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Abstract

We use a dataset of U.S. first names with la-
bels based on predominant gender and racial
group to examine the effect of training corpus
frequency on tokenization, contextualization,
similarity to initial representation, and bias in
BERT, GPT-2, T5, and XLNet. We show that
predominantly female and non-white names
are less frequent in the training corpora of
these four language models. We find that infre-
quent names are more self-similar across con-
texts, with Spearman’s p between frequency
and self-similarity as low as —.763. Infre-
quent names are also less similar to initial rep-
resentation, with Spearman’s p between fre-
quency and linear centered kernel alignment
(CKA) similarity to initial representation as
high as .702. Moreover, we find Spearman’s
p between racial bias and name frequency in
BERT of .492, indicating that lower-frequency
minority group names are more associated
with unpleasantness. Representations of infre-
quent names undergo more processing, but are
more self-similar, indicating that models rely
on less context-informed representations of un-
common and minority names which are overfit
to a lower number of observed contexts.

1 Introduction

Human social perception is linked to frequency of
observation. Hughes et al. (2019) show using func-
tional magnetic resonance imaging (fMRI) scans
that humans are more aware of variation in the
faces of members of their own race, and perceive
members of other races as repeated instances of a
social class, rather than as individuals. Most people
interact more with individuals of their own race,
and develop better cognitive skills for differentiat-
ing members of the race they see most frequently.
Recent research indicates that state-of-the-art Al
systems mirror such biased and unequal human
perceptions. For example, Buolamwini and Gebru
(2018) show that under-representation in the train-
ing data of computer vision models causes poor
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performance on classification tasks for women and
minority racial groups.

First names are used in both social psychology
and Natural Language Processing (NLP) as a proxy
to ground truth data for studying racial and gender
biases. The implicit association test (IAT) of Green-
wald et al. (1998) finds that study participants per-
ceive European-American names as more pleasant
than African-American names, and Caliskan et al.
(2017) demonstrate with the word embedding as-
sociation test (WEAT) that human biases observed
in the IAT exist in static word embeddings, learned
vector representations of words widely used in NLP.
We use a list of first names labeled by gender and
racial group based on U.S. Social Security Admin-
istration data and the names dataset of Tzioumis
(2018) to analyze how name frequency affects mi-
nority social groups in four neural language models:
BERT, GPT-2, XLNet, and T5. Neural language
models have advanced the state of the art in NLP,
and are found in consequential NLP contexts such
as Google Search (Nayak, 2019). These models
produce contextualized word embeddings, which
incorporate information from the context in which
the word occurs over a series of neural network
layers. May et al. (2019) and Guo and Caliskan
(2021) show that racial, gender, and intersectional
biases exist in neural language models. We exam-
ine whether under-representation in the training
corpora of such models causes them to overfit non-
white and female names, reducing model general-
ization for underrepresented minorities. We list our
research questions and contributions:

(1) Are minority social group names less fre-
quent in the training corpora of neural lan-
guage models? We process four training corpora
and find that white and male names are the most
frequent in all training corpora.

(2) Are infrequent and minority group names
split into subwords by neural language models
more than frequent and majority group names?
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We report the percentage of names singly tokenized
for eight demographic groups. Minority and female
group names are singly tokenized less than white
and male names. Single tokenization correlates
with frequency, with Spearman’s p up to .835.

(3) Are infrequent minority group names more
biased than frequent minority group names?
We take Spearman’s p of name frequency and bias
using the WEAT. We find that infrequent racial mi-
nority group names are more negative in BERT,
with Spearman’s p of frequency and pleasantness
association of .492. Common female names exhibit
greater gender bias in BERT, with Spearman’s p of
frequency and career/family bias of -.553.

(4) Are infrequent and minority group names
less contextualized than frequent and majority
group names? Is this the result of overfitting,
or of underfitting? We examine intra-layer self-
similarity of embeddings across contexts to de-
termine how contextualized a name is, and mea-
sure its similarity to initial representation in the
model’s embedding lookup matrix using linear cen-
tered kernel alignment (CKA) of Kornblith et al.
(2019). Inter-layer similarity to initial representa-
tion shows how much processing a name undergoes,
indicating whether a poorly contextualized word
is overfit to few observed contexts, if it’s notably
different from initial representation, or underfit,
if it’s similar to the representation in the embed-
ding lookup matrix. We find that infrequent and
minority group names exhibit higher intra-layer
self-similarity, with Spearman’s p of frequency and
intra-layer self-similarity as low as -.763. Infre-
quent and minority group names are less similar to
initial representation, with Spearman’s p between
name frequency and similarity to initial representa-
tion up to .702, suggesting overfitting.

We use Spearman’s p rather than Pearson’s p
to capture monotonic with name frequency, as we
observe effects primarily on a log scale. The null
hypothesis is that frequency does not affect tok-
enization, social bias, and contextualization, and
we disprove it by obtaining a two-tailed p-value.

