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Abstract

Timely responses from policy makers to mit-
igate the impact of the COVID-19 pandemic
rely on a comprehensive grasp of events, their
causes, and their impacts. These events are re-
ported at such a speed and scale as to be over-
whelming. In this paper, we present Excava-
torCovid, a machine reading system that in-
gests open-source text documents (e.g., news
and scientific publications), extracts COVID-
19 related events and relations between them,
and builds a Temporal and Causal Analysis
Graph (TCAG). Excavator will help govern-
ment agencies alleviate the information over-
load, understand likely downstream effects of
political and economic decisions and events re-
lated to the pandemic, and respond in a timely
manner to mitigate the impact of COVID-19.
We expect the utility of Excavator to out-
live the COVID-19 pandemic: analysts and
decision makers will be empowered by Ex-
cavator to better understand and solve com-
plex problems in the future. A demonstration
video is available at https://vimeo.com/
528619007.

1 Introduction

Timely responses from policy makers to mitigate
the impact of the COVID-19 pandemic rely on
a comprehensive grasp of events, their causes,
and their impacts. Since the beginning of the
COVID-19 pandemic, an enormous amount of ar-
ticles are being published every day, that report
many events ! and studies related to COVID. It
is very difficult, if not impossible, to keep track
of these developing events or to get a comprehen-
sive overview of the temporal and causal dynamics
underlying these events.

To aid the policy makers in overcoming the in-
formation overload, we developed ExcavatorCovid
(or Excavator for short), a system that will ingest

"We define an event as any occurrence, action, process or
state of affairs, following (O’Gorman et al., 2016).
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open-source text sources (e.g., news articles and
scientific publications), extract COVID-19 related
events and relations between them, and build a
Temporal and Causal Analysis Graph (TCAG). Ex-
cavator combines the following NLP techniques:

» Extracting events (§3) for types in our com-
prehensive COVID-19 event taxonomy (§2).
Each event will have time and location if avail-
able in text, allowing analyses targeted at spe-
cific times or geographic regions of interest.

Extracting three types of temporal and causal
relations (§4) between pairs of events.

Constructing a TCAG (§5) by assembling all
events and relations, to provide a comprehen-
sive overview of the events related to COVID-
19 as well as their causes and impacts.

Supporting trend and correlation analysis of
events, via visualizing event popularity time
series (§ 6) in the TCAG visualization.

Excavator produces a TCAG that is in a
machine-readable JSON format and is also human-
understandable (visualized via a web-based inter-
active User Interface), to support varied analytical
and decision making needs. We hope that Excava-
tor will aid government agencies in efforts to un-
derstand likely downstream effects of political and
economic decisions and events related to the pan-
demic, and respond in a timely manner to mitigate
the impact of COVID-19. The benefit of Excavator
is realized through a comprehensive visualization
of events and how they affect each other. We expect
the utility of Excavator to outlive the COVID-19
pandemic: analysts and decision makers will be
empowered by Excavator to better understand and
solve complex problems in the future.

We first present our COVID-19 event taxonomy,
and then we present details about event extraction,
causal and temporal relation extraction, measuring
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Figure 1: A partial illustration of the COVID-19 event taxonomy.

event popularity using news text as “quantitative
data”, and the approach for constructing a TCAG.
We then describe the system demonstration, present
a quantitative analysis of the extractions, and con-
clude with recommended use cases.

2 Building a COVID-19 Event Taxonomy

COVID-19 affects many aspects of our political,
economic, and personal lives. A comprehensive
analysis requires an event taxonomy that catego-
rizes the events related to COVID-19 in many sec-
tors and domains. We developed a COVID-19
event taxonomy using a hybrid approach of man-
ual curation with automated support: first, we run
Stanza (Qi et al., 2020) on a large sample (10%)
of the Aylien coronavirus news dataset (§ 7) to
tag verb and noun phrases that are likely to trigger
events. Second, we represent each phrase as the
average of the BERT (Devlin et al., 2019) contex-
tualized embedding vectors of the subwords within
each phrase, and then run committee-based cluster-
ing (Pantel and Lin, 2002) over the vector represen-
tations of the phrases to discover salient clusters.
Finally, we review the frequently appearing clusters
and define event types related to COVID-19.

