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Abstract

Recently, pre-trained language models (LMs)
have achieved strong performance when fine-
tuned on difficult benchmarks like Super-
GLUE. However, performance can suffer
when there are very few labeled examples
available for fine-tuning. Pattern Exploiting
Training (PET) is a recent approach that lever-
ages patterns for few-shot learning. How-
ever, PET uses task-specific unlabeled data.
In this paper, we focus on few shot learn-
ing without any unlabeled data and introduce
ADAPET, which modifies PET’s objective to
provide denser supervision during fine-tuning.
As a result, ADAPET outperforms PET on Su-
perGLUE without any task-specific unlabeled
data. Our code can be found at https://
github.com/rrmenon10/ADAPET.

1 Introduction

Pre-trained language models (LMs) have shown
significant gains across a wide variety of natural
language processing (NLP) tasks in recent years
(Devlin et al., 2019; Radford et al., 2018; Raffel
et al., 2020). Most of these gains are obtained by
fine-tuning language models on labeled data for a
particular task. However, performance can suffer
when there is very limited labeled data available
for a downstream task (Xie et al., 2020; Chen et al.,
2020).

Recently, GPT-3 (Brown et al., 2020) demon-
strated how language models, when scaled to hun-
dreds of billions of parameters, can learn well when
primed with only a few labeled examples. How-
ever, the scale of GPT-3 (175B parameters) makes
it impractical to study. There is, therefore, a need
to develop smaller language models that can work
equally well with limited labeled data.

Pattern-Exploiting Training (PET; Schick and
Schütze, 2021a,b) reformulates natural language
understanding tasks as cloze-style questions and
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Figure 1: Performance of ADAPET vs iPET/PET and
GPT-3 on SuperGLUE. While iPET/PET are parameter-
efficient, they use ∼9K unlabeled examples in addition
to 32 labeled examples per task. ADAPET uses just 32
labeled examples, and performs better than iPET.

performs gradient-based fine-tuning. In doing so,
PET outperforms GPT-3 with few labeled examples
using ALBERT (Lan et al., 2020). However, PET

uses additional task-specific unlabeled data.
We propose ADAPET (A Densely-supervised

Approach to Pattern Exploiting Training) that uses
more supervision by decoupling the losses for the
label tokens and a label-conditioned masked lan-
guage modeling (MLM) objective over the full orig-
inal input. On SuperGLUE (Wang et al., 2019) with
32 labeled examples per task, ADAPET outperforms
iPET without any unlabeled data.

2 Background

Cloze-style questions and MLM. A cloze task
is a problem where certain parts of a text are
removed, and the goal is to replace the missing
portion based on the context (Taylor, 1953). Here,
the text that has some parts removed is considered
a cloze-style question. Inspired by cloze tasks,
BERT introduces the MLM objective that tries
to predict the original word at the masked out

https://github.com/rrmenon10/ADAPET
https://github.com/rrmenon10/ADAPET
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(b) Label Conditioning

Figure 2: We illustrate the training with the two components of ADAPET. Here, the blue boxes refer to the inputs
from a task (entailment, in this case). Figure 2a shows the decoupling label objective. The model has to predict the
correct and incorrect labels at the masked out position, using a BCE loss over all labels. For the label conditioning
objective in Figure 2b, the input text either includes the correct or incorrect label. At a randomly masked out
position, the model should predict the original token when the input text has the correct label, and should not
predict the original token when the input text has an incorrect label.

positions in a cloze question.

Notation. Let G represent a language model,
x represent the input example converted into a
cloze-style question, and y represent the label at
the masked location m. We are interested in the
quantity [[Gm(x)]]z which represents the logit
value for a specific token z at the mask location m.

2.1 Unlabeled Data Access

Schick and Schütze (2021a,b) assumes access to
task-specific unlabeled data. For some applications
such as sentiment analysis, unlabeled data can be
cheap to acquire. But for SuperGLUE, where the
examples are pairs of text with a label that is con-
structed to test a model’s natural language under-
standing abilities, it might be more expensive to
acquire unlabeled data. For example, the construc-
tion of BoolQ requires annotators to filter good
question-article pairs before assigning labels (Clark
et al., 2019). Hence, for our setup, we do not as-
sume access to task-specific unlabeled data, which
aligns with the setup in Brown et al. (2020).

2.2 PET

Our work primarily builds on top of PET (Schick
and Schütze, 2021a,b). PET converts an example
into a cloze-style question, similar to the input for-
mat used during pre-training. The query-form in
PET is defined by a Pattern-Verbalizer Pair (PVP).
Each PVP consists of

• a pattern which describes how to convert the
inputs into a cloze-style question with masked

out tokens. We illustrate this for an entail-
ment task in Figure 2a. Here, we convert
the premise (“Oil prices fall back") and the
hypothesis (“Oil prices rise") into a cloze-
style question with the pattern: <premise>
? <mask>, <hypothesis>.

• a verbalizer which describes the way to con-
vert the classes into the output space of tokens.
In Figure 2a, the verbalizer maps “Not Entail-
ment/Entailment" to “No/Yes”.