2 Related Work

We survey prior work related to frequency’s influ-
ence on static and contextualized word embeddings.
Static word embeddings are vector representations
of words based on co-occurrence statistics of words
in a training corpus. Contextualized word embed-
dings are vector representations of words from a

neural language model which incorporates infor-
mation from context to minimize loss on a train-
ing objective, such as next-word prediction (lan-
guage modeling). Static word embeddings have
one vector per word, while contextualized embed-
dings vary with context, allowing them to capture,
for example, the sense of a polysemous word.

The WEAT of Caliskan et al. (2017) shows
that the strength of association of a set of target
static word embeddings (e.g., two social groups)
to two sets of polar attribute static word embed-
dings (e.g., pleasant/unpleasant) encodes widely
shared non-social biases, stereotypes, and factual
information about the world. May et al. (2019)
extend the WEAT to neural language models with
the Sentence Encoder Association Test (SEAT),
which inserts WEAT target words into semanti-
cally bleached sentence templates such as "This
is <word>" and measures the association of sen-
tence vectors rather than word vectors. Kurita et al.
(2019) mask target and attribute words in template
sentences, and directly query BERT’s masked lan-
guage modeling objective to compute an associa-
tion of target words to attributes. Guo and Caliskan
(2021) evaluate the overall magnitude of bias in lan-
guage models by extending the WEAT to the Con-
textualized Embedding Association Test (CEAT).

Brunet et al. (2019) perturb the sparse word co-
occurrence matrix of the GloVe static word em-
bedding algorithm of Pennington et al. (2014) by
omitting co-occurrence information from a partic-
ular subsection of the corpus, and show that em-
beddings of rare words are the most biased and
the most sensitive to corpus perturbations. Wang
et al. (2020) find that the frequency of a word in a
training corpus can twist gender direction and cre-
ate features in static word embeddings which vary
based on frequency. Our work analyzes neural lan-
guage models, which do not form representations
directly based on co-occurrence statistics.

Gong et al. (2018) examine static Word2Vec and
Transformer word embeddings used in machine
translation and find that embeddings of high and
low-frequency words lie in separate subregions of
the embedding space, and that an embedding of
a rare word and a common word can be distant
even if they are semantically similar. The authors
train an adversarial model to produce embeddings
not separable based on frequency. Provilkov et al.
(2020) propose byte-pair encoding dropout, a sub-
word regularization algorithm which allows multi-
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ple byte-pair encoding segmentations of the same
word and corrects the problem of rare subtokens ex-
isting in a separate subregion of embedding space.

Mu and Viswanath (2018) show that the top
two directions using Principal Component Anal-
ysis (PCA) in Skip-Gram, GloVe, and Continuous
Bag of Words (CBOW) static word embeddings en-
code frequency-related features, and that removing
frequency-related features improves performance
on tasks related to word similarity. Ott et al. (2018)
find that beam search in neural machine translation
prefers common tokens, including common sub-
word tokens, to uncommon tokens. Wendlandt et al.
(2018) measure the stability of static word embed-
dings, defined as consistency in the percent overlap
of nearest neighbors, and find that frequency con-
tributes to semantic stability in word embeddings.

Ethayarajh (2019) demonstrate that contextual-
ized word embeddings in BERT, GPT-2, and ELMo
occupy an increasingly anisotropic vector space
as they incorporate context. The most context-
specific, least self-similar tokens are the most fre-
quent in the training corpora, and in BERT, a token
embedding becomes more similar to the embed-
dings in the context around it as it is contextual-
ized. Zhou et al. (2021) find that frequency distorts
the geometry of contextualized embeddings from
BERT, which causes the model to over or under-
estimate semantic similarity of words based on
frequency in the training corpus.

3 Background: Neural Language Models

Our work considers BERT, GPT-2, T5, and XLNet.
We choose these neural language models both be-
cause they are commonly used and studied, and
because they use three different subword tokeniz-
ers, allowing us to conduct our tokenization anal-
ysis across three different algorithms. We use the
12-layer cased implementation of each transformer
in Python with TensorFlow and the Hugging Face
Transformers library of Wolf et al. (2020). Ap-
pendix A provides details on these models.

3.1 Subword Tokenization

Most neural language models use subword tokens
to represent text. Each subword is tied to a vector
in the model’s embedding lookup matrix, which
is trained with the model. Some common words
in the training corpus are represented with a sin-
gle embedding, but most are broken into subcom-
ponents and mapped to multiple subword embed-

dings. Subword tokenization solves the out-of-
vocabulary (OOV) problem, which occurs when
a language model encounters a word not in its vo-
cabulary. Subword tokenization allows a model to
maintain a smaller vocabulary than a model with a
full-word vocabulary, like TransformerXL of Dai
et al. (2019), which has a vocabulary size of over
267,000, and uses the OOV token for words not
in its vocabulary. Subword tokenization is faster
than character convolutions to form an initial em-
bedding, as in Peters et al. (2018) in ELMo, or
Boukkouri et al. (2020) in Character-BERT. All
four language models examined use subword to-
kenization. BERT uses WordPiece, GPT-2 uses
Byte-Pair Encoding, and XLNet and T5 use Sen-
tencePiece. Appendix B provides further details.

