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Abstract

Knowledge distillation (KD) has been proved
effective for compressing large-scale pre-
trained language models. However, existing
methods conduct KD statically, e.g., the stu-
dent model aligns its output distribution to that
of a selected teacher model on the pre-defined
training dataset. In this paper, we explore
whether a dynamic knowledge distillation that
empowers the student to adjust the learning
procedure according to its competency, regard-
ing the student performance and learning effi-
ciency. We explore the dynamical adjustments
on three aspects: teacher model adoption, data
selection, and KD objective adaptation. Exper-
imental results show that (1) proper selection
of teacher model can boost the performance
of student model; (2) conducting KD with
10% informative instances achieves compara-
ble performance while greatly accelerates the
training; (3) the student performance can be
boosted by adjusting the supervision contribu-
tion of different alignment objective. We find
dynamic knowledge distillation is promising
and provide discussions on potential future di-
rections towards more efficient KD methods.1

1 Introduction

Knowledge distillation (KD) (Hinton et al., 2015)
aims to transfer the knowledge from a large teacher
model to a small student model. It has been widely
used (Sanh et al., 2019; Jiao et al., 2020; Sun et al.,
2019) to compress large-scale pre-trained language
models (PLMs) like BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019) in recent years.
By knowledge distillation, we can obtain a much
smaller model with comparable performance, while
greatly reduce the memory usage and accelerate
the model inference.

Although simple and effective, existing meth-
ods usually conduct the KD learning procedure

1Our code is available at https://github.com/
lancopku/DynamicKD

statically, e.g., the student model aligns its out-
put probability distribution to that of a selected
teacher model on the entire pre-defined corpus. In
other words, the following three aspects of KD are
specified in advance and remain unchanged during
the learning procedure: (1) the teacher model to
learn from (learning target); (2) the data used to
query the teacher (learning material); (3) the ob-
jective functions and the corresponding weights
(learning method). However, as the student com-
petency evolves during the training stage, it is par-
ticularly unreasonable to pre-define these learning
settings and keep them unchanged. Conducting
KD statically may lead to (1) unqualified learning
from a too large teacher, (2) repetitive learning on
instances that the student has mastered, and (3)
sub-optimal learning on alignments that are unnec-
essary. This motivates us to explore an interesting
problem: whether a dynamic KD framework con-
sidering the student competency evolution during
training can bring benefits, regarding the student
performance and learning efficiency?

In this paper, we propose a dynamic knowledge
distillation (Dynamic KD) framework, which at-
tempts to empower the student to adjust the learn-
ing procedure according to its competency. Specifi-
cally, inspired by the success of active learning (Set-
tles, 2009), we take the prediction uncertainty, e.g.,
the entropy of the predicted classification probabil-
ity distribution, as a proxy of the student compe-
tency. We strive to answer the following research
questions: (RQ1) Which teacher is proper to learn
as the student evolves? (RQ2) Which data are ac-
tually useful for student models in the whole KD
stage? (RQ3) Does the optimal learning objec-
tive change in the KD process? In particular, we
first explore the impact of the teacher size to dy-
namic knowledge distillation. Second, we explore
whether dynamically choosing instances that the
student is uncertain for KD can lead to a better per-
formance and training efficiency trade-off. Third,

https://github.com/lancopku/DynamicKD
https://github.com/lancopku/DynamicKD
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Figure 1: The three aspects of dynamic knowledge distillation explored in this paper. Best viewed in color.

we explore whether the dynamic adjustment of the
supervision from alignment of prediction probabil-
ity distributions and the alignment of intermediate
representations in the whole KD stage can improve
the performance.

Our experimental results show that: (1) A larger
teacher model with more layers may raise a worse
student. We show that selecting the proper teacher
model according to the competency of the student
can improve the performance. (2) We can achieve
comparable performance using only 10% informa-
tive instances selected according to the student pre-
diction uncertainty. These instances also evolve
during the training as the student becomes stronger.
(3) We can boost the student performance by dy-
namically adjusting the supervision from different
alignment objectives of the teacher model.

Our observations demonstrate the limitations of
the current static KD framework. The proposed
uncertainty-based dynamic KD framework only
makes the very first attempt, and we are hoping this
paper can motivate more future research towards
more efficient and adaptive KD methods.