The event taxonomy includes 76 event types.
Each type comes with a name and a short descrip-
tion. Figure 1 illustrates several branches of the
event taxonomy 2. The events come from a wide
range of domains. We also manually added hy-
ponymy relations via is_a links (e.g., COVID-19
is_a Virus) between pairs of event types.

3 Extracting Events

We developed a neural network model for extract-
ing events defined in the COVID-19 event taxon-
omy (the event classification stage) and extracting

>The complete taxonomy is available at https:
//github.com/BBN-E/LearnIt/blob/master/
inputs/domains/CORD_19/ontology/covid_
event_ontology.yaml.
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Figure 2: The BERT-based sequence tagging model for
event classification and argument extraction. Figure (a)
shows the architecture of the model, which takes a se-
quence of words 1, T3, ..., T, as input and outputs a se-
quence of tags y1,y2, ..., Yn- Figure (b) and (c) shows
an example for each of the two stages. “Policylnt” is
short for “PolicyIntervention”.

the location and time arguments (the event argu-
ment extraction stage), if they are mentioned in
text, for each event mention. The structured repre-
sentation (events with location and/or time) enables
analyses of events targeting a specific time or lo-
cation. Both stages use a BERT-based sequence
tagging model. Figure 2(a) shows the model archi-
tecture. Given a sequence of tokens as input, the
model extracts a sequence of tags, one per each
token. We use the commonly used Begin-Inside-
Outside (BIO) tags for both event types and event
argument role types for the event classification and
argument attachment tasks respectively.

Event classification: a sequence tagging model
is trained to predict BIO tags of event types such
that it identifies the event trigger span as well as
the event type. Figure 2(b) shows an example.

Event argument extraction: similarly, another
sequence tagging model is trained to predict BIO
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Table 1: Top-10 frequent events in the training dataset.

tags of argument role types, such that it identifies
token spans of event arguments as well as their
argument role types, with respect to a trigger that
has already been identified in the event classifi-
cation stage and marked in the input sentence in
“<t > ...< [t >". Figure 2(c) shows an example.

We run these two models in a pipeline: the event
classification model is applied first to find event
triggers and classify their types, then the event ar-
gument extraction model is applied to find location
and time arguments for each event mention.

Training data curation. We use Learnlt rapid
customization for event extraction (Chan et al.,
2019) to curate a dataset for training the event clas-
sification model. Our developer spent about 13
minutes per event type to find, expand, and filter
potential event triggers in a held-out 10% of the
Aylien coronavirus news corpus. Statistics of the
curated data set are shown in Table 1 (we only show
the top-10 most frequent event types for brevity). In
total, there are 11814 mentions in 7159 sentences.

To train the argument extraction model, we use
the related event-argument annotation from the
ACE 2005 dataset (Doddington et al., 2004). We
focus on location and time arguments > and ig-
nore other roles. At decoding time, after extracting
the argument mentions for events, we apply the
AWAKE (Boschee et al., 2014) entity linking sys-
tem to resolve each location argument to a canon-
ical geolocation, and use SERIF (Boschee et al.,
2005) to resolve each time argument to a canonical
time and then convert it to the month level. This
allows us to perform analyses of events targeting a
specific geolocation or month of interest.

4 Extracting Temporal and Causal
Relations

We develop two approaches for extracting temporal
and causal relations: a pattern-based approach and
a neural network model. We take the union of the

3For example, Place and Time event argument roles in

ACE can be used to train an argument-role model to extract
location and time arguments, respectively.
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Type Counts Type Counts Type Subtype Definition
COVID-19 2114 SocialDistancingMeasures 412 Causes Cause Y happens because of X.
Virus 1028 TravelRestrictions 403 Catalyst If X, intensity of Y increases.
Pandemic 596 Disease 378 Precondition | X must have occured for Y to happen.
Unemployment 506 Death 335 Mitigates | Mitigation If X, intensity of Y decreases.
Shortage 502 Lockdown 321 Preventative If X happens, Y can’t happen.
Before | Before/after X happens before/after Y.

Table 2: Causal and temporal relations between event
X and Y.

outputs from both approaches to maximize recall.
The list of causal and temporal relations extracted
by the systems is shown in Table 2. Our extractors
extract relations at the subtype level. However, we
decided to merge the subtypes into types because
(a) a user survey shows that users prefer to have a
simplified definition of causality that only includes
“event X causes (positively impacts) event Y" and
“X mitigates (reduces/prevents) Y", because finer-
grained distinctions at sub-type level are difficult
and less useful, and (b) merging the subtypes into
types improves accuracy to near or above 0.8 as
shown in Table 4, comparing to slightly below 0.7
at the sub-type level due to extraction approaches
struggling to differentiate between the sub-types.