3.2 Representational Similarity Measures

Voita et al. (2019) use projection-weighted canoni-
cal correlation analysis (PWCCA) to measure em-
bedding change from layer to layer of language
models trained for different tasks, a method devel-
oped by Morcos et al. (2018) which can measure
the evolution of neural network representations.
More recently, Kornblith et al. (2019) measure
layer differences using linear CKA.

Kiela et al. (2015) use dispersion of image vec-
tors as a measure of the generality of an associated
word to distinguish hypernyms from hyponyms.
Ethayarajh (2019) use self-similarity to measure
contextualization in neural language models.

3.3 Contextualized Embedding Extraction

Bommasani et al. (2020) note that intermediate lay-
ers of neural language models are often used in
downstream applications, and Ethayarajh (2019)
finds that static embeddings formed from the first
two layers of BERT and GPT-2 are accurate for sev-
eral common NLP tasks. Tenney et al. (2019) show
that layers of BERT attend primarily to a certain
NLP task (such as coreference), and occur in an
expected order. Voita et al. (2019) find that a model
pretrained for language modeling (next-word pre-
diction), such as GPT-2, loses information about
the current token while forming a prediction about
the future, meaning that the top layer is poorly
suited to analysis of the input token.

We use the ValNorm method of Toney-Wails
and Caliskan (2021) to choose the layer of each
model which reflects the semantics of the input
token. ValNorm obtains a valence score for each
non-social group word in a lexicon by calculating
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its association with two sets of pleasant and un-
pleasant words based on cosine similarity. It then
obtains Pearson’s p to measure the similarity of
the valence scores of the word embeddings with
a set of human-evaluated ratings. This is referred
to as the ValNorm score, which the authors find
is stable across languages, historical periods, and
word embedding algorithms. ValNorm was devel-
oped for static word embeddings, and we extend
it to measure the semantic quality of contextual-
ized word embeddings in each layer of a neural
language model.

4 Datasets

We use a dataset of first names from Tzioumis
(2018) cross-referenced with U.S. Social Security
Administration (SSA) data to analyze frequency in
language models. To obtain contextualized repre-
sentations of the names from language models, we
gather contexts from the Reddit corpus of Baum-
gartner et al. (2020). For name frequency statistics,
we process the training corpus of each model.

4.1 First Names

We obtain a dataset of first names segmented by
demographic group by cross-referencing a list de-
veloped by Tzioumis (2018) of first names labeled
by racial self-identification with 1990 SSA data,
which includes information about the gender and
the frequency of a first name based on births in
1990. Tzioumis’ list combines data from three
mortgage datasets, and Tzioumis estimates that it
covers 85.6% of the U.S. population, based on U.S.
census data. We assign each name a label corre-
sponding to the race as which the highest number
of individuals possessing that name self-identify.
Each name is assigned a gender based on the gender
with the greater number of births with the name in
the 1990 SSA data. The resulting dataset of 3,757
names includes two genders (Female, Male) and
four racial groups (Asian, Black, Hispanic, White).
Appendix C includes more information.

4.2 Contexts

To measure contextualization, we extract contex-
tualized embeddings from a variety of contexts.
Following Guo and Caliskan (2021), we harvest
contexts from the Reddit corpus of Baumgartner
et al. (2020) at pushshift.io . We remove
contexts in which a name exists in a first-last name
combination which refers to a public figure (e.g.,,

"Taylor Swift"), which could skew our analysis.

To control for the influence of context, we har-
vest 1,000 contexts for the relatively unisex name
"Taylor" (7,258 female births vs. 6,577 male births
in 1990 SSA data), and create a set of identical con-
texts for every name in our dataset with each name
replacing "Taylor." For example, we change “I saw
Taylor last week” to “I saw Latisha last week” to
represent a black woman.

4.3 Training Corpora

We obtain ground truth data for name frequency
in the training corpora of each language model.
Most of the training corpora are not available to the
public, but can be replicated or approximated.

BERT was trained on the BookCorpus and En-
glish Wikipedia. The BookCorpus is no longer
available, and we use the open source reproduction
of Kobayashi (2018). We use the September 20,
2017 English Wikipedia dump made available by
Wikimedia', from the time period BERT was being
trained. We combine name counts from the Book-
Corpus and Wikipedia to obtain name frequencies
for BERT and XLNet. XLNet is trained on three
additional corpora which are available for a fee or
which would be difficult to reconstruct. The .792
Spearman coefficient we obtain from combined
BookCorpus and Wikipedia frequencies and sin-
gle tokenization of names by XL Net indicates that
these frequencies are representative of the entire
XLNet training corpus. The WebText corpus on
which GPT-2 was trained was not made available
to the public. We use the open source replication
OpenWebText by Gokaslan and Cohen (2019), pro-
duced based on the web crawling heuristic of Rad-
ford et al. (2019). TS was trained on the Colossal
Cleaned Crawled Corpus (C4). We obtain ground
truth name frequencies for C4 from the 800GB
cleaned version reconstructed by AllenAI”.