2 Background: Knowledge Distillation

Given a student model S and a teacher model T ,
knowledge distillation aims to train the student
model by aligning the outputs of the student model
to that of the teacher. For example, Hinton et al.
(2015) utilize the teacher model outputs as soft
targets for the student to learn. We denote S(x)
and T (x) as the output logit vector of the stu-
dent and the teacher for input x, respectively. The
KD can be conducted by minimizing the Kullback-
Leibler (KL) divergence distance between the stu-
dent and teacher prediction:

LKL = KL (σ (S (x) /τ) ||σ (T (x) /τ)) , (1)

where σ(·) denotes the softmax function and τ is a
temperature hyper-parameter. The student parame-

ters are updated according to the KD loss and the
original classification loss, i.e., the cross-entropy
over the ground-truth label y:

LCE = −y log σ (S (x)) , (2)

L = (1− λKL)LCE + λKLLKL, (3)

where λKL is the hyper-parameter controlling the
weight of knowledge distillation objective. Recent
explorations also find that introducing KD objec-
tives of alignments between the intermediate repre-
sentations (Romero et al., 2015; Sun et al., 2019)
and attention map (Jiao et al., 2020; Wang et al.,
2020) is helpful. Note that conventional KD frame-
work is static, i.e., the teacher model is selected
before KD and the training is conducted on all train-
ing instances indiscriminately according to the pre-
defined objective and the corresponding weights of
different objectives. However, it is unreasonable to
conduct the KD learning procedure statically as the
student model evolves during the training. We are
curious whether adaptive adjusting the settings on
teacher adoption, dataset selection and supervision
adjustment can bring benefits regarding student per-
formance and learning efficiency, motivating us to
explore a dynamic KD framework.

3 Dynamic Knowledge Distillation

In this section, we introduce the dynamic knowl-
edge distillation. The core idea behind is to em-
power the student to adjust the learning procedure
according to its current state, and we investigate
the three aspects illustrated in Figure 1.

3.1 Dynamic Teacher Adoption

The teacher model plays a vital role in KD, as it pro-
vides the student soft-targets for helping the student
learn the relation between different classes (Hinton
et al., 2015). However, there are few investigations
regarding how to select a proper teacher for the
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Method RTE IMDB CoLA Avg.

BERTBASE 67.8 89.1 54.2 70.4
BERTLARGE 72.6 90.4 60.1 74.4

No KD 63.7 86.3 39.0 63.0
KD w/ BERTBASE 64.9 86.9 39.4 63.7
KD w/ BERTLARGE 64.5 86.5 38.2 63.1
KD w/ Ensemble 64.9 86.7 39.9 63.8

Uncertainty-Hard 66.9∗ 86.3 42.7∗ 65.3
Uncertainty-Soft 66.4∗ 87.1∗ 41.0 64.8

Table 1: We find that bigger teacher with better perfor-
mance raises a worse student model. Results are aver-
age of 3 seeds on the validation set. ∗ denotes statisti-
cally significant improvement over the best performing
baseline with p < 0.05.

student in KD for PLMs during the training dynam-
ically. In the KD of PLMs, it is usually all teacher
models are with the same model architecture, i.e.,
huge Transformer (Vaswani et al., 2017) model.
Thus, the most informative factor of teacher mod-
els is their model size, e.g., the layer number of the
teacher model and the corresponding hidden size.
This motivates us to take a first step to explore the
impact of model size.

3.1.1 Bigger Teacher Not Always Raises
Better Student

Specifically, we are curious about whether learning
from a bigger PLM with better performance can
lead to a better distilled student model. We con-
duct probing experiments to distill a 6-layer student
BERT model from BERTBASE with 12 layers, and
BERTLARGE with 24 layers, respectively. We con-
ducts the experiment on two datasets, RTE (Ben-
tivogli et al., 2009) and CoLA (Warstadt et al.,
2019), where two teacher models exhibit clear per-
formance gap, and a sentiment classification bench-
mark IMDB (Maas et al., 2011). Detailed experi-
mental setup can be found in Appendix A.

As shown in Table 1, we surprisingly find that
while the BERTLARGE teacher clearly outperforms
the small BERTBASE teacher model, the student
model distilled by the BERTBASE teacher achieves
better performance on all three datasets. This phe-
nomenon is counter-intuitive as a larger teacher is
supposed to provide better supervision signal for
the student model. We think that there are two pos-
sible factors regarding the size of teacher model
that leading to the deteriorated performance:

(1) The predicted logits of the teacher model be-
come less soft as the teacher model becomes larger
and more confident about its prediction (Guo et al.,
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Figure 2: Performance gain of distilled student model
with various layer sizes. The teacher model is
BERTBASE with 12 layers.