After hand-designing a PVP for a given task, PET

obtains logits from the model Gm(x) (in the single-
token label case). Given the space of output tokens
Y , (in Figure 2a {“Yes”, “No”}) PET computes a
softmax over y ∈ Y , using the logits from Gm(x).
The final loss is shown in Equation 2.

q(y∣x) =
exp([[Gm(x)]]y)

∑
y′∈Y

exp([[Gm(x)]]y′)
(1)

L = CE(q(y∗∣x), y∗) (2)

PET additionally distils knowledge from an ensem-
ble of models trained with different patterns on both
labeled and unlabeled data. iPET is an iterative vari-
ant of PET that trains models across iterations. The
size of the training set gradually increases each iter-
ation based on the labels of previous iterations. For
a description of the different patterns used across
the tasks (Schick and Schütze, 2021b), we refer the
reader to Appendix A.1.
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3 ADAPET

Our proposed approach, called ADAPET, modifies
the objective from PET so that it can provide more
supervision and learn without task-specific unla-
beled data.

3.1 Decoupling Label Losses

PET computes class probabilities using the logits
that correspond to the labels for a specific task.
This discards the information from all the other
logits in the vocabulary that do not correspond to
a label. For example, in Figure 2a, “oil" is not a
class token so the LM head should assign a low
probability to “oil". However, because PET only
extracts the token logits that correspond to labels,
the non-label tokens will never have any gradient
signal.

One solution is to change the objective to a regu-
lar MLM objective. In that case, there would be no
distinction between tokens corresponding to incor-
rect classes and any other token in the vocabulary.
For example, in Figure 2a, the model would be
trained to treat “Yes" (the incorrect token) the same
as any other token such as “oil". While we want the
model to discourage “oil", the training objective
should still specifically suppress “Yes".

In ADAPET, we penalize incorrect class tokens
and encourage correct class tokens. Specifically,
the model computes the probability of each token
as a softmax normalized across all tokens so that
each probability is influenced by the logits of all
the vocabulary tokens. Then, we maximize the
probability of the correct class tokens and minimize
the probability of incorrect class tokens. This is
equivalent to binary cross entropy, as shown in
Figure 2a. Formally, if y∗ is the true label for an
example,

q(y∣x) =
exp([[Gm(x)]]y)

∑
v′∈V

exp([[Gm(x)]]v′)
(3)

LD = log q(y∗∣x) − ∑
y≠y∗

log q(y∣x) (4)

The loss can be rewritten using binary cross en-
tropy or regular cross entropy as:

LD = BCE(q(y∗∣x), 1) + ∑
y≠y∗

BCE(q(y∣x), 0) (5)

= CE(q(y∗∣x), y∗) − ∑
y≠y∗

CE(q(y∣x), y) (6)

3.1.1 Unified Loss for Different Tasks

For normal tasks where the label is exactly one
token, PET uses the formulation described in Equa-
tion 2. For WSC (Levesque et al., 2012), which
does not have incorrect class labels, PET uses the
original MLM objective rather than Equation 2.
This is equivalent to Equation 5 without the second
term in ADAPET.

For other tasks with multi-token labels (COPA
(Roemmele et al., 2011), ReCoRD (Zhang et al.,
2018)), PET computes the probability of the classes
as the sum of the log probabilities of the individual
tokens. However, it is not obvious how to convert
these label probabilities into a valid probability
distribution.

Rather than normalizing the probabilities, PET

uses a hinge loss to ensure a margin between the
correct label and the incorrect labels.

In ADAPET, for each token in the label, LD dis-
criminates the correct token from every other to-
kens, via the following loss:1

LD =∑
z∗∈y∗

BCE(q(z∗∣x), 1) + ∑
y≠y∗

∑
z∈y

BCE(q(z∣x), 0) (7)

This objective splits a single loss based on mul-
tiple tokens into multiple losses over single tokens.
As a result, we do not need to to multiply the prob-
abilities of the individual tokens, and thus do not
run into normalization issues.

3.2 Label Conditioning

The PET objective encapsulates the question:
"Given the input, what is the right label?." How-
ever, since the input space and output space both
consist of tokens, we can also ask the inverse ques-
tion, “Given the answer, what is the correct con-
text?". The model is trained to predict the input
given the label. Formally, let x′ be the original
input x modified by randomly masking out tokens
from the context and x

m be the original context
tokens masked out in x

′. In the label condition-
ing objective, we are interested in the quantity
P (xm∣x′, y), which encourages the model to pre-
dict the masked out tokens in the input given the
label.