Table 1 shows that white male names have the
highest median frequency in every training corpus,
and the median frequency of any male group is
higher than that of any female group in OpenWeb-
Text, Wikipedia, and C4. Black, Hispanic, and
Asian females have the lowest median frequency
in every training corpus.

larchive.org/details/enwiki-20170920
’github.com/allenai/allennlp/
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pushshift.io
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Median Frequency of Names by Demographic Group
Training Corpus AF BF HF WF AM BM HM WM
OpenWebText 1,458 | 1,034 679 | 2,142 | 4,172 | 12,138 | 2,215 | 13,593
BookCorpus 378 578 219 | 1,191 483 2,644 274 3,074
Wikipedia 5,660 | 1,566 | 3,372 | 5,968 | 10,102 | 21,857 | 8,384 | 28,455
C4 32,257 | 16,843 | 13,149 | 41,710 | 66,661 | 125,743 | 30,760 | 163,014

Table 1: White names and male names are the most common in reconstructions of training corpora.

5 Approach and Experiments

We measure the effects of frequency on tokeniza-
tion, social bias, and contextualization to under-
stand disparities between majority social groups
and the minority racial and gender social groups
identifiable in our names dataset.

5.1 Tokenization

We tokenize names in our dataset using the de-
fault Transformers library tokenizers of Wolf et al.
(2020) for BERT, GPT-2, T5, and XLNet. We ob-
tain the proportion of names singly tokenized for
the racial and gender groups in our data. Tokeniza-
tion by social group informs our other experiments,
as contextualization varies based on tokenization.

5.2 Bias

We quantify the bias association of each name for
five WEATSs described by Caliskan et al. (2017).
These include pleasant/ unpleasant (25 words, 8
words), career/family, math/art, and science/art.
Following WEAT, each set contains at least 8 words
to satisfy concept representation significance. Ac-
cordingly, the limitations of not adhering to this
methodological robustness rule of WEAT, which
are outlined by Ethayarajh et al. (2019), are mit-
igated. Pleasant/unpleasant tests measure racial
bias, and career/family, math/art, and science/art
tests measure gender bias. The formula for the
single-value WEAT follows. w refers to a target
word, and A and B to sets of polar attribute words.

-,

mean,e Acos(w, @) — meanye gcos(w, b)
std_dev e aupcos(W, T)

We extract contextualized word embeddings us-
ing semantically bleached sentences as described
by May et al. (2019). For names, we use the seman-
tically bleached sentence template “This person’s
name is <name>.” For WEAT attribute words, we
use the context “This is <word>.” Unlike May et al.
(2019), we extract a contextualized word embed-
ding of the stimuli rather than a sentence vector.

The WEAT measures association using cosine
similarity, which requires that vectors are of equal
length, so we must choose a pooling method to
represent multiply subtokenized words. Follow-
ing Bommasani et al. (2020), who show that mean
pooling produces accurate representations for word
similarity tasks, we use the mean of subword vec-
tors to represent multiply tokenized words.

We use the ValNorm method of Toney-Wails
and Caliskan (2021) to select an intermediate layer
from which to extract contextualized word embed-
dings. ValNorm evaluates semantic quality based
on the single-value WEAT. To adapt ValNorm for
language models, we pool single-value WEAT com-
parisons to obtain a combined effect size as de-
scribed by Guo and Caliskan (2021), and select
the layer which produces embeddings best corre-
sponding to human evaluations of word valence.
Because our work uses the WEAT to measure bias,
ValNorm is an especially useful method for eval-
uating which layers encode semantic information
related to the current token. With ValNorm, we
obtain Pearson’s p of .881 in BERT layer 9, .859
in GPT-2 layer 7, .892 in TS encoder layer 12, and
.854 in XLNet layer 5. We refer to the layer with
the highest ValNorm score as the semantic layer.

We obtain bias scores in the semantic layer for
each name using the SV-WEAT on each bias test,
and take Spearman’s p between bias and frequency
for each minority group name in five tests.

5.3 Contextualization

Contextualization measures how much information
from context a word incorporates. Words that incor-
porate information from context generalize well in
contextualizing language models, whereas words
which do not incorporate contextual information
generalize poorly. To quantify contextualization,
we measure intra-layer self-similarity across con-
texts. If a word is less contextualized, we seek to
understand whether this is due to overfitting, or
underfitting. How much processing a word under-
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goes in a model can help to indicate whether it is
overfit or underfit. If the model changes the word
significantly from initial representation, but fails to
contextualize it, this suggests that the word is over-
fit, and processed to be similar to its embedding in
few other contexts. If the model does not change
the word much from its initial representation, and
fails to contextualize it, this suggests that the model
relies on a general representation, similar to what it
sees in its embedding lookup matrix, indicating that
the representation may be underfit. We measure
inter-layer self-similarity to initial representation
to determine whether poorly contextualized words
are overfit or underfit.

For contextualization, we use concatenations
of subword vectors for multiply tokenized words,
rather than mean pooling, to compare representa-
tions closest to the way the model sees them.

5.3.1 Intra-Layer Self-Similarity

We measure intra-layer self-similarity for each
name in 1,000 identical contexts. Intra-layer self-
similarity is the mean cosine similarity of contextu-
alized embeddings for a word generated in a single
layer of a language model, and ranges between 0
(dissimilar) and 1 (similar). The formula below
was described by Ethayarajh (2019), but removes
a function to map a word to a layer and sentence
index.

s(w) =

1 .
Y Y et
i g
We take Spearman’s p of frequency and intra-

layer self-similarity, and compare mean self-
similarity for singly and multiply tokenized names.

