strength of this constraint.

Table 2: Summary statistics of datasets.

Dataset #MWPs avg #words per MWP avg #symbols per eq

arithmetic 1,492 29.89 8.05
MAWPS 2,373 31.25 8.16
Math23K 23,162 35.23 8.78

Because c is discrete and its sampling process is
also non-differentiable, we use the straight-through
estimator of the gradient (Bengio et al., 2013) for
Θ involved in LLM in Eq. 6.

2.3 Training
We train (fine-tune) the LM, the mwp2eq model,
and the keyword selection model jointly. The
mwp2eq model and keyword selection model are
optimized using their respective objectives defined
in Eqs. 4 and 6. The overall objective for the MWP
generative model pΘ is

L = LLM + αLeq + βLc ,

where α > 0 and β > 0 are hyperparameters that
balance these constraint terms.

3 Experiments

We now perform a series of experiments to vali-
date the effectiveness of our proposed MWP gen-
eration approach. Quantitatively, we compare our
approach to several baselines on various automated
language quality and mathematical consistency
metrics. Qualitatively, we showcase the capability
of our approach in generating controllable, high-
quality MWPs.

Datasets. We focus on MWP datasets in which
each MWP is associated with a single equation
and each equation contains a single unknown vari-
able. Therefore, we consider three such MWP
datasets including Arithmetic (Hosseini et al.,
2014), MAWPS (Koncel-Kedziorski et al., 2016),
and Math23K (Wang et al., 2017b). Table 2 shows
summary statistics for each dataset. We follow the
preprocessing steps in (Zhou and Huang, 2019) by
first replacing all numbers in both MWPs and equa-
tions to special tokens num1, num2 etc. and then
tokenizing both MWPs and equations into tokens
and math symbols, respectively. In addition, we
translate Math23K to English because this dataset
is originally in Mandarin Chinese. Extension to lan-
guages other than English is left for future work.

Other popular MWP datasets such as Alge-
bra (Kushman et al., 2014; Upadhyay and Chang,
2015), Dolphin18K (Huang et al., 2016) and
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Table 3: A comparison of language quality and mathematical validity for MWPs generated by our method to
various baselines. Numbers in brackets indicate the accuracy of the mwp2eq model trained on each dataset, which
is an upper bound on the performance under the ACC-eq metric.

Arithmetic MAWPS Math23K

BLEU-4 METEOR ROUGE-L ACC-eq BLEU-4 METEOR ROUGE-L ACC-eq BLEU-4 METEOR ROUGE-L ACC-eq
(0.769) (0.755) (0.672)

seq2seq-rnn 0.075 0.152 0.311 0.413 0.153 0.175 0.362 0.472 0.196 0.234 0.444 0.390
+ GloVe 0.351 0.310 0.555 0.399 0.592 0.412 0.705 0.585 0.275 0.277 0.507 0.438

seq2seq-tf 0.339 0.298 0.524 0.405 0.554 0.387 0.663 0.588 0.301 0.294 0.524 0.509

GPT 0.237 0.248 0.455 0.401 0.368 0.294 0.538 0.532 0.282 0.297 0.512 0.477
GPT-pre 0.316 0.322 0.554 0.403 0.504 0.391 0.664 0.512 0.325 0.333 0.548 0.498
ours 0.338 0.322 0.567 0.453 0.596 0.427 0.715 0.557 0.329 0.328 0.544 0.505

Table 4: % of generated MWPs that are not present in
the training data. Our approach generates novel MWPs
not seen in the training data most of the time while
seq2seq-tf may simply memorize the training data.

Arithmetic MAWPS Math23K

seq2seq-tf 6.24% 2.49% 38.88%
ours 94.90% 63.77% 95.72%

MathQA1 (Amini et al., 2019) contain MWPs with
multiple equations and many variables, which are
challenging to generate even for humans. We leave
the more challenging case of generating multi-
variable, multi-equation MWPs to future work.