During training, if the label is correct, the model
has to predict the original token, as shown in Fig-
ure 2b. Additionally, if the label is wrong, the

1We ignore tokens that are common in all labels.
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BoolQ CB COPA RTE WiC WSC MultiRC ReCoRD Avg
Method Acc. Acc./F1 Acc. Acc. Acc. Acc. EM/F1a Acc./F1 -
ALBERT 55.7 68.6 / 49.1 63.0 50.5 41.4 81.7 3.6 / 49.8 84.1/83.5 57.7
GPT-3 (LAB; SINGLE) 77.5 82.1 / 57.2 92.0 ♣ 72.9 55.3 ♣♦ 75.0 32.5 / 74.8 89.0 / 90.1 ♣♦ 73.2
sPET (LAB; SINGLE) 76.9 87.5 / 85.4 89.0 67.1 49.7 82.7 ♣♦ 31.2 / 74.6 85.0 / 91.9 74.2
ADAPET (LAB; SINGLE) 80.3 ♣ 89.3 / 86.8 ♣ 89.0 76.5 ♣♦ 54.4 81.7 39.2 / 80.1 ♣♦ 85.4 / 92.1 77.3 ♣♦
PET (LAB + UNLAB; ENSEMBLE) 79.4 85.1 / 59.4 95.0 ♦ 69.8 52.4 80.1 37.9 / 77.3 86.0 / 86.5 74.1
iPET (LAB + UNLAB; ENSEMBLE) 80.6 ♦ 92.9 / 92.4 ♦ 95.0 ♦ 74.0 52.2 80.1 33.0 / 74.0 86.0 / 86.5 76.8

Table 1: Few-shot classification results on SuperGLUE with 32 labeled examples on the dev set. Note, we do not
have access to the train split of GPT-3, so we follow the split provided by (Schick and Schütze, 2021b). ♣=BEST
SINGLE PATTERN MODEL, ♦=BEST MODEL OVERALL, LAB=LABELED DATA, UNLAB=UNLABELED DATA

BoolQ CB COPA RTE WiC WSC MultiRC ReCoRD Avg
Method Acc. Acc./F1 Acc. Acc. Acc. Acc. EM/F1a Acc./F1 -
GPT-3 (LAB; SINGLE) 76.4 75.6 / 52.0 92.0 ♣♦ 69.0 49.4 80.1 30.5 / 75.4 90.2 / 91.1 ♣♦ 71.8
ADAPET (LAB; SINGLE) 80.0 ♣ 92.0 / 82.3 ♣♦ 85.4 75.0 ♣♦ 53.5 ♣♦ 85.6 ♣ 35.7 / 76.2 ♣ 85.5 / 86.1 76.0 ♣♦
PET (LAB + UNLAB; ENSEMBLE) 79.1 87.2 / 60.2 90.8 67.2 50.7 88.4 ♦ 36.4 / 76.6 ♦ 85.4 / 85.9 74.0
iPET (LAB + UNLAB; ENSEMBLE) 81.2 ♦ 88.8 / 79.9 90.8 70.8 49.3 88.4 ♦ 31.7 / 74.1 85.4 / 85.9 75.4

Table 2: Few-shot classification results on SuperGLUE with 32 labeled examples on the hidden test set. ♣=BEST
SINGLE PATTERN MODEL, ♦=BEST MODEL OVERALL, LAB=LABELED DATA, UNLAB=UNLABELED DATA

model is forced to not predict the original to-
ken. 2 We maximize P (xm∣x′, y∗) and minimize
P (xm∣x′, y) ∀ y ≠ y

∗. This objective is the same
as the decoupling label losses approach described
in Equation 5, except with different inputs and out-
puts.

q(xm∣x′, y) = exp([[Gm(x′, y)]]xm)
∑

v′∈V
exp([[Gm(x′, y)]]v′)

(8)

LM =BCE(q(xm∣x′, y∗), 1) +∑
y≠y∗

BCE(q(xm∣x′, y), 0)

(9)

The final loss for ADAPET is a sum of the decoupled
label loss and the label-conditioned MLM loss.

4 Results and Analyses

We run experiments on SuperGLUE, and follow
the same data split as Schick and Schütze (2021b),
which consists of 32 labeled examples for each
task.

Our code is implemented in Pytorch (Paszke
et al., 2019) using HuggingFace (Wolf et al., 2020).
We use the same pre-trained model and hyperpa-
rameters as PET, except we increased the number
of training batches to 1k and choose the best check-
point on the dev set, since it has been shown that
training longer can help even with few samples
(Zhang et al., 2021). For all ablation experiments,
we only use the first pattern3 and train for 250

2This assumes the context only makes sense with the cor-
rect label. Empirically though, we find this to be reasonable.

3The first pattern for each task can be found in App. A.1

batches. We refer the reader to Appendix B for
more details.

Since we do not assume access to unlabeled data
(see Section 2.1), we do not apply the three-step
training procedure of PET and iPET to ADAPET.
We still assume access to the full development set
to choose the best masking ratio and checkpoint
model, since PET presumably used the full devel-
opment set to choose their hyperparameters which
we copy.

4.1 Results

Table 1 and Table 2 shows our results on the vali-
dation and test sets on SuperGLUE. We compare
against GPT-3 and PET/iPET. Note that PET/iPET

uses unlabeled data and a three step training pro-
cedure (Schick and Schütze, 2021b). For fair com-
parison, we train PET with a single pattern (sPET)
for 1k batches, and report scores for the best per-
forming pattern on the validation set. We include
a further analysis of how well the models perform
for each pattern in Appendix A.2.