5.3.2 Inter-Layer Similarity

We use linear CKA, a similarity index ranging be-
tween O (dissimilar) and 1 (similar), to measure
similarity across layers. Proposed by Kornblith
et al. (2019) for measuring similarity in neural net-
work representations, linear CKA is not invariant
to invertible linear transformation, but is invariant
to orthogonal transformation and isotropic scal-
ing, and identifies correspondences between lay-
ers more accurately than PWCCA. Invariance to
isotropic scaling is useful, as Ethayarajh (2019)
found that upper layers of BERT and GPT-2 exhibit
high anisotropy. Linear CKA operates on matrices
of observations. We form matrices of 1,000 contex-
tualized word embeddings for each name, inserted

into the same 1,000 contexts as every other name.
Below is the formula for linear CKA.

IYTX|1;
[ XTX Y TY

X and Y are matrices of examples, and || - ||
refers to the Froebenius norm. We report Spear-
man’s p of name frequency and CKA similarity,
and compare mean CKA similarity for singly and
multiply tokenized names.

6 Results

We find that common names are singly tokenized
more than less common names; that name fre-
quency correlates with social bias in BERT, and to
a lesser extent in GPT-2 and T5; and that infrequent
and multiply tokenized names exhibit higher intra-
layer self-similarity and lower inter-layer similarity
to initial representation, suggesting overfitting.

. Percentage of Names Singly Tokenized

. Male

10 4

Percent Singly Tokenized
N w & @
o o [=] =] =] o
1 1 ! ! !

Figure 1: Male vs. female name tokenization

6.1 Tokenization

Common names are singly tokenized more than un-
common names. Spearman’s p between frequency
and single tokenization is .835 for BERT, .772 for
GPT-2, .630 for T5, and .792 for XLLNet. Commen-
surate with these correlations, Table 2 shows that
white male names are the most singly tokenized
in each language model. In BERT and XLNet,
male names are singly tokenized more than female
names, and white names are singly tokenized more
than Asian, black, and Hispanic names.

6.2 Bias

Table 3 shows Spearman’s p of bias score and train-
ing corpus frequency for minority group names.

523



Proportion of Singly Tokenized Words by Demographic Group
Model || AF | BF | HF | WF | AM | BM | HM | WM
BERT || .218 | .081 | .122 | .308 | .331 | .563 | .329 | .619
GPT-2 || .250 | .541 | .085 | .211 | .376 | .438 | .243 | .535
TS 199 | .027 | .074 | 122 | 198 | 219 | .119 | .328
XLNet || .308 | .162 | .079 | .262 | .392 | .531 | .337 | .590

Table 2: White male names are most singly tokenized.

Pleasant/unpleasant (PU) coefficients measure cor-
relation between frequency and association with
pleasantness for non-white names. Career/family
(CF), math/art (MA), and science/art (SA) measure
correlation between frequency and association with
gender stereotypes for female names.

Correlation of Bias and Frequency
Bias Test BERT | GPT-2 | TS5 | XLNet
Race PU25 492 | -011 | .020 | -.139
Race PUS -021 | -022 | .229 .020
Gender CF -.553 065 | .063 -.333
Gender MA || -.311 A39 | .094 | -199
Gender SA -.304 244 | -.080 .164

Table 3: Infrequent non-white names are more negative
in BERT and T5.

BERT and T5 exhibit positive correlation be-
tween pleasantness and minority group name fre-
quency, with Spearman’s p of .492 and p-value of
107167 for BERT. For these two models, more fre-
quent minority group names are more associated
with pleasantness. BERT also exhibits negative
correlations between gender bias and frequency,
indicating that more frequent observation of a fe-
male name reinforces its association with female
stereotypes. The correlation between frequency
in the training corpus and association with career
as opposed to family in BERT is —.553 for fe-
male names, with a p-value of 107161, XL Net ex-
hibits similar correlations for the career/family and
math/arts WEATS. P-values for correlations greater
than 0.1 or less than —0.1 are less than 10~1°,

6.3 Contextualization

Infrequent names exhibit higher intra-layer self-
similarity in each examined layer of each language
model, and exhibit lower inter-layer similarity to
initial representation, indicating that infrequent
names generalize poorly to context and are overfit
to the contexts in which they have been observed.

6.3.1 Intra-Layer Similarity

Table 4 shows negative Spearman’s p in BERT,
GPT-2, T5, and XLNet, ranging between —.523
and —.763, with p-values < 107263, Most of
the least negative correlations occur in the top
layer, possibly due to high anisotropy in upper lay-
ers of language models observed by Ethayarajh
(2019). Correlation of frequency and intra-layer
self-similarity is highest in the first layer of GPT-2
and XLNet.

