
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, pages 3021–3030
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

3021

DISK-CSV: Distilling Interpretable Semantic Knowledge with a Class
Semantic Vector

Housam Khalifa Bashier Babiker 1, Mi-Young Kim2, Randy Goebel1
Alberta Machine Intelligence Institute

1 Department of Computing Science, University of Alberta
2 Department of Science, Augustana Faculty, University of Alberta
{khalifab, miyoung2, rgoebel}@ulaberta.ca

Abstract

Neural networks (NN) applied to natural lan-
guage processing (NLP) are becoming deeper
and more complex, making them increasingly
difficult to understand and interpret. Even in
applications of limited scope on fixed data, the
creation of these complex “black-boxes” cre-
ates substantial challenges for debugging, un-
derstanding, and generalization. But rapid de-
velopment in this field has now lead to building
more straightforward and interpretable mod-
els. We propose a new technique (DISK-
CSV) to distill knowledge concurrently from
any neural network architecture for text clas-
sification, captured as a lightweight inter-
pretable/explainable classifier. Across multi-
ple datasets, our approach achieves better per-
formance than the target black-box. In ad-
dition, our approach provides better explana-
tions than existing techniques.

1 Introduction

Deep Neural Networks (DNNs) are popular in
many applications, including computer vision and
natural language processing. However, two major
factors still require attention: (1) understanding the
classifier’s prediction for the end-users to develop
trust in the model, and to enable machine learn-
ing engineers to refine it. This is especially true
for high-stakes domains such as clinical decision
support. There has been attention on models that
attempt to make a neural network explainable, for
instance, (Sundararajan et al., 2017), and (Ribeiro
et al., 2016), which create post-hoc explanations
to support explainability. Secondly, (2) artificially
high numbers of parameters make the inference
time expensive.

Figure 1: Our proposed model.

Neural networks tend to be deep, with millions
of parameters. For example, GPT-2 (Radford et al.,
2019) needs over 1.5 billion parameters. As a re-
sult, they are compute-intensive, thus making it
difficult to deploy in real-world applications. We
here propose a model-agnostic interpretable knowl-
edge distillation method for neural network text
classification.

As shown in Figure 1, we learn a class seman-
tic vector for each output class, concurrently when
training the black box. We then use the seman-
tic vectors to create the nearest neighbor classifier
(compressed interpretable/explainable classifier)
from the black-box version. Knowledge distillation
refers to the process of transferring the implicit
knowledge learned by a teacher model to a student
model (Liu and Matwin, 2018). Dark knowledge
refers to the salient information hidden in the pre-
dicted probabilities for all classes, which are more
informative than the predicted classes themselves.
Our contributions can be summarized as follows:

• We propose a knowledge distillation method
where dark knowledge can be learned concur-
rently by a student model, while building a
black-box model.

• We propose an interpretable classifier, which
provides a user explanation for predicting a
single class label.

3022

• We integrate a clustering technique within our
interpretable classifier model.

• We provide an interactive explanation mode,
where users can directly request a word or a
phrase query and receive feedback.

• Our smaller model shows even better perfor-
mance than the original black-box, with drasti-
cally reduced hyper-parameters. That smaller
model can be deployed as an on-line service
in real-time applications in resource-restricted
devices.

2 Related Work

This work has connection with research on explain-
ablity and model compression.

Explainability. Most of the existing explain-
able AI (XAI) techniques for Natural Language
Processing text classification focus on assigning
a score to each word in the document w.r.t. pre-
dicted class, typically using gradient-based or
perturbation-based methods (Arras et al., 2017;
Sundararajan et al., 2017; Shrikumar et al., 2017a;
Bach et al., 2015). The most popular technique for
model-agnostic explanation is LIME (Ribeiro et al.,
2016), which focuses on creating an interpretable
classifier by approximating it locally, with a linear
model.

The main drawback of these methods is that
those explanations are not faithful to the target
model (Rudin, 2018). There are other methods,
which focused on constructing a self-explainable
network (Bastings et al., 2019) and (Lei et al.,
2016). These techniques have limited explanations
and thus do not explain phrases. Our work is differ-
ent from post-hoc and self-explainable approaches
as it attempts to learn an explainable smaller classi-
fier concurrently with the target black-box model.
Our explanations are also generated from the inter-
pretable classifier itself, without extra calculation
as in post-hoc techniques.

Model compression. A variety of research de-
voted their efforts to compressing large networks to
accelerate inference, transfer, and storage. One of
the earliest attempts focused on pruning unimpor-
tant weights (LeCun et al., 1990). Other methods
focused on modifying devices to improve floating
point operations (Tang et al., 2018). In contrast,
some works focused on quantizing neural networks
(Wu et al., 2018). Other investigations have fo-
cused on knowledge distillation, i.e., the ability to

transfer the knowledge from a larger model to a
smaller model (Ba and Caruana, 2014) and (Hinton
et al., 2015). However, the main drawbacks of the
methods mentioned above are that: (1) they only
work with pre-trained networks, (2) the compressed
models are still treated as black-box, and (3) the
compression techniques require another training
step or additional computation which complicates
the process. In contrast, we concurrently transfer
the knowledge from the black-box into a smaller
interpretable model.