On the dev set, ADAPET outperforms all models
that do not use unlabeled data, and even outper-
forms PET’s iterative variant, iPET, by 0.5 points
absolute. Surprisingly, sPET outperforms PET, but
still loses to iPET by 2.6 points. But, this is in line
with the ablation from Schick and Schütze (2021b),
which shows that ensembling sPET models, trained
with only labeled data, outperforms PET. Also,
Gao et al. (2021) show that the model with the best
performing pattern outperforms ensembling sPET

models.
On the test set, ADAPET outperforms all other
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models including iPET without access to the un-
labeled examples (∼9k on average per task) and
achieves state-of-the-art for few-shot learning on
SuperGLUE.

4.2 Loss Ablation
Table 3 shows our ablation analysis for the loss
functions we introduce in this paper. From the
results, we see that label conditioning (LC) is ex-
tremely beneficial for ADAPET, especially on CB.
Comparing our modified decoupled label objective
(ADAPET W/O LC) with sPET, we see that it does
worse for CB on F1, but does much better on RTE
and MultiRC. Next, we compare against LC con-
ditioned only on the correct label. We see that this
hurts on BoolQ, but helps on CB. We ablate other
model choices in Appendix C.

BoolQ CB RTE MultiRC
Method Acc. Acc./F1 Acc. EM / F1a
ADAPET 79.4 91.1 / 88.1 75.1 38.6 / 79.8
ADAPET W/O LC 78.1 75.0 / 62.8 64.3 37.0 / 79.1
ADAPET LC (POS. EX. ONLY) 75.4 83.9 / 80.9 72.2 31.3 / 76.9
sPET 77.5 75.0 / 72.8 57.0 26.5 / 73.2

Table 3: Ablation of ADAPET with different compo-
nents. Best numbers have been bolded. (LC= LABEL
CONDITIONING)

5 Conclusion

In this paper, we propose ADAPET, a new method
for few-shot natural language understanding. Cru-
cially, our work does not use unlabeled data and in-
stead leverages more supervision to train the model.
Assuming the same data budget, our model out-
performs GPT-3 on SuperGLUE using just 0.1%
as many parameters. However, our method has
limitations; for example, we use a naive random
masking strategy, which might not make sense for
label conditioning. Future work could look into
better masking strategies for labeled conditioned
MLM, such as masking important tokens based on
the the gradients of the logits for an example, as
has been done for interpreting models (Simonyan
et al., 2014).
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Appendix

A Patterns and Pattern Performances

A.1 Pattern Verbalizer Pairs
We list the patterns and the verbalizers used by
the PET and ADAPET models for the SuperGLUE
dataset here. For improved readability of the pat-
terns, we first list a legend for the different letter
combinations that we use throughout the patterns
and then proceed to enumerate the patterns for each
dataset.

• p: passage/paragraph/pronoun

• q: question

• h: hypothesis

• e: entity

• w: word

• ci: choice i

• si: sentence i

A.1.1 BoolQ (Clark et al., 2019)
For this QA task, we are given a paragraph pand a
yes/no question q. We use two forms of labels for
this task yes/no and true/false.

• Pattern : p. Question: q? Answer: ___.
Verbalizer: yes/no

• Pattern :
p. Based on the previous passage, q? ___.

Verbalizer: yes/no

• Pattern :
Based on the following passage, q? ___. p

Verbalizer: yes/no

• Pattern : p. Question: q? Answer: ___.
Verbalizer: true/false

• Pattern :
p. Based on the previous passage, q? ___.

Verbalizer: true/false

• Pattern :
Based on the following passage, q? ___. p

Verbalizer: true/false

A.1.2 CB (de Marneffe et al., 2019)
In this textual entailment task, given a premise p
and hypothesis h we need to determine if the h
entails/contradicts/is neutral with respect to the p.
The labels for this task are mapped to yes/no/maybe
respectively.

• Pattern : h? ∣ ___,p
Verbalizer: yes/maybe/no

• Pattern : “h"? ∣ ___,“p"
Verbalizer: yes/maybe/no

• Pattern : h? ∣ ___.p
Verbalizer: yes/maybe/no

• Pattern : “h?" ∣ ___.“p"
Verbalizer: yes/maybe/no

A.1.3 RTE (Dagan et al., 2005)
This is a textual entailment task similar to CB, ex-
cept that we have just two labels for classification,
entailment and not entailment. We map these two
labels to yes and no respectively in the PVPs.