Correlation of Frequency and Self-Similarity
Layer BERT | GPT-2 TS5 | XLNet
First -.688 | -.703 | -.523 -.763
Second -.683 | -.681 | -.574 =732
Semantic || -.693 | -.633 | -.573 -.698
Output -598 | -.640 | -.573 -.649

Table 4: Infrequent names exhibit higher intra-layer
self-similarity, and are less contextualized.

BERT Frequency vs. Semantic Layer Self-Similarity

Multiply Tokenized
Singly Tokenized

o

w0

=
s

o
©
@

o

@

=]
s

o
o
v

Contextualized Word Embedding Self-Similarity
o
~
S
!

o

o

o
L

. T - = = e
Training Corpus Name Frequency

Figure 2: Multiply tokenized and infrequent names ex-
hibit high intra-layer self-similarity in BERT.

Table 5 shows that multiply tokenized names ex-
hibit higher intra-layer self-similarity than singly
tokenized names. More common names, and
names of majority group members, are more con-
textualized in language models than are infrequent
names and names of minority group members.
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Mean Intra-Layer Self-Similarity by Tokenization
Layer BERT GPT-2 T5 XLNet
Single | Multi | Single | Multi | Single | Multi | Single | Multi
First 901 | 923 761 | .855 933 | 974 848 | 915
Second .863 | .926 762 | 815 916 | .965 759 | .846
Semantic 772 | .840 736 | .826 702 1769 613 | .653
Output 71 | .808 810 | 974 702 | 769 863 | .926

Table 5: Multiply tokenized names exhibit higher intra-layer self-similarity.

6.3.2 Inter-Layer Similarity

Table 6 reports statistically significant positive cor-
relations between frequency and inter-layer CKA
similarity to initial representation, except in the
first layer of GPT-2. Spearman’s p ranges between
.174 and .702, with p-values smaller than 10~27.

Correlation of Frequency and CKA Similarity
Layer BERT | GPT-2 | T5 | XLNet
First 461 | -299 | .174 .623
Second 592 487 | 382 .636
Semantic 702 465 | 513 677
Output 480 242 | 513 338

Table 6: Infrequent names exhibit lower inter-layer
CKA Similarity to initial representation.

Embeddings of infrequent names are less simi-
lar to initial representation, indicating that poorly
contextualized infrequent names are overfit to pre-
viously observed contexts, and that representations
in the embedding lookup matrix carry more infor-
mation for common and singly tokenized names.

Results for tokenization and mean inter-layer
self-similarity are reported in Table 7. We observe
that contextualized representations of multiply tok-
enized names are less similar to their initial repre-
sentations than singly tokenized names.

7 Discussion

White male names occur more than any other social
group in all training corpora we process. Black and
Hispanic female names are least frequent, show-
ing that frequency-based disparities in language
models have notable consequences for non-white
females. Each language model represents white
male names with a single token more than any
other group. Black and Hispanic female names are
the least represented with a single subtoken, with
less than 10% singly tokenized in most models,
reflecting disparities based on gender and race.

XLNet Frequency vs. Semantic Layer Similarity to Initial

Multiply Tokenized
Singly Tokenized

o
'S

I =
N} w

o
e

Linear CKA Similarity to Initial Representation

e
o

= - . = e
Training Corpus Name Frequency
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Figure 3: Infrequent names are less similar to initial
representation in the semantic layer of XLNet.

In BERT, we observe Spearman’s p of name
frequency and racial bias of .492, indicating that
less frequent minority names are more associated
with unpleasantness. Gender bias in BERT exhibits
negative correlation with frequency, indicating that
it is reinforced by frequently observing a female
name. While increased representation may address
disparities in contextualization, fair and diverse
context occurrence is also important to ensure that
language models do not learn biased embeddings.

Infrequent and multiply tokenized names exhibit
higher intra-layer self-similarity across language
models, but lower inter-layer similarity to initial
representation. Such names incorporate less infor-
mation from context, and change more from initial
representation, suggesting that disparities in con-
textualization are the result of overfitting.

Our work focuses on first names, but under-
representation of minority names suggests that
words and ideas specific to minority groups are
also likely under-represented in the training cor-
pora of neural language models, and will have the
same issues with regard to tokenization, bias, and
contextualization. Increased representation of mi-
nority groups in training corpora would mitigate
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Mean CKA Similarity by Tokenization
Layer BERT GPT-2 TS XLNet
Single | Multi | Single | Multi | Single | Multi | Single | Multi
First .860 | .831 .020 | .026 705 | .660 835 | .763
Second 736 | .633 .013 | .006 564 | 475 674 | 515
Semantic .149 | .088 .004 | .001 398 | .201 370 | 238
Output .064 | .051 .016 | .015 398 | .201 .002 | .001

Table 7: Multiply tokenized names are less similar to initial representation than singly tokenized names.

many frequency-related problems, and correct bi-
ases in the corpora themselves. However, some
words will always be more common than others.
To reduce frequency-based disparities, language
models trained on multiple objectives, such as TS,
might incorporate an adversarial training objective
such as the method described by Gong et al. (2018).
Limitations of our work relate to using a list of
names, which cannot capture many characteristics
which may be biased in language models, such as
sexual orientation. Please see our Ethical Consid-
erations section for a detailed discussion of ethical
concerns and limitations related to our work.