3 DISK-CSV

In a text classification task, an input sequence
x = 〈x1, ..., xl〉, xi ∈ Rd, where l is the length
of the input text and d is the vector dimension, is
mapped to a distribution over class labels using
a parameterized θ neural network model (e.g., a
Long Short Term Memory network (LSTM), Trans-
former, etc.), which we denote as F(x; θ). The
output y is a vector of class probabilities, and the
predicted class ŷ is a categorical outcome, such
as an entailment decision. In this work, we are
interested in learning a simpler compressed nearest
neighbor classifier (e.g., easy-to-explain its predic-
tion) from any neural network model, but concur-
rently, while training the larger model. We refer to
the large model (black-box) as T and the smaller
interpretable/explainable model as S.

We call our method DISK-CSV - Distilling
Interpretable Semantic Knowledge with a Class
Semantic Vector. In the next subsections we pro-
vide the following details for DISK-CSV: (a) how
to distill knowledge from T into S, (b) how to
construct interpretable representations for S, and
(c) how to interact with the model to achieve
better explainability (e.g., by clustering data, ex-
plaining essential phrases, and providing a semi-
counterfactual explanation). Neural networks learn
by optimizing a loss function to reflect the true
objective of the end-user. For S, our objective is
to generalize in the same way as T and approxi-
mate an explanation for each prediction. To demon-
strate our idea, we show how we can learn S con-
currently with a long short-term memory network
(LSTM) and then discuss how it can be generalized
to different types of architectures for text classi-
fication. An LSTM network processes the input
word by word, and at time-step t, the memory ct
and the hidden state ht are updated. The last state
hl ∈ Rd is fed into a linear layer with parameters

3023

W ∈ Rd×k which gives a probability distribution
over k classes:

p(y|x) =
exp(hl ·W)∑k

i=1 exp(hl ·W)k
, (1)

The classifier uses cross-entropy loss to pe-
nalize miss-classification as Lclassifier =
− 1

k

∑k
i=1 ri log(yi), where r ∈ Rk is the one-hot

represented ground truth and ri is the target
probability (0 or 1) for class i. The network’s
weights are updated via back-propagation when
training the black-box. We intend to augment
the neural nets that typically use embeddings
to represent discrete variables (e.g., words) as
continuous vectors. Words that have a similar
context will have similar meanings. The simplest
form of concurrent knowledge distillation is to
transfer the knowledge from the embedding space
of T into a k-Class Semantic Vectors (CSVs)
vi ∈ v, where the dimension of each vi is equal to
the dimension of the embedding vector xi, and k is
the number of target classes. In other words, for
each class label, we would like to learn a vector
that captures the semantic information related to
that class from the embedding layer.

These semantic vectors have the following prop-
erties: (1) Each vector vi should capture/encode
the semantics about the class i from the black-box;
(2) These vectors are used by the nearest neighbor
classifier for the prediction of the correct class la-
bel; (3) By using cosine similarity, we can compute
the contribution of each word in the input with the
corresponding vi to the class i; (4) These vectors
add another level of abstraction by explaining the
feature importance of a phrase that expands a single
word, and (5) The weights of the CSV are initial-
ized in the same way we initialize the embedding
layer and adjusted via back-propagation. We re-
formulate the optimization of T to update/adjust
the weights of the CSVs as follows:

L = Lclassifier + λ1

Semantics︷ ︸︸ ︷(
1−

x̄ • tanh(vŷ)

‖x̄‖ ‖tanh(vŷ)‖

)
+λ2

(
1−

hl • tanh(vŷ)

‖hl‖ ‖tanh(vŷ)‖

)
︸ ︷︷ ︸

Hidden−knowledge

−λ3

(V ectors−separation︷︸︸︷
D

)
(2)

where D is the pairwise Euclidean distance de-

fined asD =
∑

i

∑
j((vi−vj)(vi−vj)T)

2 , ŷ is the index
of the predicted class with the highest probability,
and {λ1, λ2, λtr3} are used to weight the impor-
tance of the terms. In what follows, we discuss the
new terms added to the optimization problem.

Capturing semantics: The second term of
Equation 2 is the second loss function we use,
which attempts to encode the information of se-
mantically consistent sentences in a single CSV vŷ.
An obvious way to learn semantic information is to
minimize the cosine distance between the average
of the embedding x̄ of the input sentence x and the
predicted class semantic vector vŷ. This objective
will ensure that the vector vi captures the semantics
of consistent inputs to encourage semantic consis-
tency.