Setup and Baselines. We implement the LM and
the mwp2eq models in our approach using pre-
trained GPT-2 (Radford et al., 2019); one can also
use other models since our approach is agnostic to
the specific model architecture. We consider three
baselines: seq2seq-rnn, a sequence-to-sequence
(seq2seq) model using LSTMs with attention that
serves as the base architecture in (Zhou and Huang,
2019; Liu et al., 2020); seq2seq-rnn-glove, a mod-
ification to the previous baseline with GloVe (Pen-
nington et al., 2014) instead of random embeddings
at initialization; and seq2seq-tf, a seq2seq model
with transformers (Vaswani et al., 2017). We also
compare our approach to vanilla GPT-2, either ran-
domly initialized or pre-trained; we denote these
baselines as GPT and GPT-pre, respectively. For
fair comparison, each baseline takes both equation
and a set of keywords chosen by heuristics (see Sec-
tion C.2) as input to be consistent with the setup
in our approach. For each dataset, we perform
five-fold cross-validation and report the averaged
evaluation results. See the Supplementary Mate-
rial for more details on the experimental setup and
baselines.

1MathQA is the most difficult MWP dataset we have en-
countered, which containing GRE and GMAT level questions.

Metrics. For language quality, we use the fol-
lowing three evaluation metrics: BLEU-4 (Pap-
ineni et al., 2002), METEOR (Lavie and Agarwal,
2007), and ROUGE-L (Lin, 2004), following re-
cent literature on question generation (Wang et al.,
2018c). We implement these metrics using the
package provided by (Chen et al., 2015). For math-
ematical consistency, We use the equation accuracy
(ACC-eq) metric that measures whether the gener-
ated MWP is mathematically consistent with the
controlled input equation. The idea of this metric
originates from other applications such as program
translation and synthesis (Chen et al., 2018b, 2020).
In our case, because the equation associated with
a generated MWP is not readily available, we re-
sort to a mwp2eq model fine-tuned on each MWP
dataset to predict the equation from an MWP. Dur-
ing the evaluation, we feed the generated MWP to
the mwp2eq model as input and check whether the
output of the mwp2eq model exactly matches the
equation used as input to the MWP generator.

3.1 Quantitative Results

Table 3 shows the quantitative results of our exper-
iments. The number in parenthesis below ACC-eq
is the equation accuracy when we feed the mwp2eq
model the ground-truth MWPs in the respective
datasets. We see that our approach outperforms
the best baseline on most occasions, especially on
language quality metrics. However, there are a few
exceptions, especially for the ACC-eq metric on
the Math23K dataset. Specifically, we note that
the seq2seq-tf baseline seems to yield an ACC-eq
value even higher than the oracle accuracy at the
first attempt. Upon closer investigation, we find
that the baseline seq2seq models, especially the
seq2seq-tf baseline, simply memorize the training
data. Table 4 illustrates this finding and shows the
percentage of generated MWPs that are not present
in the training data. We see that the seq2seq-tf base-
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Table 5: Generated MWP examples with fixed context and varying equations.

Context: candies

Equation #1: x = num1 + num2 Equation #2: x = num1 - num2

seq2seq-tf: ethan has num1 presents . alissa has num2
more than ethan . how many presents does alissa have ? (in
training data)

seq2seq-tf: mildred weighs num1 pounds . carol weighs
num2 pounds . how much heavier is mildred than carol ?
(in training data)

GPT-pre: There are num1 scissors in the drawer. Keith
placed num2 scissors in the drawer. How many scissors are
now there in total? (irrelevant to context)

GPT-pre: Joan has num1 blue balloons but lost num2 of
them. How many blue balloons does Joan have now? (irrel-
evant to context)

ours: Mildred collects num1 candies. Mildred’s father
gives Mildred num2 more. How many candies does Mildred
have? (3)

ours: There are num1 candies in the jar. num2 are eaten by
a hippopotamus. How many candies are in the jar? (3)

Equation #3: x = num1 * num2 Equation #4: x = num1 / num2

seq2seq-tf: each banana costs $ num1 . how much do num2
bananas cost ? (in training data)

seq2seq-tf: there are num1 bananas in diane ’ s banana
collection . if the bananas are organized into num2 groups ,
how big is each group ? (in training data)

GPT-pre: Joan has saved num1 quarters from washing
cars. How many cents does Joan have? (inconsistent with
equation)

GPT-pre: Joan has num1 blue marbles. Sandy has num2
times more blue marbles than Melanie. How many blue
marbles does Joan have? (inconsistent with equation)

ours: Each child has num1 candies. If there are num2
children, how many candies are there in all? (3)

ours: There are num1 candies in the candy collection. If
the candies are organized into num2 groups, how big is each
group? (3)

Table 6: Results of the ablation study, which validate
the effectiveness of each component in our approach.