• Pattern : h? ∣ ___,p

Verbalizer: yes/no

• Pattern : “h"? ∣ ___,“p"
Verbalizer: yes/no

• Pattern : h? ∣ ___.p
Verbalizer: yes/no

• Pattern : “h?" ∣ ___.“p"
Verbalizer: yes/no

A.1.4 COPA (Roemmele et al., 2011)
Given a premise p, we need to find which of the
options c1 or c2 is the responsible cause/effect for
this task. For effect examples:

• Pattern : “c1" or “c2”? p, so ___.
Verbalizer: c1/c2

• Pattern : c1 or c2? p, so ___.
Verbalizer: c1/c2

For cause examples:

https://openreview.net/forum?id=cO1IH43yUF
https://openreview.net/forum?id=cO1IH43yUF
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• Pattern : “c1" or “c2”? p, because ___.
Verbalizer: c1/c2

• Pattern : c1 or c2? p, because ___.
Verbalizer: c1/c2

A.1.5 WiC (Pilehvar and Camacho-Collados,
2019)

In this task, we are given two sentences s1 and s2
and we need to identify if a word w occurs in the
same sense in both sentences.

• Pattern :
“s1" / “s2" Similar sense of “w"? ___ .

Verbalizer: yes/no

• Pattern :
s1 s2 Does w have the same meaning in both
sentences?_.

Verbalizer: yes/no

• Pattern : w. Sense (1) (a) “s1" (_ ) “s2"
Verbalizer: b/2

A.1.6 WSC (Levesque et al., 2012)
Here, we are given a sentence s that contains some
nouns and pronouns. We are tasked with finding
the correct noun that a specific pronoun p refers to.
Within the FewGLUE dataset, we are provided with
the only positive examples and hence our verbalizer
contains just the correct noun phrase.

• Pattern : s The pronoun ‘*p*’ refers to ___.
Verbalizer: correct noun

• Pattern :
s In the previous sentence, the pronoun ‘*p*’
refers to __.

Verbalizer: correct noun

• Pattern :
s In the passage above, what does the pro-
noun ‘*p*’ refer to? Answer: __.

Verbalizer: correct noun

A.1.7 MultiRC (Khashabi et al., 2018)
In this task, we are given a passage pand multiple
questions q. We are tasked with finding the right
answer from a list of candidate answers e. Here,
we pose it as a binary classification task where we
predict yes if the e answers q with context p, else
no.

• Pattern : p. Question: q? Is it e? ___.
Verbalizer: yes/no

• Pattern :
p. Question: q? Is the correct answer “e"?
___.

Verbalizer: yes/no

• Pattern :
p. Based on the previous passage, q? Is “e"
a correct answer? __.

Verbalizer: yes/no

A.1.8 ReCoRD (Zhang et al., 2018)
For this task, given a passage p and cloze question
q, we are supposed to find the right replacement for
a ‘@placeholder’ token in the question. Since
the task itself is already framed in a cloze-style
format, we merely concatenate the passage with
the cloze question to form the input to the language
model.

A.2 Results on Individual Patterns

We train the sPET and ADAPET models using the
same experimental setup mentioned in Section 4
and report results across all patterns for all datasets
on the validation dataset of SuperGLUE. Note that
the numbers in Table 1 contains the best numbers
from this table for the dev results. Our results can
be found in Table 4. Overall, ADAPET outperforms
sPET on 25 out of 29 patterns across datasets.

B (More) Experiment Details

B.1 Decoupled Label Objective

All our experiments followed the same setup as PET

(Schick and Schütze, 2021a). We use a random
seed of 42, maximum text length of 256 4, AdamW
optimizer, learning rate of 1e−5, weight decay of
1e
−2, and linear decay scheduler with a warmup

over the first 10% of batches.

B.2 Label Conditioning Objective

For all datasets, we mask out up to 10.5% of tokens
in the text. For COPA, because the pattern contains
both the correct and incorrect choice, we use a
different pattern where we only feed in one choice
for the label conditioning objective.

For the cause examples:

4Note: for MultiRC and ReCoRD we use 512 tokens as
per (Schick and Schütze, 2021b).
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Pattern/
Model 1 2 3 4 5 6

BoolQ
Acc.

sPET 75.8 76.9 ♦ 74.6 76.0 76.3 68.4
ADAPET 80.3 ♣♦ 78.6 ♣ 80.0 ♣ 78.1 ♣ 78.0 ♣ 79.9 ♣

CB
Acc./F1

sPET 75/72.8 87.5/85.4 ♦ 83.9/68.9 85.7/82.3 - -
ADAPET 89.3/81.4 ♣ 89.3/86.8 ♣♦ 89.3/85.2 ♣ 89.3/86.8 ♣ - -

COPA
Acc.

sPET 89 ♦ 85 ♣ - - - -
ADAPET 89 ♦ 77 - - - -

MultiRC
F1a/EM

sPET 30.6/73.7 29.9/73.2 19.1/65 30.8/74.6 ♦ 15/65.2 23.1/69.6
ADAPET 35.8/79.1 ♣ 34.7/78.3 ♣ 39.2/80.1 ♣♦ 35.7/78.2 ♣ 35.5/78.9 ♣ 31.5/76.8 ♣

RTE
Acc.

sPET 56 53.8 59.9 67.1 ♦ - -
ADAPET 76.2 ♣ 75.1 ♣ 74.4 ♣ 76.5 ♣♦ - -

WiC
Acc.