Hidden knowledge extraction: The last hidden
state hl in recurrent nets is typically used by the
output layer as the feature vector to predict the class
label. As a result, the salient information learned
by T is encoded in this feature vector. To distill
this knowledge and enrich the representation of vi
so that S generalizes well, we again minimize the
cosine distance between the class semantic vector
vi and the last hidden state hl in the third loss func-
tion, which is the third term in Equation 2. This
objective allows the model S to generalize simi-
larly to the black-box T . The only constraint here
is that the dimension of hl must be the same as that
of xi so that we can minimize the cosine distance,
i.e., hl ∈ Rd.

Vector-separation: Our ultimate goal is to cre-
ate a simple interpretable nearest neighbor classi-
fier S from the black-box. Therefore, we want to
make sure that the CSVs are well separated from
each other so that the cosine distance is maximum
between them. To address this problem, we maxi-
mize the pairwise Euclidean distance between these
vectors using the fourth term in Equation 2.

3.1 The smaller interpretable classifier S
based on CSV

Our smaller model S is the nearest neighbor clas-
sifier, which relies mainly on the semantic infor-
mation encoded in the vectors v learned via back-
propagation when training T . The model S takes
the input sentence and computes the average x̄ of
the input embedding. Then we compute the cosine
distance between x̄ and each vi. Finally, the target
class is decided as the index i of the vi with the

3024

lowest cosine distance. Besides, this classifier is
interpretable, i.e., we can understand the mecha-
nism of making a prediction. It can also be easily
transferred or stored. The smaller model extracts
the semantics from the larger model concurrently
when training the black-box model. The algorithm
is summarized in Figure 2.

Input: Sentence embedding x, CSVs v,Dist = 5
Output: Predicted class ŷ

1: x̄ = average˙emebdding(x)
2: for Each vector vi ∈ v do
3: tmpDist = CosineDistance (vi, x̄)
4: if tmpDist < Dist then
5: ŷ ← i
6: Dist← tmpDist
7: end if
8: end for

Figure 2: Our smaller model S using CSV.

3.2 Explainability

Our model S provides four levels of explanations
for text classification: (1) Word feature importance,
(2) Document clustering, (3) End-user interaction
through phrase feature importance, and (4) Semi-
counterfactual explanation.

• Word feature importance: To understand
the contribution of each word w.r.t. predicted
class ŷ, we rely on the semantic similarity
between each xi and the nearest class vector
vŷ. A word with high semantic similarity with
the predicted vŷ will have a high contribution
to the predicted class. To understand the se-
mantic contribution of each word in the input,
we calculate the semantic similarity of every
word to vŷ using cosine similarity between the
embedding vector of the input word and vŷ.

• Document clustering: Every text instance is
clustered around its class semantic vector by
computing the mean (x-axis) and the standard
deviation (y-axis) of the elements in the vec-
tor (

x̄+tanh(vŷ)
2) for each x̄, where vŷ is the

nearest CSV to the input document. We found
that the 2-D points (mean, standard deviation)
of the elements in the vector (

x̄+tanh(vŷ)
2) for

the instances belonging to a specific class are
close to each other and far from those of the in-
stances belonging to other classes. The merit
is that we do not need to use a clustering algo-
rithm.

• End-user interaction through phrase fea-
ture importance: Word feature importance
is sometimes not enough to explain a model’s
prediction. The end-user might also be in-
terested in querying the classifier to answer
different types of questions. For example,
in the situation where the model shows the
feature importance (in sentiment classifica-
tion) of each individual word “not,” “too,” and
“bad,” an end-user might also be interested in
the importance of the phrase “not too bad,”
which cannot be calculated just by merging
the three different feature importance values.
Our approach is capable of giving feedback
to the user’s query about a phrase. To ob-
tain the feature importance for a phrase, we
average the embedding vectors of the words
in the phrases and then compute the cosine
similarity w.r.t. the predicted CSV vŷ.

• Semi-counterfactual explanation: Our ap-
proach is also capable of providing a semi-
counterfactual explanation, i.e., explaining a
semi-casual situation (i.e., what kind of fea-
tures prevent the classifier from changing the
prediction to another class). We can pro-
vide a feature importance value w.r.t. non-
predicted classes by calculating the cosine
similarity between the embedding vector of
each word/phrase and the class semantic vec-
tor of a non-predicted class). Through this
semi-counterfactual explanation, the user can
reason that “if the feature X had not oc-
curred, the class prediction would have been
changed.”

3.3 Generalizing to other models

Our method can be adapted to a variety of archi-
tectures such as Bi-LSTM, GRU, and RNNs, as it
requires access to only the last hidden state (feature
vector) and the embedding layer from the network.
A further restriction is that the feature vector used
in the output layer must have the same dimension
as the embedding feature vector. For the Trans-
former, to handle the dimensionality issue, we av-
erage the Transformer’s representations before the
output layer as the feature vector.

4 Experiments

4.1 Datasets

The summary of the datasets is shown in Table 1.

3025

IMDB reviews were proposed by (Maas et al.,
2011) for sentiment classification from movie re-
views. It consists of two classes, i.e., positive and
negative sentiments.