Arithmetic MAWPS Math23K

BLEU-4 ACC-eq BLEU-4 ACC-eq BLEU-4 ACC-eq

Leq (softmax) 0.110 0.417 0.308 0.555 0.284 0.466
Leq (Gumbel-softmax) 0.303 0.455 0.522 0.527 0.306 0.495
keyword, TF-IDF 0.313 0.424 0.518 0.536 0.310 0.498
keyword, noun+pronoun 0.316 0.413 0.504 0.512 0.325 0.498
context selection 0.320 0.412 0.533 0.542 0.324 0.501
full model w/o Lc 0.303 0.455 0.522 0.527 0.306 0.495
full model w/o Leq 0.320 0.412 0.491 0.500 0.324 0.501
full model w/o both 0.316 0.403 0.504 0.512 0.325 0.498
full model 0.338 0.453 0.596 0.557 0.332 0.513

line tends to directly copy MWPs from the training
data as its “generated” MWPs, especially on the 2
smaller datasets. In contrast, our approach gener-
ates novel MWPs most of the time. We thus report
ACC-eq only on the novel MWPs generated by the
seq2seq-tf baseline on the Math23K dataset. Our
approach outperforms seq2seq-tf on this modified
ACC-eq metric.

Ablation Study. To validate that each compo-
nent in our approach contributes to its success,
we conduct an ablation study and compare our ap-
proach with several variants and several baselines
after removing some of these components. For
the use of Gumbel-softmax in the equation con-
sistency constraint computation, we compare to
softmax (Goodfellow et al., 2016), which removes
sampling from the Gumbel variable. For the con-
text keyword selection model, we compare to sev-
eral context keyword selection heuristics including
TF-IDF (Jones, 1972; Zhou and Huang, 2019) and
nouns+pronouns; see the Supplementary Material

for more details on these baselines. Table 6 shows
the ablation study results, reporting on BLEU-4 and
ACC-eq as the representative metric for language
quality and mathematical consistency, respectively.
These comparisons validate the necessity of each
component in our approach: Gumbel-softmax out-
performs softmax and our context keyword selec-
tion method outperforms other heuristic methods.
We also see that our approach outperforms variants
with either component removed and that the equa-
tion consistency constraint and the context keyword
selection method tend to improve the mathematical
consistency and language quality of the generated
MWPs, respectively.

3.2 Qualitative Results

Since seq2seq baselines outperform our approach
on a few occasions under the automated metrics,
we now conduct a few case studies to investigate
each approach. We investigate i) how controllable
is each approach by giving it different input equa-
tions and contexts and ii) how generalizable each
approach is by giving it unseen contexts in the
dataset. Specifically, we conduct two qualitative
experiments: First, we hold an input context fixed
and change the input equation; Second, we hold
the input equation fixed and change the context.
We compare the MWPs generated by our approach
to those generated by the seq2seq-tf and GPT-pre
baselines trained on the MAWPS dataset, where
these baselines perform well under automated met-
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Table 7: Generated MWP examples with novel context not present in the training data.

Equation: x = num1 + num2 + num3

Context #1: violin piano acoustic guitar Context #2: beets eggplant

seq2seq-tf: sara grew num1 onions , sally grew num2
onions , and fred grew num3 onions . how many onions did
they grow in all ? (in training data)

seq2seq-tf: sara grew num1 onions , sally grew num2
onions , and fred grew num3 onions . how many onions did
they grow in all ? (in training data)

GPT-pre: There are num1 dogwood trees currently in the
park. Park workers will plant num2 dogwood trees today
and num3 dogwood trees tomorrow. How many dogwood
trees will the park have when the workers are finished?
(irrelevant to context)

GPT-pre: There are num1 orchid bushes currently in the
park. Park workers will plant num2 orchid bushes today and
num3 orchid bushes tomorrow. How many orchid bushes
will the park have when the workers are finished? (irrelevant
to context)

ours: Mike joined his school’s band. He bought a clarinet
for $ num1, a music stand for $ num2, and a song book for
$ num3. How much did Mike spend at the music store? (3)

ours: Sara grew num1 beets, Sally grew num2 beets, and
Fred grew num3 beets. How many beets did they grow in
total? (3)

rics (see Table 3). The Supplementary Material
contains additional qualitative examples.