sPET 49.7 ♣♦ 47.5 49.7 - - -
ADAPET 49.4 52.4 ♣ 54.5 ♣♦ - - -

WSC
Acc.

sPET 82.7 ♣♦ 79.8 81.7 ♣ - - -
ADAPET 81.7 ♦ 79.8 79.8 - - -

ReCoRD
Acc./F1

sPET 85.0/91.9 ♦ - - - - -
ADAPET 85.4/92.1 ♣♦ - - - - -

Table 4: Performance of sPET and ADAPET models on the validation set of SuperGLUE for different patterns after
training for 1000 batches. The patterns we use are the same as PET (Schick and Schütze, 2021b). Note that Table
1 uses the best pattern (♦) results from this table for each model to report validation set scores.♣ = BEST MODEL
FOR EACH PATTERN

Pattern/
Model 1 2 3 4 5 6

BoolQ
Acc.

sPET 77.5 77.1 73.9 75.6 74.2 66.8
ADAPET 79.4 ♣ 78.3 ♣ 78.7 ♣ 77.7 ♣ 78.2 ♣ 76.8 ♣

CB
Acc./F1

sPET 75/72.8 85.7/83.5 83.9/68.9 85.7/82.3 - -
ADAPET 91.1/88.1 ♣ 87.5/85.5 ♣ 87.5/78.7 ♣ 89.3/85 ♣ - -

COPA
Acc.

sPET 90 ♣ 87 - - - -
ADAPET 73 89 ♣ - - - -

MultiRC
F1a/EM

sPET 29.9/72.8 30.2/73.3 23.6/69.0 27.4/72.8 16.1/65.7 23.9/70.3
ADAPET 36.4/79.4 ♣ 36.0/78.6 ♣ 38.1/79.0 ♣ 34.6/77.9 ♣ 33.2/77.8 ♣ 31.4/75.1 ♣

RTE
Acc.

sPET 57 54.5 56.7 71.7 - -
ADAPET 74.7♣ 69.7 ♣ 75.1 ♣ 73.6 ♣ - -

WiC
Acc.

sPET 49.8 47.8 49.5 - - -
ADAPET 51.1 ♣ 49.5 ♣ 50.8 ♣ - - -

WSC
Acc.

sPET 82.7 ♣ 78.8 ♣ 79.8 - - -
ADAPET 76.9 74 79.8 - - -

ReCoRD
Acc./F1

sPET 82.3/91 ♣ - - - - -
ADAPET 77.4/87.2 - - - - -

Table 5: Performance of sPET and ADAPET models on the validation set of SuperGLUE for different patterns after
training for 250 batches. The patterns we use are the same as PET (Schick and Schütze, 2021b). ♣ = BEST MODEL
FOR EACH PATTERN
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• Pattern : Because p, ___.
Verbalizer: c1/c2

For the effect examples:

• Pattern : Because ___ , p.
Verbalizer: c1/c2

C Ablations

C.1 Duration of Training

We trained ADAPET for 1k batches and compared to
PET/iPET which were trained for 250 batches. In
this section, we compare sPET and ADAPET trained
for 250 and 1k batches in Table 6. Note that train-
ing for 1k batches is not guaranteed to outperform
training for 250 batches, even if we checkpoint ev-
ery 250 batches, since the learning rate scheduler
will have to accommodate for a different number
of total batches. Overall, ADAPET gets a boost by
training longer, especially on ReCoRD, while sPET

peaks at 250 batches.

C.2 Multi-Task Multi-Pattern Training

We also tried training the model with multiple
patterns at once, as compared to ensembling and
distilling them. We formulated this as a multi-
task training problem, where different patterns are
viewed as different tasks, and the model would
sample a pattern to train from each batch. We com-
pare sPET, ADAPET, and ADAPET without the label
conditioning objective. The results are shown in
Table 7. In general, multi-task multi-pattern train-
ing hurts performance for ADAPET, is mixed on
sPET, and is beneficial for ADAPET with the label
conditioning objective.

C.3 Replacement Token Detection (RTD)

In our formulation, the decoupled label objective
can be viewed as a binary classifier that seeks to as-
sign high probability to the correct label token, and
low probability to the incorrect label token. In real-
ity though, the model has a softmax classifier head
on top that is converted into a one-vs-all classifier.

Another way to achieve the same objective
would be to use a binary classifier head on top.
Rather than feeding in the “[MASK]" token, we
would feed in either the correct label token or the
incorrect label token, and the model must distin-
guish whether these tokens make sense in context
or not. This objective would be very similar to the
RTD objective for ELECTRA (Clark et al., 2020).

Inference would be slower since the number of for-
ward passes would scale up by the number of labels.
For multi token labels though, because there is not
need to condition on other label tokens, the number
of forward passes would scale down by the number
of tokens in the labels.

Table 8 shows the results of using the RTD ob-
jective with a binary classifier. Overall, the RTD
objective seems to perform worse than the decou-
pled label objective. There are several reasons why
using a RTD head might perform worse. First, the
RTD head would have ∣V ∣ times fewer parameters,
but relative to the whole model, the change in num-
ber of parameters is not substantial. Second, the
softmax classifier has been pretrained, and contains
lots of information, which is now lost when we dis-
card the softmax classifier and randomly initialize
a binary classifier head from scratch.