AGnews was proposed by (Zhang et al., 2015a)
for researchers to test machine learning models
for news classification. It consists of four classes
(sports, world, business, and sci/tech).

DBpedia ontology classification dataset pro-
posed by (Zhang et al., 2015b) consists of 15 non-
overlapping ontology classes 1.

HealthLink constructed by Alberta Health Ser-
vices, Canada. It contains a set of text transcripts
written by registered nurses while talking with
callers to the Tele-Health service in real-time. It
consists of 2 classes (“go to hospital” and “home
care”), and each class can be sub-categorized into
sub-classes. This dataset will be available based on
request.

Data set Classes Max length Train size Test size Vocabulary size
IMDB 2 50 25000 25000 10000
HealthLink 2 20 60475 15119 23174
DBpedia 15 32 5600 63000 50002
AGnews 4 20 102080 25520 59706

Table 1: Summary of the datasets used in our experiments

4.2 Baselines

We compare our approach with several models for
text classification including Transformers (Vaswani
et al., 2017), IndRNN (Li et al., 2018), BLSTM
(Zhou et al., 2016), hierarchical attention (Yang
et al., 2016), LSTM (Hochreiter and Schmidhuber,
1997) and GRU (Cho et al., 2014).

Transformer employs a multi-head self-
attention mechanism based on scaled dot-product
attention. We use only the encoder layer, and aver-
age the new representations before arriving in the
classification’s output layer.

IndRNN is an improvement over RNNs, where
neurons in the same layer are independent of each
other and connected across layers. We use the last
hidden state as the feature vector.

Bi-LSTM employs an attention-based bidirec-
tional mechanism on the LSTM network, which
captures the salient semantic information (word-
attention) in a sentence. These attentions enable
the network to attend differently to more and less
critical content when learning the representation.
The last hidden state is used for classification.

Hierarchical attention provides two levels of
attention mechanisms applied to the word and sen-

1Because of computation time, we experimented with only
a small number of samples.

tence level. In this paper, we use a sentence level-
attention mechanism applied on a Bi-LSTM. The
feature vector for classification is based on aggre-
gating the hidden representation values (following
the authors’ implementation).

LSTM and GRU process the input word by
word, and the last hidden state is used as the feature
vector for classification.

4.3 Network configuration and training
We tokenize sentences and use the topN words that
appeared in every instance for the vocabulary size.
We did not use any pre-trained embeddings, and
thus we randomly initialized the embedding layer.
We also randomly initialized the CSVs. We did not
use any hyper-parameter tuning on the validation
as we are not focusing on achieving state-of-the-art
predictive accuracy. Instead, we want to show that
our method can achieve similar/better performance
to the black-box, and provides a better explanation
than existing approaches. The word embedding,
semantic vector, and feature vector (at the output
layer) dimensions are 128. For training each net-
work, we use the Adam optimizer (Kingma and Ba,
2017) with a batch size of 64 and a learning rate of
0.0001. We also used a dropout with a probability
0.5.

4.4 Results and analysis
4.4.1 Classifier performance
We trained six different models (architectures) on
four datasets. We have tried different values as
the weight of each proposed loss term. The results
depicted in Table 2 show that our semantic distil-
lation approach captures more useful information
from the training data than the baseline black-box.
Our smaller model outperforms the black-boxes on
all datasets, achieving better performance than the
black-box. The new optimization problem does not
affect the performance of the black-box model (see
BBO (Black-Box with our new Objective function)
in Table 2).

4.4.2 Explainability
In this part of our experiments, we focus on local
explanations for text classification, i.e., explaining
the output made by our proposed nearest neighbor
classifier using CSV for an individual instance. Lo-
cal explanations should exhibit high local fidelity,
i.e., they should match the underlying model be-
havior. We evaluate our technique against the fol-
lowing methods:

3026

IMDB AGnews Dpedia HealthLink
Transformer (Vaswani et al., 2017)

F1 Precision Recall Accuracy F1 Precision Recall Accuracy F1 Precision Recall Accuracy F1 Precision Recall Accuracy
Black-box 0.7703 0.7703 0.7703 0.7703 0.8794 0.8798 0.8796 0.8796 0.8653 0.8655 0.8655 0.927 0.6642 0.6645 0.6641 0.6647
BBO 0.7785 0.7787 0.7786 0.7786 0.8831 0.8836 0.8835 0.8835 0.8799 0.8802 0.8799 0.943 0.6887 0.6896 0.6887 0.6894
DISK-CSV 0.8117 0.8187 0.8187 0.8187 0.9038 0.9039 0.9041 0.9041 0.8806 0.8811 0.8809 0.9438 0.7216 0.722 0.722 0.7216