8 Conclusion

We show that names predominantly belonging to
members of minority social groups occur less fre-
quently than majority group names in training cor-
pora of neural language models, and that low fre-
quency results in lower rates of single tokenization,
less contextualization, and overfit representations
in neural language models.

9 Ethical Considerations

Our work with large-scale demographic datasets
has involved simplifications which, while useful
for studying the impact of language models on
marginalized demographic groups, has also intro-
duced a number of limitations to our work. These
are primarily related to the use of categorical labels
for gender and race, but also concern the properties
of the demographic datasets employed and the role
of frequency in interpreting our results.

A central limitation of our work is that categori-
cal labels are assigned to each name based on gen-
der and race. We understand race and gender not
as essential characteristics, but as defined within a
particular culture, time period, and social structure.
Our research question is whether underrepresen-
tation (i.e., low frequency) of social groups in a
language model training corpus results in overfit-

ting and exacerbated bias in the trained language
model. To answer this, we analyze frequency of
representation and its effects along two axes of de-
mographic bias: gender bias, wherein males are
more represented than females; and racial bias,
wherein people considered to be white are repre-
sented more than people considered to be black,
Hispanic, or Asian. The range of social groups
studied reflects not an ideal division of humanity
into immutable categories, but a comprehensible
way of interpreting the disadvantages caused by
underrepresentation in our current cultural context.

Our work can be thought of an exposure study
which examines the effects of one aspect of gender
and race: underrepresentation. In the context of
studies of race, Sen and Wasow (2016) usefully
define an exposure study as one which uses "a cue
or signal that generates some reaction,”" and note
that "names often act as a proxy for for traits associ-
ated with racial or ethnic groups." Well-established
NLP methods such as the WEAT of Caliskan et al.
(2017) have demonstrated the efficacy of using first
names for observing biases in Al. As described in
Section 4.1, we use U.S. Social Security Adminis-
tration (SSA) data to give each first name a gender
label, and a dataset which uses the same racial cate-
gories as the U.S. census does for surnames to give
each first name a racial label. We do not intend to
essentialize the name, or individuals bearing the
name, but to identify the gender or racial associ-
ation most likely to be perceived by a language
model within the cultural context in which it was
trained. We regret that many individuals are not
represented by this set of categories. This is true
for transgender and nonbinary individuals, as the
SSA data reflects a gender binary, and also for peo-
ple whose racial identity is not captured by one of
a few categories.

Census data includes information about racial
identification for surnames, but not for first names,
prompting us to seek another source for this data.
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We choose the dataset of Tzioumis (2018) because
it has wide coverage (85.6% of the U.S. population
as estimated by Tzioumis); is ethically anonymized;
is based on at least 30 observations for 91.2% of
included names; and contains first name data based
on self-identification, considered a “gold standard”
for demographic classification, as noted by Larson
(2017) in the context of labeling data by gender.
Tzioumis’ dataset uses the same racial categories
as U.S. census data for surnames, indicating that
these categories correspond to our cultural context.

That many names occur in more than one racial
group or gender group is also a limitation, and may
introduce noise into our analyses. However, more
than 80% of names examined in our work have a
self-identification rate of at least 70% with a single
racial group in the Tzioumis dataset. Based on SSA
data, 31.3% of the names in our study have only
male occurrences, 38.6% of the names in our study
have only female occurrences, and 30.1% of names
occur for both male and female individuals. 88.0%
of names with male and female occurrences have
at least 70% of occurrences associated with one
gender. Thus, assigning a label based on the group
with the most occurrences is likely to capture both
which groups are most affected by our findings, as
well as the linguistic signals related to race and
gender which make first names a useful proxy to
this information.

We also note that the time periods from which
demographic and language modeling data are de-
rived may inject some noise into our analysis. We
cross-reference SSA data on births in 1990 with the
Tzioumis dataset, which is based on 2007 and 2010
mortgage applications. The populations studied in
these two datasets are unlikely to overlap exactly,
though they both sample the adult U.S. population
during the time period germane to our research.
Moreover, language models are themselves prod-
ucts of a specific place and time, as they are trained
on text corpora assembled largely within a specific
time period, and are unlikely to reflect the full diver-
sity of language within that time period; OpenAl’s
WebText corpus, for example, is collected using
outbound web links from Reddit running through
December 2017 (Radford et al., 2019).

Finally, we note that our results are the effect
primarily of low frequency of observation, and it is
possible that similar differences in tokenization and
contextualization based on frequency might be ob-
served in other sets of words which are unrelated to

demographics. However, frequency relates directly
to the social dimension to which our work directs
attention: that names of marginalized social groups
are underrepresented - less frequent - in language
modeling corpora, and more likely to be overfit by
a language model. Frequency of representation is
one of the composite variables that inform race and
gender in our cultural context, and must be consid-
ered when training a language model which forms
differing representations based on frequency.