We also experiment with using a binary classi-
fier head initialized with ELECTRA, but the results
were the same and so we omit them from the ta-
ble. We note that ALBERT (xxlarge-v2) is a much
better performing model than BERT, and ELEC-
TRA is more comparable to BERT than ALBERT
(xxlarge-v2).

C.4 Label Conditioning with Important
Words Masked Out

For the label conditioning component, we ran-
domly mask out tokens in the input text, and the
model tries to predict the original token when con-
ditioned on the correct label, and not predict the
original token when conditioned on an incorrect
label. This makes sense if the masked out token is
an influential token that affects the label, like “Yes"
in Figure 2a, but makes less sense if the masked
out token is an unimportant word like “the". We
experiment with only masking out important words,
using TFIDF as an approximation of how important
a word is. The results are shown in table 9. Overall,
using TFIDF as an approximation for masking out
important words hurts performance.

C.5 Ensembles

PET/iPET ensemble and distill with unlabeled data.
However, it is not clear how beneficial unlabeled
data is for ensembling, so we show results of en-
sembling models trained only on labeled data with
different patterns and different seeds. For ensem-
bling, we average the logits across the different
models.
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BoolQ CB COPA RTE WiC WSC MultiRC ReCoRD Avg
Method Acc. Acc./F1 Acc. Acc. Acc. Acc. EM/F1a Acc./F1 -

de
v

sPET (LAB; SINGLE; 250 BATCHES) 77.5 85.7 / 83.5 90.0 71.7 49.8 82.7 30.2 / 73.3 82.3 / 91.0 74.3
sPET (LAB; SINGLE; 1K BATCHES) 76.9 87.5 / 85.4 89.0 67.1 49.7 82.7 31.2 / 74.6 85.0 / 91.9 74.2
ADAPET (LAB; SINGLE; 250 BATCHES) 79.4 91.1 / 88.1 89.0 75.1 51.1 79.8 38.1 / 79.0 77.4 / 87.2 75.6
ADAPET (LAB; SINGLE; 1K BATCHES) 80.3 89.3 / 86.8 89.0 76.5 54.4 81.7 39.2 / 80.1 85.4 / 92.1 77.3

te
st ADAPET (LAB; SINGLE; 250 BATCHES) 78.4 93.6 / 86.4 86.0 75.0 49.6 90.4 37.3 / 75.4 78.5 / 79.5 75.6

ADAPET (LAB; SINGLE; 1K BATCHES) 80.0 92.0 / 82.3 85.4 75.0 53.5 85.6 35.7 / 76.2 85.5 / 86.1 76.0

Table 6: Performance of the models trained with 250 batches vs 1k batches

BoolQ CB RTE MultiRC
Method Acc. Acc./F1 Acc. EM / F1a
sPET 77.5 85.7/83.5 71.7 30.2 / 73.3
sPET (MTMP) 77.3 87.5/78.7 74 30.1 / 74.3
ADAPET 79.4 91.1 / 88.1 75.1 38.1 / 79.0
ADAPET (MTMP) 78.9 89.3/86.8 73.3 35.9/78.3
ADAPET W/O LC 77.8 78.6 / 54.9 71.5 32.5 / 74.8
ADAPET W/O LC (MTMP) 79.9 89.3/83.6 77.3 27.7/72.6

Table 7: Comparison of sPET and ADAPET with Multi-
Pattern Multi-Task training MPMT = MULTI PATTERN
MULTI TASK. Best numbers have been bolded. (LC=
LABEL CONDITIONING)

BoolQ CB RTE MultiRC
Method Acc. Acc./F1 Acc. EM / F1a
ADAPET W/O LC 77.8 78.6 / 54.9 71.5 32.5 / 74.8
ADAPET RTD 69.8 82.1 / 80.2 57.8 21.7 / 72.2

Table 8: Comparison of decoupled label objective and
with the replacement token detection (RTD) objective.
Best numbers have been bolded. (LC= LABEL CON-
DITIONING)

BoolQ CB RTE MultiRC
Method Acc. Acc./F1 Acc. EM / F1a
ADAPET 79.4 91.1 / 88.1 74.7 36.4 / 79.4
ADAPET TFIDF 76.1 76.8/61.8 72.9 31.1 / 77.1

Table 9: Comparison of ADAPET with random mask-
ing and masking tokens based on TFIDF. Best numbers
have been bolded. (LC= LABEL CONDITIONING)

C.5.1 Across Patterns
Table 10 shows our results ensembling across pat-
terns. In general, ensembling across patterns pro-
vides mixed results for ADAPET and sPET. This
corroborates the finding in Gao et al. (2021) where
sometimes the best performing model performs
better than ensembling across patterns.