Fixed Context, Changing Equation. Table 5
shows the MWPs generated by each approach us-
ing the same input context and different input equa-
tions. We see that every approach can generate
MWPs with high language quality and are mathe-
matically valid most of the time. However, upon
closer inspection, we find that MWPs generated
by the seq2seq-tf baseline are often exact copies of
those it has seen in the training data. In other words,
the model does nothing more than memorizing the
training data and retrieving the most relevant one
given the input equation and context; see Table 4
for a numeric comparison and the discussion in
Section 3.1. This observation is not surprising be-
cause training only on small MWP datasets leads to
overfitting. It also explains why the seq2seq base-
lines perform well on the automated metrics since
these MWP datasets contain problems that lack lan-
guage diversity, which results in many overlapping
words and phrases that often appear in both the
training and validation sets. The GPT-pre baseline,
on the other hand, is sometimes capable of generat-
ing novel MWPs, but they are either irrelevant to
the input context or are inconsistent with the input
equation. Only our approach consistently gener-
ates MWPs that are both novel and mathematically
consistent with the input equation.

Fixed Equation, Changing Context. Table 7
shows the MWPs generated by each approach us-
ing the same input equation and different input con-
texts. The keywords in these contexts are not part
of the vocabulary of the training set and are thus
unseen by the model during training/fine-tuning.
Similar to the results of the previous experiment,
here we also see that the seq2seq baseline simply

Table 8: Examples of the keywords that are selected
from a (possibly long) input context.

MWP: Emily collects num1 cards . Emily ’ s father
gives Emily num2 more . Bruce has apples . How
many cards does Emily have ?
Context keywords: Emily cards collects father

MWP: The school cafeteria had num1 apples . If
they used num3 to make lunch for the students and
then bought num2 more , how many apples would
they have ?
Context keywords: apples cafeteria

retrieves an MWP from the training dataset as its
“generated” MWP. This observation is unsurprising
for the seq2seq baseline because it simply converts
an out-of-vocabulary word in the input context into
a special unknown token, which is uninformative.
Interestingly, the GPT-pre baseline also generates
MWPs that have minimal difference from MWPs
in the training set or seems to ignore the input con-
text. We again attribute this phenomenon to the
small dataset size, on which the model also overfits
if no additional constraints are introduced. Once
again, in this setting, only our approach consis-
tently generates novel and high-quality MWPs that
are relevant to the input context.

Selected Context Keywords. To investigate our
context keyword selection model, we show in Ta-
ble 8 a few examples of the input context (which is
the original MWP in our training setting) and the se-
lected context keywords, i.e., those with c(i) > 0.5
(recall Eq. 5). We see that our context keyword
selection model can identify components that are
key to the relevant underlying mathematical com-
ponents in the MWP; for example, it identifies only
“Emily collects cards father” as the key to this MWP
and ignores the part with “Bruce apples”, which
is unrelated to the math equation. Such a context
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keyword selection method is useful in practice to
summarize (possibly long) input contexts provided
by human instructors/content designers.

4 Related Work

MWP Generation and Answering. Earlier
works on MWP generation do so in a highly struc-
tured way, explicitly relying on domain knowl-
edge and even pre-defined equation and text
templates (Nandhini and Balasundaram, 2011;
Williams, 2011; Polozov et al., 2015; Deane and
Sheehan, 2003). More recently, neural network-
based approaches have shown significant advan-
tages in generating high-quality questions com-
pared to template-based approaches. Recent ap-
proaches on MWP generation also take this ap-
proach, usually using recurrent neural networks in
a seq2seq pipeline (Zhou and Huang, 2019; Liu
et al., 2020). Instead of focusing on building new
datasets or specific model architectures, we tackle
the MWP generation problem from a controllable
generation perspective, where we focus on the gen-
erated MWPs’ language quality and mathematical
consistency. This focus leads to our proposed ap-
proach that specifically aims at tackling these two
challenges; our framework is model-agnostic and
can be combined with almost any existing MWP
generation approach.

