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Abstract

In the language domain, as in other domains,
neural explainability takes an ever more im-
portant role, with feature attribution meth-
ods on the forefront. Many such methods
require considerable computational resources
and expert knowledge about implementation
details and parameter choices. To facilitate re-
search, we present THERMOSTAT which con-
sists of a large collection of model explana-
tions and accompanying analysis tools. THER-
MOSTAT allows easy access to over 200k ex-
planations for the decisions of prominent state-
of-the-art models spanning across different
NLP tasks, generated with multiple explain-
ers. The dataset took over 10k GPU hours
(> one year) to compile; compute time that
the community now saves. The accompany-
ing software tools allow to analyse explana-
tions instance-wise but also accumulatively on
corpus level. Users can investigate and com-
pare models, datasets and explainers without
the need to orchestrate implementation details.
THERMOSTAT is fully open source, democra-
tizes explainability research in the language
domain, circumvents redundant computations
and increases comparability and replicability.

1 Introduction

Deep neural networks are state-of-the-art in natural
language processing (NLP) but due to their com-
plexity they are commonly perceived as opaque
(Karpathy et al., 2015; Li et al., 2017). For this rea-
son, explainability has seen heightened attention in
recent years (Belinkov and Glass, 2019; Wallace
et al., 2020; Danilevsky et al., 2020).

A prominent class of explainability methods, re-
ferred to as feature attribution methods (in the fol-
lowing used interchangeably with explainers), at-
tributes the output of a complex model to its input
features. Feature attribution methods arguably have
become a cornerstone of explainability research
in NLP: For example, Arras et al. (2016, 2017);

et al. (2021) analyze different model architectures
with feature attributions.

There is now also a large body of work compar-
ing explainers in the language domain. Explain-
ers are compared with count-based metrics (Po-
erner et al., 2018; De Cao et al., 2020; Tsang et al.,
2020; Nguyen and Martinez, 2020; Bodria et al.,
2021; Ding and Koehn, 2021; Yin et al., 2021; Hase
et al., 2021; Kokhlikyan et al., 2021; Zafar et al.,
2021; Sinha et al., 2021) and against human judge-
ment (Nguyen, 2018; Lertvittayakumjorn and Toni,
2019; Hase and Bansal, 2020; Prasad et al., 2020).
Feature attribution scores have also been incorpo-
rated into model training (Ross et al., 2017; Liu and
Avci, 2019; Erion et al., 2021; Pruthi et al., 2020).

The feature attribution maps produced and used
in the above cited works arguably are the most cru-
cial component of the studies. Unfortunately, none
of the above cited papers explicitly links to the gen-
erated attribution maps. Easy access to a wide vari-
ety of such feature attribution maps, across models,
datasets and explainers, however, holds a lot of
potential. A central hub

1. would increase the comparability and replica-
bility of explainability research,

2. would mitigate the computational burden,

3. would mitigate the implementational burden
since in-depth expert knowledge of the ex-
plainers and models is required.

Put differently, a central data hub containing a wide
variety of feature attribution maps and offering easy
access to them would (1) democratize explainabil-
ity research to a certain degree, and (2) contribute
to green NLP (Strubell et al., 2019) and green XAl
(Schwarzenberg et al., 2021) by circumventing re-
dundant computations.

For this reason, we compiled THERMOSTAT,
an easily accessible data hub that contains a large

"The term Thermostat is inspired by the Greek word for
“warm” (“thermos”), hinting at heatmaps being a central appli-
cation of our contribution. “stat” can mean both (1) “immedi-
ately” referring to the immediate access of attribution maps,

Atanasova et al. (2020); Chen et al. (2021); Neely 87 and (2) “statistics” hinting at cumulative statistics applications.
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Figure 1: Code examples. Top: Loading a dataset and extracting a single instance. Bottom: Visualizing the

instance as a heatmap on token level.

quantity of feature attribution maps, from numer-
ous explainers, for multiple models, trained on dif-
ferent tasks. Alongside the dataset, we publish a
compatible library with analysis and convenience
functions. In this paper, we introduce the data hub,
showcase the ease of access and discuss use cases.