2017; Desai and Durrett, 2020), which decreases
the effect of knowledge transfer via the soft targets.
We find that a smaller τ also leads to a decreased
performance of the student model, indicating the
the less-softened teacher prediction will decrease
the student performance.2

(2) The capacity gap between the teacher and
student model increases as the teacher becomes
larger. The competency of the student model can
not match that of the large teacher model, which
weakens the performance of KD.

To explore the combined influence of these fac-
tors, we distill student models with different layers
and plot the performance gain compared to directly
training the student model without distillation in
Figure 2. It can be found that by decreasing the stu-
dent size, the better supervision from teacher model
boosts the performance, while the two counterac-
tive factors dominate as the gap becomes much
larger, decreasing the performance gain. We notice
that this phenomenon is also observed by Mirzadeh
et al. (2020) in computer vision tasks using convo-
lutional networks, showing that it is a widespread
issue and needs more in-depth investigations. Note
that BERTBASE and BERTLARGE also differs from
the number of hidden size, the experiments regard-
ing the hidden size, where the phenomenon also
exists and corresponding results can be found in
Appendix C.

3.1.2 Uncertainty-based Teacher Adoption
Our preliminary observations demonstrate that se-
lecting a proper teacher model for KD is significant
for the student performance. While the capacity
gap is an inherent problem once the teacher and the
student are set, we are curious about whether dy-
namically querying the proper teacher according to
the student competency during training can make

2Refer to Appendix B for details.
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the full use of teacher models. Without loss of gen-
erality, we conduct KD to train a student model
from two teacher models with different numbers
of Transformer layers. We assume that during the
initial training stage, the student can rely more on
the small teacher model, while turns to the large
teacher for more accurate supervision when it be-
comes stronger. Specifically, we propose to utilize
the student prediction uncertainty as a proxy of the
competency, inspired by the successful applications
in active learning (Settles, 2009), and design two
uncertain-based teacher adoption strategies:
Hard Selection: The instances in one batch are
sorted according to the student prediction uncer-
tainty, i.e., the entropy of predicted class distribu-
tion. Then the instances are evenly divided into
instances that the student most uncertain about and
instances that model is most confident about. For
the uncertain part, the small teacher is queried for
supervision signals, while the large teacher pro-
vides the soft-label for the instances that the student
is confident about.
Soft Selection: The corresponding KD loss
weights from two teachers are adjusted softly at
instance-level. Formally, given two teacher model
T1 (BERTBASE, in our case) and T2 (BERTLARGE),
we can re-write the KD objective in the multiple
teacher setting as:

LKD = w1LT1
KL + w2LT2

KL (4)

where LTKL denotes matching loss of the output
logits of the student model and the teacher model t.
The w1 and w2 controls the relative contribution of
the supervisions from the two teachers. We adap-
tively down-weight the supervision from the large
teacher when the student are uncertain about the
training instances. The prediction uncertainty is
adopted as a measurement of the student compe-
tency for instance x:

ux = Entropy (σ (S (x))) (5)

where σ is a normalization function, e.g, softmax
function for mapping the logit vector to probabil-
ity distribution. The w1 and w2 are adjusted as
follows:

w1 =
ux
U
, w2 = 1− ux

U
(6)

where U is a normalization factor which re-scales
the weight to [0, 1]. In this way, the student will
pay more attention to the small teacher when it is

uncertain about the current instance, while relies
on the large teacher when it is confident about its
prediction.

3.1.3 Experiments
Settings We conduct experiments to distill
a 6-layer student model from BERTBASE and
BERTLARGE, on RTE, CoLA and IMDB, follow-
ing settings of probing analysis in Section 3.1.1.

Results The results of the proposed selection
strategies are shown in Table 1. We observe that
the hard selection strategy achieves an overall 65.3
accuracy which outperforms directly learning from
the ensemble of two teacher models. This demon-
strates that the proposed strategy is effective by
selecting the proper teacher model to learn. The
soft selection strategy also outperforms the base-
line while falls little behind with the hard version.
We attribute it to that the provided supervisions
of two teachers are of different softness, thus may
confuse the student model.