Pattern-based relation extraction. We applied
the temporal and causal relation extraction patterns
from Learnlt (Min et al., 2020). A pattern is either
a lexical pattern, which is a sequence of words
between a pair of events, e.g.,“X leads to Y” 4 ora
proposition pattern, which is the (nested) predicate-
argument structure that connects the pair of events.
For example, “verb:cause[subject=X] [object=Y]"
is the proposition counterpart of the lexical pattern
“X causes Y.

Neural relation extraction. We developed a
mention pooling (Baldini Soares et al., 2019) neu-
ral model for causal and temporal relation extrac-
tion. Figure 3 shows the model architecture. Tak-
ing a sentence in which a pair of event mention
spans are marked as input, the model first encodes
the sentence with BERT (Devlin et al., 2019) °.
For each of the left and right event mentions, it
then uses average pooling over the BERT contex-
tualized vectors of the words in the span to obtain
fixed-dimension vectors V; and V5 as the span rep-
resentations. It then concatenates the input em-
beddings V; and V5 with the element-wise differ-
ence |V; — V4| to generate the pair representation

#X and Y refer to the left and right arguments of a relation.
>The BERT-Base model is used.



V = (V1,Va,|Vi — V3]). V is passed into a lin-
ear layer followed by a softmax layer to make the
relation prediction. The model is trained with a
blended dataset consisting of the Entities, Events,
Simple and Complex Cause Assertion Annotation
datasets © released by LDC 7, and 1.5K temporal
relation instances generated by applying the Lear-
nlt temporal relation extraction patterns to 10,000
sampled Gigaword (Parker et al., 2011) articles.

Cause

[ Pair representation |
H B .« e [ |
| Pre-Trained Transformer (BERT) |

Mass testing has caused significant shortages in tools...

Figure 3: The neural model for causal and temporal
relation extraction.

5 Constructing a TCAG

We aggregate all extracted events and causal and
temporal relations across the corpus to construct a
TCAG. The TCAG is visualized in the interactive
visualization, in which each node is an event type
and each edge is a causal or temporal relation 8.
We use a simple approach to aggregate events:
by default, all event mentions sharing the same
type are grouped into a single node named by the
type; we resort to the Ul to allow the user to se-
lectively focus on a specific location and/or time,
such that the UI will only show a TCAG involving
event mentions and causal relations between pairs
of events for the location and/or time of interest.

6 Measuring Event Popularity through
Time

The TCAG only provides a qualitative analysis
of the temporal and causal relations between the
COVID-related events. It will be more informative
if we can measure the popularity of events through
time to enable trend analysis (e.g., does lockdown
go up or down between January and May, 2020?)

SThe catalog IDs of the LDC datasets are LDC2019E48,
LDC2019E61, LDC2019E70, LDC2019E82, LDC2019ES83.
"www.ldc.upenn.edu

8is_a relations are also added as dashed edges in the
TCAG.
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and correlation analysis (e.g., will a stricter lock-
down improve or deteriorate the economy?).

In order to support these analyses, we produce a
timeseries of a popularity score for each event type
over time (a.k.a., event timeline). Extending our
prior work (Min and Zhao, 2019), we define the
popularity score for event type e at time ¢ as:

>

T T
tet—5 t+5

, 1 Ny
Popularity(e); = T o,
in which N ; is the frequency of event e at month ¢.
We calculate the moving average centered at each ¢
with a sliding window of 7" = 3 months to reduce
noise. M; is the total number of articles published
in month ¢. ¢ = 1/500 is a normalizing constant.
The raw event frequency counts can be inflated due
to the increasing level of media activity. Therefore,
we divide the raw counts by cM; to normalize the
counts so that they are comparable across different
months.

7 System Demonstration

Datasets. We run Excavator on the following two
corpora to produce a TCAG for COVID-19: the
first corpus is 1.2 million articles ° from the Aylien
Coronavirus News Dataset '°, which contains 1.6
million COVID-related articles published between
November 2019 and July 2020 that are from ~440
news sources. We only kept the articles that are
published between January and May 2020, since
the corpus contains fewer articles in other months.
The second corpus is the COVID-19 Open Re-
search Dataset (Wang et al., 2020). It contains
coronavirus-related research from PubMed’s PMC
corpus, a corpus maintained by the WHO, and
bioRxiv and medRxiv pre-prints. As of 11/08/2020,
it contains over 300,000 scholarly articles.