Our approach also involves a model (mwp2eq)
that parses an MWP into its underlying equation,
which has been a very active research area with a
plethora of related work, e.g., (Huang et al., 2018;
Chiang and Chen, 2019; Xie and Sun, 2019; Zou
and Lu, 2019; Li et al., 2019, 2020; Qin et al., 2020;
Shi et al., 2015; Wang et al., 2018b,a; Roy and Roth,
2015; Wang et al., 2019a; Amini et al., 2019; Wu
et al., 2020a). In this work, we simply use a pre-
trained LM as the mwp2eq model; investigation of
leveraging the above recent advances to improve
mathematical consistency of the generated MWPs
is left for future work.

Controllable Text Generation. Our work is
also related to a growing body of literature on con-
trollable text generation (Prabhumoye et al., 2020;
Wang et al., 2019b; Hu et al., 2017; Keskar et al.,
2019; Shen et al., 2019). In particular, our equa-
tion consistency constraint takes inspiration from
the above works that impose similar constraints
to improve control over the generation process.
A major difference between our work and most
of these prior works is that, in most of these ap-

proaches, the control elements, such as emotion,
sentiment, and speaker identity, are usually rep-
resented as scalar numerical values. In contrast,
our control elements (equation and context) consist
of a sequence of math symbols or tokens rather
than numeric values, which requires additional
technical solutions to propagate gradient. The
Gumbel-softmax trick (Jang et al., 2017; Maddi-
son et al., 2017) that we employ has found suc-
cess in text generation using generative adversarial
networks (GANs) (Kusner and Hernández-Lobato,
2016; Chen et al., 2018a; Nie et al., 2019; Wu et al.,
2020b; Jiao and Ren, 2021), a setting similar to
ours where discrete sampling becomes an issue.

5 Conclusions and Future Work

In this paper, we developed a controllable MWP
generation approach that (i) leverages pre-trained
language models to improve language quality of
the generated MWP, (ii) imposes an equation con-
sistency constraint to improve mathematical con-
sistency of the generated MWP, and (iii) includes a
context selector that sets the context (in the form
of a set of keywords) to use in the generation pro-
cess. Experimental results on several real-world
MWP datasets show that, while there is plenty of
room for improvement, our approach outperforms
existing approaches at generating mathematically
consistent MWPs with high language quality.

Automatically generating MWPs remains a chal-
lenging problem and our work opens up many av-
enues for future work. First, our study is limited to
the case of simple MWPs, each with a single equa-
tion and variable. While results are encouraging,
our approach does not generalize well to the more
challenging case when the input consists of mul-
tiple, complex equations. In these cases, we need
more informative representations of the input equa-
tions (Wang et al., 2021). Second, there is no clear
metric that can be used to evaluate the generated
MWPs, especially their mathematical validity. It is
not uncommon when a generated MWP with high
scores under our metrics is either unanswerable or
inconsistent with the input equation. Therefore, fu-
ture work should also focus on developing metrics
for better evaluation of generated MWPs’ mathe-
matical validity. Last but not least, while we focus
on 2 control elements (equation, context), an in-
teresting future direction is to add more control
elements to the generation process such as question
difficulty and linguistic complexity.
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Supplementary Material
for

Math Word Problem Generation with
Mathematical Consistency and Problem

Context Constraints

A Gumbel-Softmax in Section 2.1

We describe in detail the procedure to approximate
sampling M ′ from pΦ, i.e., sampling discrete to-
kens m′t ∼ pΦ(mt|E, c,m1, . . . ,mt−1), using the
Gumbel-softmax relaxation. In the first step, we
reparametrize sampling from a categorical distri-
bution pΘ using the Gumbel-max trick (Maddison
et al., 2017) as follows:

u(i) ∼ uniform(0, 1) ,

g
(i)
t = −log(−log(u(i))) ,

mt = one hot

(
argmax
i∈|V |

(
f

(i)
Θ,t + g

(i)
t

))
,

where |V | is the size of the vocabulary, f (i)
Θ,t is the

pre-softmax activation of pΘ at the t-th generation
step for the i-th word, and g(i)

t are i.i.d. samples
from the standard Gumbel distribution.

In the second step, we approximate the discrete
argmax operator with the continuous, differentiable
softmax operator, which enables us to obtain the
final approximation

m′t = softmax((fΘ,t + gt)/τ) ,

where τ is a temperature hyperparameter, result-
ing in the Gumbel-softmax distribution. When
τ approaches 0, this approximation approaches
the categorical distribution parametrized by
one hot

(
argmaxi∈|V |(fΘ,t)

)
.