Attention-based Bi-LSTM (Zhou et al., 2016)
Black-box 0.7961 0.7993 0.7966 0.7966 0.8887 0.8888 0.887 0.8888 0.843 0.8443 0.8434 0.9037 0.6706 0.6706 0.6705 0.6708
BBO 0.798 0.7999 0.7983 0.7983 0.8929 0.8941 0.8928 0.8927 0.8772 0.8774 0.8772 0.9399 0.6704 0.6705 0.6706 0.6705
DISK-CSV 0.8025 0.8025 0.8025 0.8025 0.8956 0.8955 0.896 0.896 0.8812 0.8816 0.8815 0.9445 0.7207 0.7207 0.7209 0.7208

IndRNN (Li et al., 2018)
Black-box 0.776 0.7761 0.776 0.776 0.8773 0.878 0.8769 0.8769 0.8763 0.8765 0.8765 0.9391 0.6808 0.6814 0.6813 0.6808
BBO 0.7805 0.7858 0.7814 0.7814 0.8845 0.8847 0.8847 0.8848 0.8845 0.8889 0.888 0.9515 0.6808 0.6814 0.686 0.6869
DISK-CSV 0.8018 0.8022 0.802 0.802 0.9025 0.9026 0.9028 0.9028 0.8887 0.889 0.8889 0.9524 0.7162 0.7184 0.7174 0.7164

Hierarchical recurrent net (Yang et al., 2016)
Black-box 0.7917 0.7919 0.7917 0.7917 0.8845 0.8855 0.8846 0.8846 0.847 0.8475 0.8467 0.9073 0.6708 0.6708 0.609 0.671
BBO 0.7808 0.7844 0.7813 0.7814 0.8874 0.8876 0.8874 0.8876 0.8709 0.871 0.8709 0.933 0.6829 0.6833 0.6833 0.6829
DISK-CSV 0.8146 0.8146 0.8146 0.8146 0.9013 0.9013 0.9016 0.9016 0.8794 0.8796 0.8797 0.9425 0.7156 0.7158 0.7159 0.7157

LSTM (Hochreiter and Schmidhuber, 1997)
Black-box 0.745 0.7456 0.7452 0.7452 0.8711 0.8712 0.8714 0.8715 0.6597 0.7187 0.6445 0.6905 0.5922 0.6155 0.6044 0.6006
BBO 0.7461 0.7488 0.7466 0.7466 0.8745 0.875 0.8745 0.875 0.7993 0.8129 0.797 0.8593 0.6127 0.6718 0.6717 0.6712
DISK-CSV 0.7912 0.7913 0.7912 0.7912 0.9005 0.9005 0.9009 0.9009 0.8657 0.8667 0.8662 0.928 0.7171 0.7178 0.7177 0.7171

GRU (Cho et al., 2014)
Black-box 0.748 0.7493 0.7483 0.7483 0.8709 0.8708 0.8711 0.8712 0.6537 0.7006 0.6442 0.6902 0.6106 0.6266 0.6187 0.6165
BBO 0.74483 0.753 0.7493 0.75 0.8847 0.885 0.8851 0.8906 0.8193 0.8123 0.812 0.875 0.6478 0.6572 0.6522 0.6562
DISK-CSV 0.8069 0.8069 0.8069 0.8069 0.9046 0.9047 0.9049 0.9049 0.8831 0.8834 0.8833 0.9041 0.7154 0.7159 0.7158 0.7154

Table 2: Comparison of our test performances with the baseline neural architectures on four datasets. Our nearest neighbour
classifier achieves better performance than the black-box models. For the black-box models, we followed the implementation

proposed by the authors of each baseline.

• Random. A random selection of words from
the input sentence.

• LIME (Ribeiro et al., 2016) is a model-
agnostic approach which involves training an
interpretable model such as a linear model
on instances created around the specific data
point by perturbing the data. We evaluated
by training the linear classifier using ∼ 5000
samples.

We show the effectiveness of our method in explain-
ing the prediction on three architectures (Trans-
former, IndRNN and hierarchical attention net-
work) in Figures 3-8.

Automatic evaluation. We use model-agnostic
evaluation metrics to demonstrate the effectiveness
of our approach. (Nguyen, 2018) found that human
evaluation correlates moderately with automatic
evaluation metrics for local explanations. Hence,
in our experiments, we use the idea of automatic
evaluation to verify whether or not our explana-
tions are faithful to what the model computes. We
measure the local fidelity by deleting words in the
order of their estimated importance for the predic-
tion, then evaluate the change in F1 score w.r.t. the
predicted class when no word is deleted. This type
of evaluation is similar to other metrics used for
model interpretation (Nguyen, 2018; Arras et al.,
2017) except that we use F1 instead of classifica-
tion accuracy. Results are shown in Figures 3-4.
We obtained the plots by measuring the effect of
word deletions and reporting the F1 when the clas-
sifier prediction changes. A larger drop in F1 in-
dicates that the method could identify the words

contributing most towards the predicted class by
our classifier. Through Figures 3, 4 and 5, we can
clearly see that our approach is capable of identi-
fying the most salient features better than LIME.
Please note that LIME requires probabilities (as
the classifier’s output), and hence we convert the
outputs made by our nearest neighbor into valid
probabilities.