We combine these two corpora because news and
research articles are complementary: news are rich
in real-world events and are up to date, while an-
alytical articles contain more causal relationships.
Therefore, combining them is likely to lead to a
more comprehensive analysis and new insights.

Overall statistics of extractions. Excavator ex-
tracted 6.2 million event mentions of 59 types. Ta-
ble 3 shows the event types that appear more than
50,000 times. We randomly sampled 100 event

These articles do not overlap with the held-out set for
training data curation.
nttps://aylien.com/blog/free-coronavirus-news-dataset
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Type Counts Type Counts

COVID-19 2772.3 Travel 111.8
Death 730.0 FearOrPanic 94.6
Pandemic 689.2 Closures 923
Lockdown 417.2 || TravelRestrictions | 76.9
Isolation* 1954 Shortage 68.3
DiseaseSpread | 145.4 Conflict 55.5
Testing 130.7 Virus 54.8
Treatment 112.8 Symptom 54.0

Table 3: Frequent events extracted from the corpora
(ranked by frequency reversely; numbers are in thou-
sands). *Isolation refers to IsolationOrConfinement.

Type Count | Precision
Causes | 193,694 0.78
Mitigates | 30,452 0.87
Before 2,030 0.81

Table 4: Causal and temporal relations extracted.

mentions, manually reviewed them, and found that
the extracted events are 83% accurate. Excavator
extracted 226,176 causal and temporal relations
from the two corpora. A summary of the extracted
relations and their precision !' are shown in Ta-
ble 4.

TCAG Visualization We developed an interac-
tive visualization of the TCAG. Figure 4 shows
a small part of the TCAG centered on the event
Lockdown. Each node represents an event type in
our COVID event taxonomy for which Excavator
is able to extract events and track their popularity
scores (§ 6) through time. The three types of re-
lational edges (Causes, Mitigates and Before) are
shown in different colors. The size of the nodes
and the thickness of the edges indicate the rela-
tive frequency of the event types or relations in
the log scale, respectively. For example, Figure 4
shows that Death is mentioned more frequently
than Lockdown, and the causal relation {Lock-
down, Causes, EconomicCrisis} appears more fre-
quently than {Lockdown, Mitigates (“reduces”),
AccessToHealthcare}. To support analysis focus-
ing on a single event, we color the focused event
in blue, events that cause or precede the focused
event in orange, and events that the focused event
causes or precedes in green.

Event popularity timeseries visualization For
each node (event) in the TCAG visualization, we
show its event popularity timeseries visualization
on the side. Figure 5 shows 3 screenshots of the

"Estimated by manually reviewing 40 instances per type
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Figure 4: A screenshot of a partial TCAG centered
on Lockdown. Green, pink, and purple edges shows
Cause, Mitigate and Before relations, respectively.
Blue, orange and green nodes show the focused node
and nodes with incoming and outgoing edges (with re-
spect to the focused node), respectively.

event popularity timeseries (§ 6) visualization be-
tween January and May 2020 for Lockdown, Eco-
nomicCrisis and COVID-19 respectively.

8 Recommended Use Cases

We describe 3 recommended use cases below.
More details are in our demonstration video.

Use case 1: causal and temporal analysis. We
can get a panoramic view of the underlying ca-
sual and temporal dynamics between events related
to COVID from the overall TCAG. We can start
by analyzing the causal or temporal relations cen-
tered at an event of interest. For example, Figure 4
shows a diverse range of effects and consequences
of Lockdown, such as EconomicCrisis (economic),
Shortage (supply-chain), FearOrPanic (mental), etc.
Interestingly, the graph also reveals surprises such
as {Lockdown, Causes, Death}: the UI shows sup-
porting evidence such as “lockdown exacerbates
deaths and chronic health problems associated with
poverty, ...”. Furthermore, the TCAG shows that
Lockdown mitigates DiseaseSpread but it also has
a negative impact on the Economy, which will in-
form the decision makers that they will need to
understand the economic trade-offs when imple-
menting the Lockdown policy.