B Quality of the Math23K Dataset

Some reviewers brought up a concern on the quality
of the Math23K dataset because it is originally in
Chinese and we use the English-translated version
(via Google Translate API) of this dataset. Despite
using an automated translation service, we find that
most data points in the translated Math23K dataset
is good enough to use for training and evaluation.
Figure A reports the perplexity score under a small
GPT-2 model for each dataset, averaged over all
data points. We see that the translated Math23K
dataset has comparable perplexity compared to that
of the other two datasets. This observation suggests

Figure A: Averaged perplexity of each dataset under a
small GPT-2. The translated Math23K dataset has sim-
ilar perplexity compared to the other two datasets, sug-
gesting similar language quality of the three datasets.

that the translated Math23K dataset has similar
language quality compared to the other two datasets
that are originally in English.

C Experiment Details

C.1 Training Details
We train the three components in our method
jointly. Specifically, we first jointly train the con-
text keyword selection model and the MWP gen-
erator. After that, we freeze the context selection
model and continue to jointly train the MWP gen-
erator and the mwp2eq model. Notably, the input
token embeddings to the context selector are the
same as the pre-trained GPT-2 token embeddings.
These embeddings are kept fixed throughout train-
ing for training stability.

Table A provides the configurations for all mod-
els under consideration. The numbers marked with
an asteroid (*) are the setting for the Math23K
dataset. The number marked with a dagger (†) is
the configuration for our approach. For all base-
lines, we use the noun+pronoun words (see Sec-
tion C.2) extracted from the MWPs as the input con-
text. Each model are trained on a single NVIDIA
RTX 8000 GPU. For the GPT-based models, in-
cluding our approach, the training time ranging
from 1.3 minute per epoch (for the Arithmetic and
MAWPS datasets) to 20 min per epoch (for the
Math23K dataset). The much slower runtime for
the Math23K dataset is due to both its smaller batch
size in order to fit into memory and its large size,
which is almost 20 times as big as the Arithmetic
dataset. For the seq2seq baselines, the training
speed is about 7 seconds per 10 steps (equivalent
of 640 data points). The seq2seq baselines are im-
plemented using the OpenNMT framework.2 The

2https://opennmt.net/

https://opennmt.net/
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Table A: Model configurations.

architecture #layers input size layer size #params optimizer learning rate batch size training epochs/steps

seq2seq-rnn 2 300 512 11M adagrad 0.15 64 {5000, 15000∗}
seq2seq-attn-rnn 1 300 512 11M adagrad 0.15 64 {5000, 15000∗}
seq2seq-transformer 6 512 512 52M Adam 2 4096 {5000, 15000∗}
GPT 36 1280 1280 774M Adam 5e-5 8 20
ours 36 1280 1280 774M Adam 5e-5 {8∗, 16} {5, 15†}

Table B: Additional examples of MWPs generated by our approach.

Equation x = num1 / num2
Context Sue bag bags cookies fill mother
Gen. MWP Sue ’ s mom baked num1 cookies. If she wants to distribute the cookies among num2

children, how many cookies will each child get?

Equation x = num1 + num2 + num3
Context Charlie Cortland bag bags fruit pick picked visit
Gen. MWP Cortland picked num1 pears, and Mike picked num2 pears, and Alyssa picked num3

pears from the pear tree. How many pears were picked in total?

Equation x = num1 - num2
Context cousin game playing points scored video
Gen. MWP Zach scored num1 points in the football game. Ben scored num2 points. How many

more points did Zach score than Ben?

Equation x = num1 + num2
Context teacher worksheet
Gen. MWP The secretary prints a copy of the worksheet, num1 copies in the morning, and num2

copies in the afternoon. How many copies were printed throughout the day?

Equation x = ( num1 + num2 )
Context mike baseball football marble total toy
Gen. MWP The total cost of a toy factory to produce a football is num1 yuan, which is num2

yuan less than the total cost. How much is the total cost?