0 5 10 15

0

0.5

1

of masked words

F1

HealthLink

0 5 10

0

0.5

1

of masked words

F1

IMDB

0 5 10

0

0.5

1

of masked words

F1

AGnews

0 10 20

0

0.5

1

of masked words

F1

DPedia

Proposed Lime Random

Figure 3: Change of F1 according to the number of masked
important words. (Teacher model: Transformer)

Change in log-odds. Another automatic metric
for evaluating explainability methods is to observe
the change in the log-odds ratio (for the output prob-
abilities). This metric has been used for a model’s
explanations (Shrikumar et al., 2017b; Chen et al.,

3027

0 5 10 15

0

0.5

1

of masked words

F1

HealthLink

0 5 10

0.2

0.4

0.6

0.8

1

of masked words

F1

IMDB

0 5 10
0

0.5

1

of masked words

F1

AGnews

0 10 20

0

0.5

1

of masked words

F1

DPedia

Proposed Lime Random

Figure 4: Change of F1 according to the number of masked
words. (Teacher model: INDRNN)

0 5 10 15

0

0.5

1

of masked words

F1

HealthLink

0 5 10

0

0.5

1

of masked words

F1

IMDB

0 5 10
0

0.5

1

of masked words

F1

AGnews

0 10 20

0

0.5

1

of masked words

F1

DPedia

Proposed Lime Random

Figure 5: Change of F1 according to the number of masked
words. (Teacher model: Hierarchical attention network)

2018). We normalize the cosine distance into valid
probability distributions. This metric requires no
knowledge of the underlying feature representa-
tion, and it requires access to only the instances. A
log-odds ratio is a fine-grained approach, as it uses
actual probability values instead of the predicted la-
bel as used in the previous experiment. But like the
previous experiment, instead of tracking the change
in F1, we observe the change in probabilities. We
mask the top k features ranked by semantic similar-
ity, and zero paddings replace those masked words.
We then feed the input and measure the drop of the

value between the target class’s probability when
no word is deleted and when k words are removed.
Results are shown in Figures 6-8 reveal the effec-
tiveness of our approach in capturing the words
that affect the classifier’s prediction. The experi-
mental results show that our method delivers more
insightful explanations than LIME.

0 5 10 15

−0.4

−0.2

0

of masked words

L
og

-o
dd

s

HealthLink

0 5 10
−8

−6

−4

−2

0

·10−2

of masked words

L
og

-o
dd

s

IMDB

0 5 10

−0.15

−0.1

−5 · 10−2

0

of masked words

L
og

-o
dd

s

AGnews

0 10 20

−6

−4

−2

0

·10−2

of masked words

L
og

-o
dd

s

DPedia

Proposed Lime Random

Figure 6: Change of log-odds according to the number of
masked words. Lower log-odds scores are better. (Teacher

model:Transformer)

0 5 10 15

−0.6

−0.4

−0.2

0

of masked words

L
og

-o
dd

s

HealthLink

0 5 10
−0.2

−0.15

−0.1

−5 · 10−2

0

IMDB

0 5 10

−0.3

−0.2

−0.1

0

AGnews

0 10 20

−0.1

−5 · 10−2

0

DPedia

Proposed Lime Random

Figure 7: Change of log-odds according to the number of
masked words. (Teacher model: INDRNN)

Interactive explanations. In some cases, end-
users are interested in understanding the contribu-
tion of phrases instead of words. In addition, an
end-user might be interested in understanding the

3028

Example Pos Neg Example Home care Go to hospital Example Home care Go to hospital
Good 0.756 -0.752 Cough -0.984 0.984 Fever 0.933 -0.932

Not good -0.151 0.144 Bad cough -0.993 0.993 Bad fever -0.962 0.952
Very good 0.877 -0.878 Cough+sore throat -0.995 0.995 fever+headache 0.929 -0.929

Sucks -0.607 0.607 Chest pain -0.959 0.958 Cold 0.168 -0.170
Not sucks 0.688 -0.681 Mild chest pain -0.861 0.861 Cold+chest pain -0.934 0.934
Just sucks -0.825 0.828 Chest pain+high blood pressure -0.991 0.991 Cold+fever -0.532 0.961

Sucks but very good 0.255 -0.262 Breathing -0.968 0.968 Blood pressure -0.980 0.980
Heart-warming 0.335 -0.3444 Breathing difficulty -0.992 0.991 Bad blood pressure -0.990 0.990

Heart-warming+entertaining 0.538 -0.54 vomiting+breathing -0.883 0.883 High blood pressure -0.981 0.981

Table 3: XAI capability. Explaining word/phrase contributions and also providing contributions to other classes
(semi-counterfactual explanation).