While large-scale demographic datasets are re-
ductive, they can help to observe the social impact
of the systems we study. Within the limited con-
fines of the groups defined, our work shows that
neural language models are ill-adapted to represent
marginalized social groups.
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A Neural Language Models

A.l BERT

Devlin et al. (2019) introduce BERT, a bidirectional
transformer trained on masked language model-
ing (also known as the Cloze objective) and next
sentence prediction tasks. We examine the “bert-
base-cased” model available from Hugging Face
Transformers. BERT is trained on 2.5 billion words
of English Wikipedia documents (excluding lists,
headers, and tables) and 800 million words of the
BookCorpus compiled by Zhu et al. (2015), a col-
lection of more than 11,000 free online books writ-
ten by unpublished authors.

A2 GPT-2

Radford et al. (2019) introduce OpenAl GPT-2,
a unidirectional transformer model trained on the
next-word prediction language modeling task. We
examine the “gpt2” model available from Hugging
Face Transformers. GPT-2 is trained on the Web-
Text corpus, a web scrape composed of outbound
links from Reddit with at least 3 karma, which the
model designers (who are also the creators of the
training corpus) take as a heuristic for link quality.
WebText contains over 8 million documents and
40GB of text.

A.3 XLNet

Yang et al. (2019) introduce XLNet, an autore-
gressive transformer trained on language modeling
which learns bidirectional contexts by maximizing
the expected likelihood over all permutations of
its input’s factorization order. We use the “xlnet-
base-cased” model available from Hugging Face
Transformers. Like BERT, XL Net is trained on En-
glish Wikipedia and the BooksCorpus. However,
it also trains on three additional corpora: Giga5 (a
corpus of print news from publications such as the
Associated Press and New York Times), ClueWeb
2012-B, and Common Crawl. ClueWeb 2012-Bis a
corpus maintained by Carnegie Mellon University.

A4 TS5

Raffel et al. (2020) introduce T35, a text-to-text
encoder-decoder transformer model trained on a
number of different pretraining tasks and designed
to take in text and return text for any NLP task.
TS5 is pretrained on the Colossal Cleaned Crawled
Corpus (C4). We examine the encoder layers of the
’t5-base’ model available on Hugging Face Trans-
formers.

B Subword Tokenizers

B.1 Byte-Pair Encoding

GPT-2 uses a variation on Byte-Pair Encoding
(BPE) to iteratively choose the most frequently
occurring bigram of symbols in the training cor-
pus, merge them into a single symbol, and add the
merged symbol to its subword vocabulary until it
reaches its maximum vocabulary size of 50,256.
BPE is a compression algorithm originally pro-
posed by Gage (1994). The technique was adapted
for encoding rare subwords for the purpose of neu-
ral machine translation in 2015 by Sennrich et al.
(2016). GPT-2 modifies this algorithm to oper-
ate directly on byte sequences rather than Unicode
character sequences.

B.2 WordPiece

BERT uses the WordPiece tokenization algorithm,
first developed by Schuster and Nakajima (2012)
and subsequently refined by (Johnson et al., 2017)
in Google’s neural machine translation system.
WordPiece builds a probability distribution from
the training corpus using the base vocabulary of sin-
gle character symbols, and then iteratively assem-
bles its vocabulary by merging a bigram, adding
the merged unit, and replacing every instance of
the bigram in the training corpus with the merged
unit. WordPiece selects the bigram which most
increases the likelihood of the training data when
the merged bigram is added to the language model,
a process which is indirectly related to frequency.

B.3 SentencePiece

XLNet and T5 use the SentencePiece tokenizer,
which can implement either Byte-Pair Encoding
or Unigram to form a vocabulary. SentencePiece
was developed by Kudo and Richardson (2018) and
allows for lossless tokenization, such that original
input can be reconstructed from tokenized input.
SentencePiece inserts an underscore to preserve
whitespace as a character, and can be used with
byte-pair encoding or with the Unigram algorithm
also introduced by Kudo (2018). Unlike WordPiece
and BPE, Unigram starts with a large set of words
and subwords generated from a training corpus,
and iteratively removes the words which have the
least effect on the overall loss (with the loss func-
tion chosen as a hyperparameter) of a language
model created from the vocabulary until a fixed
vocabulary size is reached.
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C First Names Dataset

The names dataset of Tzioumis (2018) provides the
percentage of individuals with a first name who
self-identify as each of six races and ethnicities:
White, Black, Hispanic, Asian-Pacific-Islander, Na-
tive American, and Mixed Race. We provide in-
formation regarding the number of names in each
group after cross-referencing for gender with the
1990 U.S. Social Security Administration data in
Table 8. Note that we were left with only one
predominantly Native American name and one pre-
dominantly Mixed Race name, which is not enough
names for use in our experiments.

Names by Intersectional Group
Intersectional Group || Number of Names
Asian Female 156
Black Female 37
Hispanic Female 189
White Female 1,621
Asian Male 263
Black Male 32
Hispanic Male 243
White Male 1,216

Table 8: Number of names in our dataset

After cross-referencing between Tzioumis’ list
and the 1990 U.S. Social Security Administration
data, we are left with a list of 3,757 first names.
White-majority names are more common in this
list, likely due both to the United States being a
plurality-white nation, and to economic and struc-
tural disparities which allow easier access to mort-
gages for white individuals.
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