3.2 Dynamic Data Selection
The second research question we want to explore
is which data will be more beneficial for the perfor-
mance of the student. As the distillation proceeds,
the student is becoming stronger, thus the repet-
itive learning on the instances those the student
has mastered on can be eliminated. If there are
such instances that are vital for the learning of the
student model, can we only conduct KD on these
instances, for improving the learning efficiency?
Besides, do the vital instances remain static or also
evolve with the student model? These questions
motivate us to explore the effect of dynamically
selecting instances.

3.2.1 Uncertainty-based Data Selection
We propose to actively select informative instances
according to student prediction uncertainty, in-
spired by the successful practice of active learn-
ing (Settles, 2009). Formally, given N instances
in one batch, for each instance x, the correspond-
ing output class probability distribution over the
class label y of the student model is P (y | x) =
σ (S (x)). We compute an uncertainty score ux
for x using the follow strategies with negligible
computational overhead:
Entropy (Settles, 2009), which measures the un-
certainty of the student prediction distribution:

ux = −
∑
y

P (y | x) logP (y | x) . (7)
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Method #FLOPs SST-5 IMDB MRPC MNLI-m / mm

BERTBASE (Teacher) - 52.0 89.1 86.8 84.0 / 84.4
Vanilla KD 45.1B 47.4 86.8 80.2 81.7 / 82.0

Random 22.6B 46.8 86.4 79.7 81.4 / 81.6
Uncertainty-Entropy 28.2B 46.7 86.8 79.4 81.5 / 82.0
Uncertainty-Margin 28.2B 46.6 86.8 79.4 81.4 / 81.9
Uncertainty-LC 28.2B 46.5 86.8 79.4 81.4 / 81.9

∆ - - 0.6 0.0 - 0.5 - 0.2 / 0.0

Table 2: Dynamic data selection results with r set to
0.5. Results are averaged of 3 seeds on the validation
set. ∆ denotes the minimal performance degradation of
different selection strategies compares to vanilla KD.

Dataset # Train # Aug Train # Dev # Test # Class

SST-5 8.8k 176k 1.1k 2.2k 5
IMDB 20k 400k 5k 25k 2
MNLI 393k 786,0k 20k 20k 3
MRPC 3.7k 74k 0.4k 1.7k 2
RTE 2.5k 50k 0.3k 3k 2
CoLA 8.5k 170k 1k 1k 2

Table 3: Statistics of datasets. # Aug Train denotes
the number of the augmented training dataset following
Jiao et al. (2020).

Margin, which is computed as the margin between
the first and second most probable class y∗1 and y∗2:

ux = P (y∗1 | x)− P (y∗2 | x) . (8)

Least-Confidence (LC), which indicates how un-
certain the model about the predicted class ŷ =
arg maxy P (y | x):

ux = 1− P (ŷ | x) (9)

We rank the instances in a batch according to its
prediction uncertainty, and only choose the topN×
r instances to query the teacher model, where r ∈
(0, 1] is the selection ratio controlling the number
to query. Note that in binary classification tasks
like IMDB, the selected subsets using the above
strategies are identical. We also design a Random
strategy that selects N × r instances randomly, to
serve as a baseline for evaluating the effectiveness
of selection strategies.

3.2.2 Experiments
Settings We conduct the investigation experi-
ments on two sentiment classification datasets
IMDB (Maas et al., 2011) and SST-5 (Socher et al.,
2013), and natural language inference tasks in-
cluding MRPC (Dolan and Brockett, 2005) and
MNLI (Williams et al., 2018). The statistics of
dataset and the implementation details can be found

in Table 3 and D, respectively. We report accuracy
as the performance measurement for all the evalu-
ated tasks.

Besides, we also provide the corresponding com-
putational FLOPs for comparing the learning effi-
ciency. In more detail, we divide the computational
cost C of KD tinto three parts: student forward Fs,
teacher forward Ft and student backward Bs for
updating parameters. Note that Fs ≈ Bs � Ft,
as the teacher model is usually much larger than
the student model. By actively learning only from
N × r instances that the student are most uncertain
about, the cost is reduced to:

C ′ = N ×Fs +N × r×Bs +N × r×Ft. (10)

For example, the number of computational FLOPs
of a 6-layer student BERT model is 11.3B
while that of a 12-layer BERT teacher model is
22.5B (Jiao et al., 2020). When r is set to 0.1, the
total KD cost is reduced from 45.1B to 14.7B.