2 THERMOSTAT

THERMOSTAT is intended to be a continuous,
collaborative project. As new models, datasets
and explainers are published, we invite the
community to extend THERMOSTAT. In what
follows, we describe the current state which
is published under https://github.com/
DFKI-NLP/thermostat.

2.1 Demonstration

First, we demonstrate the ease of access. Down-
loading a dataset requires just two lines of code,
as illustrated in the snippet in Fig. 1, in which we
download the attribution maps as returned by the
(Layer) Integrated Gradients explainer (Sundarara-
jan et al., 2017) for BERT classifications (Devlin
et al., 2019) on the IMDD test set (Maas et al.,
2011). In addition to the list of feature attribu-
tions, the input IDs, the true label of every instance
given by the underlying dataset, and the logits of
the model’s predictions are shipped. Switching the
explainer, model or dataset only requires to change
the configuration identifier string (“imdb-bert-lig”
in Fig. 1). All configuration identifiers in THERMO-
STAT consist of three coordinates: dataset, model,
and explainer. A visualization tool which returns
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heatmaps like the one shown in Fig. 1 is also con-
tained in the accompanying library.

The object that holds the data after download in-
herits from the Dataset class of the datasets
library (Lhoest et al., 2021). This is convenient, be-
cause data is cached and versioned automatically in
the background and processed efficiently in paral-
lel. Furthermore, dataset s provides many con-
venience functions which can be applied directly,
such as filtering and sorting.

Let us see how this helps us to efficiently com-
pare models and explainers in THERMOSTAT. Let
us first compare models. In what follows we con-
sider BERT (Devlin et al., 2019) and ELECTRA
(Clark et al., 2020), both trained on the MultiNLI
(Williams et al., 2018) dataset. We are particularly
interested in instances that the two models disagree
on. Downloading the explanations and filtering for
disagreements is again only a matter of a few lines,
as demonstrated in Fig. 2a.

We derive explanations for the output neuron
with the maximum activation. In Fig. 2b, we
observe that the Occlusion (Zeiler and Fergus,
2014) explainer does not attribute much impor-
tance to the phrase “can be lost in an instant”.
This is plausible since the heatmap explains a
misclassification: the maximum output activation
stands for entailment, but the correct label is
contradiction and the phrase certainly is a
signal for contradiction. In contrast, in the
case of ELECTRA (Fig. 2c) which correctly clas-
sified the instance the signal phrase receives much
higher importance scores.


https://github.com/DFKI-NLP/thermostat
https://github.com/DFKI-NLP/thermostat
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instance_bert, instance_electra

if b.predicted_label

bert = thermostat.load("multi nli-bert-occ™)
electra = thermostat.load("multi nli-electra-occ")
disagreement = [(b, e) for (b, e) in zip (bert,

electra)

= e.predicted_label]

disagreement [51]

# 51: short & interesting

(a) Code example that loads two THERMOSTAT datasets. We create a list of instances (disagreement) where the two models
(BERT and ELECTRA) do not agree with each other regarding the predicted labels. We then select a demonstrative instance

from it.
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(b) Heatmap visualization of the selected instance from
Fig. 2a. BERT predicted "entailment" for this example,

while the true label is "contradiction".
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(c) Heatmap visualization of the selected instance from
Fig. 2a. ELECTRA correctly predicted "contradiction" for
this example.

Figure 2: Code examples for comparing models instance-wise.

After we have now demonstrated how to com-
pare models, let us compare explainers across
datasets, as done in previous works. Here, we partly
replicate the experiments of Neely et al. (2021).
The authors compute the rank correlation in terms
of Kendall’s 7 between feature attribution maps.
If two explainers mostly agree on the importance
rank of input features, the value should be high; low
otherwise. The authors find that the Integrated Gra-
dients explainer and the LIME (Ribeiro et al., 2016)
explainer have a higher 7 value (agree more) for
a MultiNLI model (.1794) than when used to rank
features for an IMDb-trained classifier (.1050).