We can also analyze longer-distance causal path-
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Figure 5: Event popularity timeseries (timeline) between 01-05/2020 for Lockdown, EconomicCrisis and COVID-
19. X-axis shows months between January and May 2020. Y-axis shows event popularity scores.

ways consisting of two or more causal/temporal
edges. For example, our demo video shows that
COVID-19 causes or precedes (Before) Lockdown,
and that Lockdown causes or precedes Economic-
Crisis. This helps us understand details about how
COVID causes EconomicCerisis.

Use case 2: trend and correlation analysis. We
can inspect the event timeline for a node or an edge
to perform a trend analysis and a correlation anal-
ysis, respectively. Figure 5 shows screenshots of
the event popularity timeseries between January
and May 2020 for Lockdown, EconomicCrisis and
COVID-19. First, the user can click on a single
event to perform a trend analysis: the popularity
of Lockdown goes up continuously, indicating an
upward trend in implementing lockdown policies
in more geographic regions. The user can also click
on a edge to perform a correlation analysis for a pair
of events: when the user clicks on the edge {Lock-
down, Causes, EconomicCrisis}, the UI shows a
strong correlation between the two upward curves.
For another edge “Lockdown mitigates COVID-
197, the UI shows a negative correlation near the
end: as Lockdown rises, COVID-19 slightly falls
towards the end.

Use case 3: analyses targeted at geolocations.
The event timeline visualization also allows the
user to see the timeline for geolocations such as
each U.S. state individually, instead of the aggre-
gate for the entire U.S.. Figure 6 is a screenshot
showing the 10 timelines for Lockdown for the
top-10 most frequently mentioned U.S. states. The
screenshot shows that the curves for California and
New York go much higher than other states. This
roughly matches the stricter lockdown policies im-
plemented in the two states during this time period,
compared with other states. Such targeted analysis
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is made possible because our events have location
and time arguments. We can also make the TCAG
only show events and relations for a specific state,
if a user selects a state of interest in the UL
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Michigan, Florida, Texas,
Illinois New Jersey,
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Figure 6: Event popularity timeseries in 01-05/2020 for
Lockdown, for top-10 frequently mentioned US states.

9 Related Work

Extracting events. Event extraction has been
studied using feature-based approaches (Huang
and Riloff, 2012; Ji and Grishman, 2008), or neural
networks (Chen et al., 2015; Nguyen et al., 2016a;
Wadden et al., 2019; Liu et al., 2020). GDELT (Lee-
taru and Schrodt, 2013) creates an event database
for the conflict and mediation domain. It has
very few event types related to COVID-19. To
adapt event extraction to new domains, Chen et
al. (2019) developed a user-in-the-loop rapid event
customization system. Nguyen et al. (2016b) pro-
posed a neural model for event type extension given
seed examples. Peng et al. (2016) developed a min-
imally supervised approach using triggers gathered
from ACE annotation guideline.

Extracting causal and temporal relations.
There are a lot of work in temporal (D’Souza



and Ng, 2013; Chambers et al., 2014; Ning et al.,
2018b; Meng and Rumshisky, 2018; Han et al.,
2019; Vashishtha et al., 2020; Wright-Bettner et al.,
2020) and causal (Bethard and Martin, 2008; Do
et al., 2011; Riaz and Girju, 2013; Roemmele and
Gordon, 2018; Hashimoto, 2019) relation extrac-
tion. Mirza and Tonelli (2016) and Ning et al.
(2018a) extract both in a single framework.

Constructing Causal Graphs from Text. Ei-
dos (Sharp et al., 2019) uses a rule-based approach
to extract causal relations to build a causal analysis
graph, that has limited coverage on events related
to COVID-19. Learnlt (Min et al., 2020) enables
rapid customization of causal relation extractors.
Learnlt does not focus on causal relations involving
COVID-related events. This work also differs from
these two in that we extract event arguments and
temporal relations, and track event popularity.

10 Conclusion and Future Work

We present Excavator, a machine reading sys-
tem that automatically constructs a Temporal and
Causal Analysis Graph for COVID-19 by reading
open-source text documents such as news and sci-
entific publications. Our next steps are to integrate
Modal Dependency Parsing (Yao et al., 2021) for
event factuality assessment, and cross-lingual trans-
fer learning (Nguyen et al., 2021) to make Excava-
tor applicable to more languages.
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