0 5 10 15
−0.8

−0.6

−0.4

−0.2

0

of masked words

L
og

-o
dd

s

HealthLink

0 5 10

−0.4

−0.2

0

IMDB

0 5 10

−0.2

−0.1

0

AGnews

0 10 20
−0.1

−5 · 10−2

0

DPedia

Proposed Lime Random

Figure 8: Change of log-odds according to the number of
masked words. Lower log-odds scores are better. (Teacher

model: Hierarchical attention network)

contribution of a word/phrase w.r.t. other classes,
not only to the predicted class (semi-counterfactual
explanation). Our model’s results in support of
these interests are shown in Table 3. Our technique
can identify the contributions of phrases instead
of words, and it can provide evidence w.r.t. other
classes. For example, our method can recognize
that “bad cough” has a stronger semantic contri-
bution than “cough” w.r.t. the label “going to the
hospital.” Our approach can also recognize the dif-
ference between “mild chest pain” and “chest pain.”
In sentiment analysis, our method understands that
“good” contributes to a positive sentiment while
“not good” contribute to negative sentiment. Also,
note that “very good” contributes more importantly
to a positive sentiment than “good.”

Clustering textual data. Another feature of the
CSV classifier is the ability to cluster documents
via CSVs without using dimensionality reduction
techniques such as PCA clustering algorithms. Re-
sults of document clustering based on the distilled
knowledge from the Transformer on the IMDB and
AGnews are shown in Figure 9 and 10. The clusters
explain our classifier’s behavior and hence provide

a global explanation of the model’s prediction. We
also show the critical role of using the pairwise Eu-
clidean distance in our classification by clustering
sentences into their predicted classes.

(a) Without Euclidean distance loss. (b) With Euclidean distance loss.
Figure 9: Sentence clustering on the predicted class using

pairwise distance vs. without pairwise distance.
(Dataset:IMDB)

(a) Without Euclidean distance loss. (b) With Euclidean distance loss.
Figure 10: Sentence clustering on the predicted class using
Euclidean distance vs. without Euclidean distance. (Dataset:

AGnews)

Parameter reduction. We compare the number
of parameters used by our nearest neighbor classi-
fier and that of the black-box approach, using the
HealthLink data in Table 4. The number of param-
eters used by our compressed classifier is less than
that of each black-box. Our model relies only on
the embeddings and the CSVs, and the rest of the
layers are dropped. The number of parameters of
the proposed classifier is the same for all architec-
tures because our classifier has the same size of
the embedding layer and CSVs on each black-box
architecture. Our model also reduced the inference
time from 0.037−0.085 seconds to 0.007 seconds,
as shown in Table 4.

3029

Method # of parameters # of dropped parameters Inference time
Transformer

Black-box 3049602 0.085
DISK-CSV 2966528 83074 0.007

IndRNN
Black-box 2991490 0.037
DISK-CSV 2966528 24962 0.007

Attention-based bi-LSTM
Black-box 3229826 0.056
DISK-CSV 2966528 263298 0.007

Hierarchical recurrent network
Black-box 3114754 0.039
DISK-CSV 2966528 148226 0.007

Table 4: Number of parameters used for black-box and our
proposed model. We also compare the inference time.

Semantics. We compare our proposed method’s
performance with and without capturing the seman-
tic information (Equation 2). Results depicted in
Table 5 show the importance of encoding semantic
into the class discriminative vector.

Proposed Without semantic
F1 Accuracy Precision Recall F1 Accuracy Precision Recall

Dpedia 0.8806 0.9438 0.8811 0.8809 0.0425 0.624 0.0693 0.0582

Table 5: The impact of first term in Equation 2 on the
classifier’s performance

Analyzing words. We are interested in what
kind of words contribute most to the class predic-
tion. For this analysis, we exploit the word-level
sentiment annotation (Opinion Lexicon) provided
by Liu 2 to track the top 10 words whose impor-
tance was the highest when predicting the senti-
ment class in the IMDB dataset. We evaluated the
number of words contributing to each of the nega-
tive and positive sentiments on 1000 movie reviews.
Table 6 shows that our approach can identify more
salient words that lead to correct sentiment classifi-
cation, i.e., our method can pick better sentiment
lexicons than LIME.

Proposed Lime Random
Positive sentiment 597 423 286
Negative sentiment 382 353 236

Table 6: The number of words in each sentiment class for
1000 samples from the test set.

4.5 Discussion
We have shown that semantic information can
be extracted and used to create a simple inter-
pretable/explainable classifier that performs bet-
ter than the target black-box models. This simple
classifier has the following proprieties:

• It captures the discriminative representations
encoded by the black-box and encodes them
in the CSV.

2https://www.cs.uic.edu/˜liub/FBS/
sentiment-analysis.html#lexicon

• For text classification, the distance is the low-
est between the text input and the CSV of the
correct class, and is high for the other CSVs
of the incorrect classes.