Results with Original Dataset The results when
r set to 0.5 are listed in Table 2. Overall, it can be
found that selecting the instances only lead negligi-
ble degradation of the student performance, com-
pared to that of Vanilla KD, showing the effec-
tiveness of the uncertainty-based strategies. Inter-
estingly, the random strategy perform closely to
the uncertainty-based strategies, which we attribute
to that the underlying informative data space can
also be covered by random selected instances. Be-
sides, we notice that performance drop is smaller
on the tasks with larger training data size. For
example, selecting informative instances with pre-
diction entropy leads to 0.2 accuracy drop on the
MNLI dataset consisting 393k training instances,
while causes 0.8 performance drop on MRPC with
3.7k instances. A possible reason is that for the
tiny dataset, the underlying data distribution is not
well covered by the training data, therefore further
down-sampling the training data results in a larger
performance gap. To verify this, we turn to the
the setting where the original training dataset is
enriched with augmentation techniques.

Results with Augmented Dataset Following
TinyBERT (Jiao et al., 2020), we augment the train-
ing dataset 20 times with BERT mask language
prediction, as it has been prove effective for dis-
tilling a powerful student model. Our assumption
is that with the data augmentation technique, the
training set can sufficiently cover the possible data
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Method #FLOPs SST-5 IMDB MRPC MNLI-m / mm Avg. (↑) ∆ (↓)

BERTBASE (Teacher) - 53.7 88.8 87.5 83.9 / 83.4 79.5 -

TinyBERT† 24.9B - - 86.4 82.5 / 81.8 - -
TinyBERT 24.9B 51.4 87.6 86.2 82.6 / 82.0 78.0 0.0

Random 2.49B 51.1 87.0 83.3 80.8 / 80.5 76.5 1.5
Uncertainty-Entropy 4.65B 51.5 87.7 86.5 81.8 / 81.0 77.7 0.3
Uncertainty-Margin 4.65B 51.6 87.7 86.5 81.6 / 81.1 77.7 0.3
Uncertainty-LC 4.65B 51.2 87.7 86.5 81.4 / 80.8 77.5 0.5

Table 4: Test results when the selection ratio r = 0.1 for dynamic data selection on various tasks. #FLOPs denotes
the average computational cost of KD for each instance. † denotes results from Jiao et al. (2020).

5 10 20 40 80
Selection Ratio (%)

50.0

50.5

51.0

51.5

52.0

52.5

A
cc

ur
ac

y 
(%

)

Random
Margin
Entropy
LC

Figure 3: We plot the mean accuracy on the valida-
tion set of 3 seeds (± one standard deviation) under
different selection ratios of various strategies. Orange
dashed line denotes the performance of vanilla KD.

space, thus selecting the informative instances will
not lead to significant performance drop. Besides,
it is of great practical value to accelerate the KD
procedure via reducing the queries to teacher model
on the augmented dataset. For example, it costs
about $3, 709 for querying all the instances of the
augmented MNLI dataset as mentioned by Krishna
et al. (2019).3 By only querying a small portion
of instances to the teacher model, we can greatly
reduce economic cost and ease the possible environ-
mental side-effects (Strubell et al., 2019; Schwartz
et al., 2019; Xu et al., 2021) that may hinder the
deployments of PLMs on downstream tasks.

The results with TinyBERT-4L as the backbone
model and r = 0.1 are listed in Table 4. We can
observe that uncertainty-based selection strategy
can maintain the superior performance while sav-
ing the computational cost, e.g., the FLOPs is re-
duced from 24.9B to 4.65B with negligible aver-
age performance decrease. In tasks like SST-5
and IMDB, selecting 10% most informative in-
stances according to student prediction entropy can

3The cost is estimated according to Google Cloud
natural language API: https://cloud.google.com/
natural-language/pricing.

even outperform the original TinyBERT using the
whole dataset. Among these strategies, the least-
confidence strategy performs relatively poor, as it
only takes the maximum probability into consider-
ation while neglects the full output distribution.

Performance under Different Ratios We vary
the selection ratio r to check the results of different
strategies on the augmented SST-5 dataset. The
results are shown in Figure 3. Our observations
are: (1) There exists a trade-off between the per-
formance and the training costs, i.e., increasing the
selection ratio generally improves the performance
of student model, while results in bigger training
costs. (2) We can achieve the full performance
using about 20% training data. It indicates that
the training data support can be well covered with
about 20% data, thus learning from these instances
can sufficiently train the student model. It validates
our motivation to select informative instances for
reducing the repetitive learning caused by data re-
dundancy. (3) Selection strategies based on the
uncertainty of student prediction can make the bet-
ter use of limited query, performing better than
the random selection, especially when the query
number is low.