C.5.2 Across Seeds
Table 11 shows our results ensembling across seeds.
We fix the pattern (pattern 1) and train with differ-
ent seeds. For this experiment, we ensemble across
models for seeds 41, 42, 43. From our results in
Table 11, we find that ensembling patterns across
seeds provides mixed results. Hence, we do not

apply ensembling for our final results.

BoolQ CB RTE MultiRC
Method Acc. Acc./F1 Acc. EM / F1a
ADAPET 79.4 91.1 / 88.1 75.1 38.1/ 79.0
ADAPET (ENS; PAT) 79.5 89.3/86.8 75.1 38.2/79.2
sPET 77.5 85.7/83.5 71.7 30.2 / 73.3
sPET (ENS; PAT) 78.2 71.4 / 77.8 74.3 30.7 / 73.8

Table 10: Ensemble of sPET and ADAPET across pat-
terns. We use the best pattern (instead of pattern
1) numbers for ADAPET and sPET here. (ENS= EN-
SEMBLE) (PAT= PATTERN) Best numbers have been
bolded.

BoolQ CB RTE MultiRC
Method Acc. Acc./F1 Acc. EM / F1a
ADAPET 79.4 91.1 / 88.1 75.1 38.1/ 79.0
ADAPET (ENS; SEED) 79 91.1 / 88.1 69 35.9 / 79.3
sPET 77.5 75.0 / 72.8 57.0 26.5 / 73.2
sPET (ENS; SEED) 77.8 78.6 / 64.1 53.1 30.5 / 73.8

Table 11: Ensemble of sPET and ADAPET across seeds.
Best numbers have been bolded.

C.6 Masking Ratio

We experiment with several different masking
schemes, where we mask out a fixed percentage
(FIXED), or up to a fixed percentage (VARIABLE)
in Table 12. If x is the number of tokens masked
out in FIXED masking, we mask out between 1 and
x tokens for VARIABLE masking. For the ablation,
we tested with multiples of 1.5 for the masking
ratio (in addition to 10%), to match the 15% ra-
tio of ALBERT pre-training. From our results in
Table 12, we find that 10.5% VARIABLE mask ra-
tio provided the best trade-off between scores for
all models. Hence, we choose that for our final
experiments in the main paper.

C.7 What if we had unlabeled data?

One of the key motivations of our work is to elim-
inate the need for unlabeled data during few-shot
training on language understanding tasks. In this
section, we push that limitation of prior methods
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BoolQ CB RTE MultiRC
Masking Ratio Acc. Acc./F1 Acc. EM / F1a
15% (FIXED) 80.7 91.1/87.7 70.8 35.8/79.1
10.5% (FIXED) 80.1 89.3/85.0 72.9 35.8/79.1
10% (FIXED) 79.9 81.1/87.5 69.0 33.9/78.4
7.5% (FIXED) 78.3 85.7/79.8 74 36.9/78.8
15% (VARIABLE) 78.9 87.5/80.0 75.1 35.9/78.7
10.5% (VARIABLE) 79.4 91.1/88.1 74.7 36.4/79.4
10% (VARIABLE) 80.0 89.3/86.8 71.1 33.9/78.4
7.5% (VARIABLE) 79.7 89.3/86.8 70.8 36.9/78.8

Table 12: Results with different masking strategies for
label-conditioned MLM in ADAPET.

aside and seek to know “if" such unlabeled data
were available, can ADAPET leverage unlabeled data
to improve performance. Instead of adopting the
multi-stage iterative approach in iPET, we experi-
ment with pre-training the model on the unlabeled
data before fine-tuning on the labeled dataset. This
has been shown to improve performance on text-
classification tasks previously (Gururangan et al.,
2020). Specifically, we experiment with Task Adap-
tive Pre-training (TAPT) (Gururangan et al., 2020)
and pre-train our base LM for 2500 batches on
the unlabeled data of FewGLUE. Following that,
we fine-tune the models using ADAPET, sPET and
regular (CLS-head) fine-tuning on the labeled set.
The results can be found in Table 13. For regu-
lar fine-tuning, TAPT improves performance on
three out of four datasets. However, for sPET

and ADAPET, TAPT hurts performance significantly
for all datasets. We speculate this is because dur-
ing TAPT, the model never sees the pattern, and
so it hurts pattern-based models. This leaves the
question of how to improve pattern-based few-shot
methods, like ADAPET, when unlabeled data is avail-
able as an open challenge.

BoolQ CB RTE MultiRC
Method Acc. Acc./F1 Acc. EM / F1a
ADAPET 79.4 91.1 / 88.1 74.7 36.4 / 79.4
TAPT + ADAPET 60.9 66.1/46.1 47.7 9.3 / 60.3
sPET 77.5 85.7 / 83.5 71.7 30.2 / 77.3
TAPT + sPET 62.9 69.6/58.9 44.8 5.5 / 58.1
ALBERT 55.7 68.6/49.1 50.5 3.6/49.8
TAPT + ALBERT 60.6 69.6/58.9 47.7 6.3/54.1

Table 13: Results of TAPT pre-training with various
models. Best numbers have been bolded.