Fig. 3 demonstrates how THERMOSTAT allows
to conduct such experiments concisely. The output
of the experiment in Fig. 3 reproduces the findings
of Neely et al. (2021) to a reasonable degree, i.e. the
7 value for MultiNLI (.1033) is larger than the 7
value for IMDb (.0257).2

2.2 Maintenance

However, explainers such as LIME involve several
hyperparameters (number of samples, sampling
method, similarity kernel, ...) and thus results can
deviate for other choices. THERMOSTAT datasets
are versioned and for each version a configuration
file is checked in that contains the hyperparameter

2Neely et al. (2021) compare DistilBERT (Sanh et al.,
2020) based models, we compare BERT-based models. They
further constrain their evaluation to 500 instances while we
are calculating the values for the entire datasets.
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choices.

If new best practices or bugs emerge, e.g. in
terms of hyperparameters, an updated dataset can
be uploaded in a new version. This increases com-
parability and replicability.

There is also a seamless integration with Hug-
ging Face’s datasets as mentioned above. This
is why explanation datasets that are published
through datasets can be used in THERMO-
STAT directly. When contributing new explana-
tion datasets, users simply add the metadata about
the three coordinates and make sure that the fields
listed in Fig. 1 are contained. As soon as the dataset
is published on the community hub, it can be down-
loaded and parsed by THERMOSTAT. More details
are provided in the repository.?

2.3 Current State

After discussing use and maintenance, we will now
present the current state of THERMOSTAT. Please
recall that THERMOSTAT is intended to be a contin-
uous, collaborative project.

With the publication of this paper, we contribute
the explanations listed in Tab. 1. In total, the com-
pute time for generating the explanations already
amounts to more than 10,000 GPU hours; computa-
tional resources that the community does not have

3Users contributing to THERMOSTAT should be aware that

the THERMOSTAT project follows the Code of Ethics of ACL
and ACM.



import thermostat
from scipy.stats import kendalltau
lime, ig
lime, ig
print (kendalltau(lime,

ig))

thermostat.load ("imdb-bert-1ime"),
lime.attributions.flatten (),

# KendalltauResult (correlation=0.025657302000906455,

thermostat.load ("imdb-bert-1ig")
ig.attributions.flatten ()

pvalue=0.0)

Figure 3: Code example for investigating the rank correlation between LIME and (Layer) Integrated Gradients
explanations on IMDb + BERT. The analogous calculation of Kendall’s 7 for MultiNLI is left out for brevity. We

simply state the value in the last line.

to invest repeatedly now.* Please note that the table
is organized around the three coordinates: datasets,
models, and explainers, the choices of which we
discuss in the following.

Datasets Currently, four datasets are included in
THERMOSTAT, namely IMDb (sentiment analysis,
Maas et al., 2011), MultiNLI (natural language
inference, Williams et al., 2018), XNLI (natural
language inference, Conneau et al., 2018) and AG
News (topic classification, Zhang et al., 2015). We
chose these datasets, because arguably, they are
prominently used in NLP research.

We hypothesize that instances that the model did
not encounter at training time are more informative
than known inputs. This is why we concentrated
our computational resources on the respective test
splits. In total, these amount to almost 50,000 in-
stances already.

Models The second coordinate in THERMOSTAT
is the model. Currently, five model architectures
are included, namely ALBERT (Lan et al., 2020),
BERT (Devlin et al., 2019), ELECTRA (Clark
et al., 2020), RoBERTa (Liu et al., 2019), and XL-
Net (Yang et al., 2019). We chose community-
trained fine-tuned classifiers as they are aptly avail-
able through the t ransformers library (Wolf
et al., 2020), several of which are provided by
TextAttack (Morris et al., 2020). The repository
that we publish can be used to quickly include
new models, if they are provided through the
transformers library.

Explainers Provided through the Captum library
(Kokhlikyan et al., 2020), there are five prominent
feature attribution methods included in THERMO-
STAT. (Layer) Gradient x Activation (Shrikumar
et al., 2017) is an efficient method without hyper-
parameters. Integrated Gradients (Sundararajan

“To produce the feature attribution maps, we used up to 24

NVIDIA GPUs in parallel, namely GTX 1080Ti, RTX 2080Ti,
RTX 3090, Quadro RTX 6000 and RTX A6000.
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et al., 2017), LIME (Ribeiro et al., 2016), Occlu-
sion (Zeiler and Fergus, 2014) and Shapley Value
Sampling (Castro et al., 2009) can be considered
computationally challenging and involve hyper-
parameters. The choice of parameters in THER-
MOSTAT follows best practices and, as mentioned
above, is well-documented and can be updated and
extended.