5 Conclusion and Future Work

We have explored an approach to knowledge distil-
lation concurrently from any black-box model to
produce a simple, explainable classifier. The dis-
tilled model achieves better results than the original
black-box models in terms of the model’s perfor-
mance. Also, we showed that our distilled model
provides a better explanation than LIME.

We have also proposed new types of explana-
tions: First, a user can query with any-length
phrases and receive feedback about the phrase’s
contribution to the classes. Second, we also provide
word(feature) importance to non-predicted classes,
which can be used as a semi-counterfactual expla-
nation. Third, we showed how we could cluster the
documents without employing the existing cluster-
ing method.

In future work, we would like to extend this
idea to pre-trained networks, and we also plan to
more deeply investigate the value of counterfactual
explanations.

Acknowledgements

We acknowledge support from the Alberta Machine
Intelligence Institute (AMII), from the Computing
Science Department of the University of Alberta,
and the Natural Sciences and Engineering Research
Council of Canada (NSERC).

References
Leila Arras, Grégoire Montavon, Klaus-Robert Müller,

and Wojciech Samek. 2017. Explaining recurrent
neural network predictions in sentiment analysis. In
Proceedings of the 8th Workshop on Computational
Approaches to Subjectivity, Sentiment and Social
Media Analysis in ACL, pages 159–168.

Jimmy Ba and Rich Caruana. 2014. Do deep nets really
need to be deep? In Advances in neural information
processing systems, pages 2654–2662.

Sebastian Bach, Alexander Binder, Grégoire Mon-
tavon, Frederick Klauschen, Klaus-Robert Müller,
and Wojciech Samek. 2015. On pixel-wise explana-
tions for non-linear classifier decisions by layer-wise
relevance propagation. PloS One, 10(7):e0130140.

Joost Bastings, Wilker Aziz, and Ivan Titov. 2019. In-
terpretable neural predictions with differentiable bi-

https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html##lexicon
https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html##lexicon

3030

nary variables. In Proceedings of ACL, pages 2963–
2977.

Jianbo Chen, Le Song, Martin J Wainwright, and
Michael I Jordan. 2018. L-shapley and c-shapley:
Efficient model interpretation for structured data.
ICLR 2019.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Diederik P. Kingma and Jimmy L. Ba. 2017. Adam: A
method for stochastic optimization. cornell univer-
sity library. arXiv preprint arXiv:1412.6980.

Yann LeCun, John S Denker, and Sara A Solla. 1990.
Optimal brain damage. In Advances in neural infor-
mation processing systems, pages 598–605.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016.
Rationalizing neural predictions. In Proceedings of
EMNLP, pages 107–117.

Shuai Li, Wanqing Li, Chris Cook, Ce Zhu, and Yanbo
Gao. 2018. Independently recurrent neural network
(indrnn): Building a longer and deeper rnn. In Pro-
ceedings of the IEEE conference on computer vision
and pattern recognition, pages 5457–5466.

Wang X. Liu, X. and S. Matwin. 2018. Improving
the interpretability of deep neural networks with
knowledge distillation. In Proceedings of IEEE In-
ternational Conference on Data Mining Workshops,
pages 905–912.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of ACL, pages 142–150. Association for
Computational Linguistics.

Dong Nguyen. 2018. Comparing automatic and hu-
man evaluation of local explanations for text classi-
fication. In Proceedings of NAACL-HLT, Volume 1
(Long Papers), pages 1069–1078.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8):9.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. Why should i trust you?: Explain-
ing the predictions of any classifier. In Proceedings

of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
1135–1144. ACM.

Cynthia Rudin. 2018. Please stop explaining black
box models for high stakes decisions. 32nd Con-
ference on Neural Information Processing Systems
(NIPS 2018), Workshop on Critiquing and Correct-
ing Trends in Machine Learning.

Avanti Shrikumar, Peyton Greenside, and Anshul Kun-
daje. 2017a. Learning important features through
propagating activation differences. In Proceedings
of the International Conference on Machine Learn-
ing, pages 3145–3153.

Avanti Shrikumar, Peyton Greenside, and Anshul Kun-
daje. 2017b. Learning important features through
propagating activation differences. In Proceedings
of the 34th International Conference on Machine
Learning-Volume 70, pages 3145–3153. JMLR. org.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Pro-
ceedings of International Conference on Machine
Learning (ICML), page 3319–3328.

Raphael Tang, Ashutosh Adhikari, and Jimmy Lin.
2018. Flops as a direct optimization objective for
learning sparse neural networks. arXiv preprint
arXiv:1811.03060.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Shuang Wu, Guoqi Li, Feng Chen, and Luping Shi.
2018. Training and inference with integers in deep
neural networks. arXiv preprint arXiv:1802.04680.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of NAACL-HLT, pages 1480–1489.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015a.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems, pages 649–657.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015b.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649–657.

Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen Li,
Hongwei Hao, and Bo Xu. 2016. Attention-based
bidirectional long short-term memory networks for
relation classification. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages
207–212.