3.2.3 Analysis
We further conduct experiments on the augmented
SST-5 dataset to gain insights about the property
of selected instances and visualize the distribution
of selected instances for intuitive understanding.

Property of Selected Instances We plot the
teacher prediction entropy and the distance from
the selected instances to the corresponding category
center. From Figure 4 (left), we observe for hard
instances with high uncertainty that selected by the
student model, the teacher model also regards them
as difficult. It indicates that the instance difficulty
is an inherent property of data and uncertainty-

https://cloud.google.com/natural-language/pricing
https://cloud.google.com/natural-language/pricing
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Figure 5: The t-SNE visualization of instance repre-
sentations. Uncertainty-based strategies select the in-
stances close to the class boundary, which is useful for
the learning of the student model. Best viewed in color.

based criterion can discover these hard instances
from the whole dataset. Besides, the teacher’s en-
tropy of selected instances increases as the training
proceeds, showing that the selected instances also
evolve during the training as the student is becom-
ing stronger. The right part in Figure 4 demon-
strates that uncertainty-based selection will pick up
the instances that are far away from the category
center than the ones are randomly picked. These in-
stances are more informative for the student model
to learn the decision boundary of different classes.

Visualization of Selected Instances We further
visualize the distribution of instances in the fea-
ture space, i.e., the representation before the classi-
fier layer, using t-SNE (Maaten and Hinton, 2008)
and highlight the selected instances with the cross
marker. We compare the best performing strategy
margin and random selection on SST-5. As shown
in Figure 5, the instances randomly selected are
distributed uniformly in feature space. The mar-
gin strategy instead picks the instances close to the
classification boundary. The results demonstrate
that the uncertainty-based selection criterion can
help the student model pay more attention to the in-
stances that are vital for making correct predictions,

thus achieving a comparable performance with a
much lower computational cost.

In all, our analysis experiments show that the
uncertainty-based selection is effective for picking
instances that are close to the classification bound-
ary. Besides, the selected instances also evolve as
the student model becomes stronger. By learning
from these instances, the computational cost of KD
is greatly reduced with a negligible accuracy drop.

3.3 Dynamic Supervision Adjustment

We finally explore the question of the optimal learn-
ing objective functions. Previous studies have
shown that integrating the alignments on the in-
termediate representation (Romero et al., 2015;
Sanh et al., 2019; Sun et al., 2019) and attention
map (Jiao et al., 2020; Wang et al., 2020) between
the student and the teacher model can further boost
the performance. We are interested in whether the
dynamic adjustment of the supervision from differ-
ent alignment objectives can bring extra benefits.
As the first exploration, we only consider the com-
bination of the KL-divergence distance with the
teacher prediction and the hidden representation
alignments:

LKD = λKL ∗ LKL + λPT ∗ LPT (11)

where LPT is called PaTient loss, which measures
the alignment between the normalized internal rep-
resentations of the teacher and student model (Sun
et al., 2019):

LPT =
M∑
i=1

∥∥∥∥∥∥ hs
i

‖hs
i‖2
−

ht
Ipt(j)∥∥∥ht
Ipt(j)

∥∥∥
2

∥∥∥∥∥∥
2

2

(12)

where M is the number of student layer, Ipt(i)
denotes the corresponding alignment of the teacher
layer for the student i-th layer, hs

i and ht
i denote

representation of i-th layer of student and teacher
model, respectively.

3.3.1 Uncertainty-based Supervision
Adjustment

Different from previous studies which set the cor-
responding alignment objective weights via hyper-
parameter search and keep them unchanged during
the training, we propose to adjust the weights ac-
cording to the student prediction uncertainty for
each instance. The motivation behind is that we
assume it is unnecessary to force the student model
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Method SST-5 MRPC RTE Avg.