Equation x = ( num1 * num2 )
Context anne hour mile
Gen. MWP It takes num2 hours for a car to travel num1 kilometers per hour from A to B. How

many kilometers are the distance between A and B?

pre-trained GPT-2 model is loaded from the Hug-
gingFace repository.3

When training all models, we also randomly
drop words in the context with a probability of
0.3 for each word and permute the order of these
words. We do so to improve the models’ robustness
with respect to the number and the order of the key-
words in the context. In addition, for the seq2seq
baselines, we additionally lowercase all string to
reduce the total number of vocabulary.

C.2 Baselines for the Ablation Study

Here, we explain the different method to select
keywords. We first tokenize4 the MWPs. For
the noun+pronoun method, we extract words that

3https://huggingface.co/
4https://spacy.io/

have “noun” or “pronoun” as their part-of-speech
tags. Stopwords and punctuation are not included.
For the TF-IDF method, we compute the TF-IDF
weights for all tokens, again excluding stopwords
and punctuation, and then choose 5 words with the
highest weights for each MWP as its context.

C.3 Mathematical Consistency Metric

In principle, A more accurate mwp2eq model leads
to more accurate mathematical consistency eval-
uation and many other state-of-the-art mwp2eq
methods, including those targeting automatic MWP
answering that we reviewed in Section 4, can be
employed. We have observed that fine-tuning pre-
trained GPT-2 achieves competitive performance
comparing to a number of existing approaches and
thus use it for this present work. Using more ad-

https://huggingface.co/
https://spacy.io/


5999

Table C: Examples of failed cases.

Equation x = ( num1 / num2)
Context Tom cars dollars money week weekend
Gen. MWP On Sunday, num1 yuan can buy num2 cars. So how much money is needed to buy a car?
Error Incomplete information: implicitly assumes each car costs the same. Can be remedied by

adding “on average”.)

Equation x = ( num1 * num2 )
Context Tom box boxes brother candy chocolate pieces
Gen. MWP There are num2 boxes of chocolates in the candy store, and the price is num1 yuan per piece.

How much does it cost to buy a piece of chocolate?
Error Wrong question asked. Can be remedied by changing the “a piece of chocolate” to “those

chocolates”.

Equation x = ( num1 * num2 )
Context David box dog dogs dollars toy
Gen. MWP A toy dog is num1 yuan, and the price of a puppy is num2 times that of a puppy. How much

is a puppy?
Error Incoherent question statement. Can be remedied by changing the second “puppy” to “dog”.

Figure B: Diversity of generation comparing our ap-
proach with a fine-tuned pre-trained GPT-2. Our ap-
proach achieves similar generation diversity according
to the Dist-3 metric.

vanced methods to improve the mathematical con-
sistency evaluation is left for future work.

D Additional Results

D.1 Generation Diversity

Per the reviewers request, we compare the gener-
ation diversity using the Dist-3 metric (Li et al.,
2016) in Figure B, where higher numbers indicat-
ing more diversity. We can observe that our ap-
proach achieves similar generation diversity across
all datasets compared to GPT-2, with differences
smaller than 0.1, suggesting our regularizations do
not compromise the generation diversity.

D.2 Additional Qualitative Examples

Table B presents additional examples of MWPs
generated by our approach. The contexts and equa-
tions in the first three rows and the last three rows
are taken from the Arithmetic and the Math23K

datasets, respectively. These examples are consis-
tent with the qualitative results in Section 3.2.

E Limitations

Despite promising results, our approach can still
generates problematic MWPs. Because some of
our baselines simply copy a sample from the train-
ing data as the “generated” sample during evalua-
tion, which would make a unfair comparison, here
we instead conduct a small case study for our ap-
proach on the most challenging generation scenario
where we randomly sample 25 contexts and com-
bine it with each of the four equations that involve
two variables.5 This procedure produces 100 gen-
erated examples. We then qualitatively evaluate
their generation quality. In total, we find that 17
out of the 100 generated samples are completely
satisfactory and another 17 can become satisfactory
with minor changes. Some common errors in our
generated samples include: 1) incomplete informa-
tion; 2) wrong question asked; and 3) incoherent
question statement. We illustrate these types of
errors in Table C. The errors suggest that, for bet-
ter generation quality, we should further improve
the model’s understanding of the semantics of the
math operations and the relationship between vari-
ous mathematical entities in the equation and the
important words in the MWPs.

5In general, evaluating generated MWPs is a challenging
task and we defer the investigation of human evaluation cri-
teria and more comprehensive human evaluations to a future
work.