3 Related Work

To the best of our knowledge, the closest work to
our contribution is the Language Interpretability
Tool (LIT) by Tenney et al. (2020) which offers
a graphical interface for exploring saliency maps,
counterfactual generation and the visualization of
attention and embeddings. We also draw connec-
tions to Hoover et al. (2020) and Lal et al. (2021)
who developed interfaces for analyzing the atten-
tion mechanism and embeddings of Transformer
architectures. These again are visualization and
analysis tools and as such complementary to the
collection of explanations that is our primary con-
tribution. Thus, an interface that bridges THERMO-
STAT and LIT, for instance, is an interesting future
direction.

There exist libraries, such as Captum
(Kokhlikyan et al., 2020) or transformers-interpret
(Pierse, 2021), that facilitate the generation of
neural explanations. These libraries do not,
however, free the user of the computational burden,
nor are they easily accessible to non-technical
researchers.

As noted in Section 2, the datasets library
(Lhoest et al., 2021) functions as the backbone of
THERMOSTAT. The novelties our work brings with
it are (1) attributions from a variety of models that
took over 10,000 GPU hours to compute in total,
and (2) the support for explainability-specific visu-
alizations and statistics like heatmap visualization
and rank correlation between multiple explainers.

Finally, tangentially related to our work are



Dataset Split # in- # Explainers
(Subset) stances classes
IMDb Test 25000 2 LGxA LIG LIME Occ SVS

textattack/albert-base-v2-imdb (ALBERT)
textattack/bert-base-uncased-imdb (BERT)
monologg/electra-small-finetuned-imdb (ELECTRA)
textattack/roberta-base-imdb (RoBERTa)
textattack/xlnet-base-cased-imdb (XLNet)

MultiNLI
Matched

prajjwall/albert-base-v2-mnli (ALBERT)
textattack/bert-base-uncased-MNLI (BERT)
howey/electra-base-mnli (ELECTRA)
textattack/roberta-base-MNLI (RoBERTa)
textattack/xlnet-base-cased-MNLI (XLNet)

Validation 9815

3 LIG LIME Occ SVS

XNLI Test (en)

5010
prajjwall/albert-base-v2-mnli (ALBERT)
textattack/bert-base-uncased-MNLI (BERT)
howey/electra-base-mnli (ELECTRA)
textattack/roberta-base-MNLI (RoBERTa)
textattack/xlnet-base—-cased-MNLI (XLNet)

3 LGxA LIG LIME Occ SVS

AG News Test

7600
textattack/albert-base-v2-ag-news (ALBERT)
textattack/bert-base-uncased-ag-news (BERT)
textattack/roberta-base-ag-news (RoBERTa)

4 LGxA LIG LIME Occ SVS

Table 1: Overview of feature attribution maps in THERMOSTAT. Dark green cells (86 out of 90) denote available
configurations. Gray cells denote configurations that are work-in-progress.

datasets that supply explanations on top of texts
and labels, usually collected from human anno-
tators. e-SNLI (Camburu et al., 2018) probably
is the most famous example in this line of work.
The reader is referred to Wiegreffe and Marasovié
(2021) for a concise survey. In contrast to our work,
the above mentioned papers present human ground
truths instead of machine-generated explanations.

4 Conclusion

We present THERMOSTAT, an easily accessible data
hub containing a large collection of NLP model
explanations from prominent and mostly expensive
explainers. We demonstrate the ease of access,
extensibility and maintainability. New datasets can
be added easily. Furthermore, we showcase an
accompanying library and outline use cases. Users
can compare models and explainers across a variety
of datasets.

THERMOSTAT democratizes explainability re-
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search to a certain degree as it mitigates the com-
putational (environmentally and financially) and
implementational burden. Machine-generated ex-
planations become accessible to non-technical re-
searchers. Furthermore, comparability and replica-
bility are increased.

It becomes apparent when consulting the litera-
ture in Section 1 that interpretation beyond classi-
fication (e.g. machine translation) is still an open
problem (Wallace et al., 2020). Hence, we focus
on these four text classification problems that are
well-trodden paths.
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