BERTBASE (Teacher) 52.0 86.8 67.8 68.9

Vanilla KD 47.4 80.2 64.9 64.2
BERT-PKD 46.6 80.8 65.1 64.2
Uncertainty 48.1 81.5∗ 66.4∗ 65.3

Table 5: Results of dynamic adjusting the supervision
weights, showing the uncertainty-based adjustment is
effective. ∗ denote results are statistically significant
with p < 0.05.

to align all the outputs of the teacher model dur-
ing the whole training stage. As the training pro-
ceeds, the student is become stronger and it may
learn the informative features different from the
teacher model. Therefore, there is no need to force
the student to act exactly with the teacher model,
i.e., requiring the intermediate representations of
the student to be identical with the teacher. For-
mally, we turn the weight of KD objective into
a function of the student prediction uncertainty
u(x) = Entropy (σ (S (s))):

λKL = λ∗KL(1− ux
U

), λPT = λ∗PT

ux
U

(13)

where λ∗KL and λ∗PT are pre-defined weight for
each objective obtained by parameter search and
U is the normalization factor. In this way, the con-
tribution of these two objectives are adjusted dy-
namically during the training for each instances.
For instances that the student is confident about,
the supervision from the internal representation
alignment is down-weighted. Thus the student is
focusing mimicking the final prediction probabil-
ity distribution with the teacher based on its own
understanding of the instance. On the contrary, for
instances that the student is confusing, the supervi-
sion from teacher model representations can help
it learn the feature of the instance better.

3.3.2 Experiments
Settings The student model is set to 6-layer and
BERTBASE is adopted as the teacher model. For
intermediate layer representation alignment, we
adopt the Skip strategy, i.e., Ipt = {2, 4, 6, 8, 10}
as it performs best as described in BERT-PKD. We
conduct experiments on the sentiment analysis task
SST-5, and two natural language inference tasks
MRPC and RTE. For λ∗KL and λ∗PT , we adopt the
searched parameters provided by Sun et al. (2019).

Results The results of adaptive adjusting the su-
pervision weights are listed in Table 5. We ob-
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Figure 6: Evolution of the dynamically adjusted weight
of KL-divergence loss weight.

serve that the proposed uncertainty-based super-
vision adjustment can outperform the static ver-
sion BERT-PKD on all the tasks, showing that the
proper adjustment of the KD objectives is effective
for improving the student performance. We also
plot the batch average of the KL loss weight in
Figure 6. As expected, the corresponding weight
of the prediction probability alignment objective is
increasing as the student becomes more confident
about its predictions, thus paying more attention to
matching the output distribution with the teacher
model. Interestingly, we find that at the initial stage
of training, the KL weight is decreasing. It indi-
cates that the learning by aligning the intermediate
representations can help the student quickly gain
the understanding the task, thus improving the con-
fidence of predictions.

4 Discussions

After the preliminary explorations on the three as-
pects of Dynamic KD, we observe that it is promis-
ing for improving the efficiency and the distilled
student performance. Here we provide potential
directions for further investigations.

(1) From uncertainty-based selection criterion
to advanced methods. In this paper, we utilize
student prediction uncertainty as a proxy for se-
lecting teachers, training instances and supervision
objectives. More advanced methods based on more
accurate uncertainty estimations (Gal and Ghahra-
mani, 2016; Zhou et al., 2020), clues from training
dynamics (Toneva et al., 2018), or even a learnable
selector can be developed.

(2) From isolation to integration. As a prelim-
inary study, we only investigate the three dimen-
sions independently. Future work can adjust these
components simultaneously and investigate the un-
derlying correlation between these three dimen-
sions for a better efficiency-performance trade-off.

(3) More fine-grained investigations regarding
different components in the Dynamic KD frame-
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work: (i) For teacher adoption, exploring whether
dynamically training a student model from more
teacher models or teacher models with different
architectures can bring extra benefits; (ii) For
data selection, it will be interesting to investigate
whether the informative data is model-agnostic,
and whether dynamically selecting data from dif-
ferent domains can improve the generalization per-
formance; (iii) For supervision adjustment, investi-
gations on the effect of combinations of different
objectives can be promising.

5 Related Work

Our work relates to recent explorations on applying
KD for compressing the PLMs and active learning.

Knowledge Distillation for PLMs Knowledge
distillation (Hinton et al., 2015) aims to transfer
the dark knowledge from a large teacher model to
a compact student model, which has been proved
effective for obtaining compact variants of PLMs.
Those methods can be divided into general distil-
lation (Sanh et al., 2019; Turc et al., 2019; Wang
et al., 2020) and task-specific distillation (Sun et al.,
2019; Jiao et al., 2020; Xu et al., 2020; Li et al.,
2020a; Liang et al., 2021; Li et al., 2020b; Wu et al.,
2021). The former conducts KD on the general text
corpus while the latter trains the student model on
the task-specific datasets. In this paper, we focus
on the latter one as it is more widely adopted in
practice. Compared to existing static KD work, we
are the first to explore the idea of Dynamic KD,
making it more flexible, efficient and effective.

Active Learning (Settles, 2009), where a learn-
ing system is allowed to choose the data from
which it learns from, for achieving better perfor-
mance with fewer labeled data. Traditional se-
lection strategies include uncertainty-based meth-
ods (Scheffer et al., 2001; Settles, 2009), which
select the instances that model is most uncertain
about, query-by-committee (Freund et al., 1997),
which select instances with highest disagreements
between a set of classifiers, and methods based on
decision theory (Roy and McCallum, 2001). In this
paper, inspired by the success of active learning,
we introduce Dynamic KD that utilizes the differ-
ent strategies like prediction entropy as a proxy
of student competency to adaptively adjust the dif-
ferent aspects of KD. Our explorations show that
the uncertainty-based strategies are effective for
improving the efficiency and performance of KD.

6 Conclusion

In this paper, we introduce dynamic knowledge
distillation, and conduct exploratory experiments
regarding teacher model adoption, data selection
and the supervision adjustment. Our experimental
results demonstrate that the dynamical adjustments
on the three aspects according to the student un-
certainty is promising for improving the student
performance and learning efficiency. We provide
discussions on the potential directions worth ex-
ploring in the future, and hope this work can moti-
vate studies towards more environmental-friendly
knowledge distillation methods.
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A Teacher Size Exploration Settings

We conduct the knowledge distillation with
BERTBASE and BERTLARGE as teacher models. The
student model is set to a 6-layer student BERT. For
training the teacher, the teacher model is fine-tuned
using the script provided by Huggingface Trans-
formers library. The fine-tuning learning rate is
2e-5 with a linear warm-up learning rate schedule
for the first 10% training steps. Batch size is 32,
training epoch is set to 3, and the max length of
input sentence is set to 128. The statistics of used
datasets are listed in Table 3.

For distilling the student model, the student
model is initialized using the first 6 layers weights
of BERTBASE. We adopt the KL-divergence dis-
tance as the KD objective. λKL is set to 0.5 and we
empirically find this setting works well. The same
training hyper-parameters as fine-tuning the teacher
model are used for distillation. The performance is
evaluated on the validation set and averaged on 3
random seeds.

B Impacts of Prediction Smoothness

To examine the influence of less-softened teacher
predictions, we conduct distillation experiments
with various temperature τ using the hyper-
parameters identical with previous experiments,
to mimicking the sharpen impact introduced by
the larger teacher size. In more detail, we setup a
student model with 6 layers as before and select
the BERTBASE as the teacher model. The results
are illustrated in Figure 7. We observe on both
datasets, the decreased temperature τ will lead a
performance decrease. It indicates that the less-
softened probability distribution indeed weakens
the performance of knowledge distillation.
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Figure 7: Distillation performance with varying tem-
perature τ on different datasets.

C Impacts of Teacher Hidden Size

As mentioned in the main paper, we observe that
larger teacher may not raise a student model with
better performance. We further conduct experi-
ments regarding the hidden size of teacher model.
Specifically, we setup a student with 6 layers with
256 hidden units. The small teacher and the large
teacher are a BERT model of 12-layer with 256
hidden units and a BERT of 12-layer with 768 hid-
den units, respectively. Out experiments show that
on the CoLA dataset, the student model distilled
with the small teacher can achieve 11.9 matthews
correlation score while that of model distilled by
the large teacher is 8.8. The result on the IMDB
is consistent, i.e., 83.2 accuracy for student model
distilled by the large teacher and 83.4 accuracy for
the student distilled by the small teacher. These
results again verify the phenomenon that the larger
teacher may not always raise a better student model.

D Implementation Details

Our implementation is based on PyTorch and Hug-
gingface transformers library. Model is optimized
with AdamW optimizer with linear learning rate
warm-up. The sentence length is set to 64 for SST-
5 and 128 for the rest datasets. Our teacher model
is BERTBASE. The model is trained with learning
rate 2e-5 and batch size 32 for 3 epochs. λKL is
set to 0.5, with temperature τ set to 1.

For experiments using TinyBERT, we select
TinyBERT4 v2 as our backbone model, and con-
duct the general distillation for 10 epochs on the
augmented dataset. We further train the model for 3
epochs on the augmented dataset and choose learn-
ing rates from {1e-5, 2e-5, 3e-5} and batch sizes
from {16, 32} based on the performance on the val-
idation set. The performance are evaluated on the
test sets and τ is set to 1, following the practice of
TinyBERT.
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