
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, pages 2273–2283
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

2273

Calculating the optimal step of arc-eager parsing for non-projective trees

Mark-Jan Nederhof
School of Computer Science

University of St Andrews, UK
markjan.nederhof@googlemail.com

Abstract

It is shown that the optimal next step of an arc-
eager parser relative to a non-projective depen-
dency structure can be calculated in cubic time,
solving an open problem in parsing theory. Ap-
plications are in training of parsers by means
of a ‘dynamic oracle’.

1 Introduction

A deterministic transition-based dependency parser
is often driven by a classifier that determines the
next step, given features extracted from the cur-
rent configuration (Nivre et al., 2004). The clas-
sifier may be trained on parser configurations and
steps that exactly correspond to ‘gold’ trees from
a treebank. However, better accuracy is generally
obtained by also including configurations reached
by letting the parser stray from the gold trees, to
let the classifier learn how best to recover from
any mistakes. This is associated with the term dy-
namic oracle. If the parser is projective while the
gold trees are non-projective moreover, then it is
unavoidable that configurations be considered that
do not correspond to the gold trees.

Determining the desired output of the classifier
requires calculation of the best next step given an
arbitrary configuration and a gold tree. Typically,
this is the step that allows the most accurate tree to
be reached, in terms of the gold tree.1

For a gold tree that is projective, the optimal
step can be determined in linear time for arc-eager
parsing (Goldberg and Nivre, 2012, 2013) and for
shift-reduce parsing (Nederhof, 2019). For a non-
projective gold tree, the optimal step can be deter-
mined for several types of non-projective parsers
(Gómez-Rodrı́guez et al., 2014; Gómez-Rodrı́guez
and Fernández-González, 2015; de Lhoneux et al.,

1There are alternative perspectives on how to determine
the best next step; cf. Straka et al. (2015).

2017; Fernández-González and Gómez-Rodrı́guez,
2018), as well as for shift-reduce parsing (Neder-
hof, 2019). However, for arc-eager parsing, the
problem has been unsolved until now. Aufrant et al.
(2018) propose an approximation of the optimal
step, based on the procedure for projective gold
trees, and demonstrate the advantages of training a
projective parser directly on non-projective trees.

The current paper introduces an exact calculation
of the optimal step for arc-eager parsing and a non-
projective gold tree, within the same framework
as Nederhof (2019), which consists of a generic
cubic-time tabular dependency parsing algorithm
and a fixed context-free grammar that is applied on
a string extracted from the current configuration,
with edge weights determined by the gold tree.

For arc-eager parsing, the context-free grammar
is considerably more complex than in the case of
shift-reduce parsing. This is a consequence of the-
oretical properties of arc-eager parsing, which we
first need to investigate in detail before we can
define ‘optimality’ of the next step.

2 Dependency structures

Let w = a1 · · · an be a sentence consisting of n
tokens, which can be words or punctuation. Where
we use indices between 1 and n, we also refer to
these as tokens, relying on the assumption that
given an index i we can retrieve the actual token
ai. An additional index 0 represents an imaginary
token prepended to the sentence.

An unlabeled dependency structure T for w is
an unlabeled tree with {0, 1, . . . , n} as the set of
nodes, of which 0 is the root. We represent such
a tree as a set of edges, each represented as a pair
(a, b), where index a is the parent and index b is
the child. The descendants of a node are the node
itself and the descendants of its children. A de-
pendency structure is projective if the set of de-

2274

scendants of each node in the tree can be writ-
ten as {i, i + 1, . . . , j − 1, j} for some i and j
(0 ≤ i ≤ j ≤ n).

We assume each sentence w = a1 · · · an has a
distinguished gold tree Tg. The score of an arbi-
trary tree T for the same w is defined as |T ∩ Tg|.
The accuracy of T is its score divided by n.

A dependency parser is usually designed to find
a tree that is as accurate as possible, given an input
sentence. Such a parser can generally be extended
in a natural way to find a labeled dependency struc-
ture, which is analogously defined as a labeled tree
with root 0. An edge label in such a structure is
called a dependency relation. This paper focuses
on unlabeled dependency parsing.

3 Transition-based dependency parsing

Transition-based dependency parsing is commonly
formalized in terms of a set of configurations and
a finite set of transitions between configurations.
For now, a configuration for input sentence w =
a1 · · · an is a 3-tuple (α, β, T), where α is the stack,
β is the remaining input, and T is a subset of (the
set of edges of) a dependency structure. We assume
αβ is a subsequence of 0 1 · · · n, and β is more
specifically a suffix of 1 · · · n. A transition is
a partial function, mapping one configuration to
another. A step is one application of a transition. A
computation is a sequence of steps, starting with
the initial configuration (0, 1 · · · n, ∅) and ending
in a final configuration (0, ε, T) where ε denotes
the empty string; here T is the resulting tree.

A transition may have a precondition, i.e. a con-
dition on the current configuration that must hold
for the transition to be applicable. Unrestricted
preconditions are less than convenient for our pur-
poses, and therefore we opt for a more uniform
framework, in which a stack element is a pair (a,A)
consisting of a token a and a label A taken from a
fixed set.2 To avoid clutter, we write aA in place of
(a,A); this also emphasizes the relation to more tra-
ditional formulations of dependency parsing, which
are obtained by omitting the superscripts.

A first illustration of this is traditional shift-
reduce dependency parsing, defined by the tran-
sitions in Table 1, here without labels, or alterna-
tively, one may consider there to be only one such

2There is a close connection to bilexical context-free gram-
mars (Eisner and Satta, 1999), on the basis of which one may
alternatively choose to refer to such a label as a ‘delexicalized
stack symbol’, in a kind of lexicalized pushdown automaton.

shift:
(α, bβ, T) `SH (αb, β, T)
reduce left:
(αa1a2, β, T) `RL (αa1, β, T ∪ {(a1, a2)})
reduce right:
(αa1a2, β, T) `RR (αa2, β, T ∪ {(a2, a1)}),

if |α| > 0

Table 1: Shift-reduce dependency parsing.

shift:
(αaC , bβ, T) `SH (αaCbN , β, T)
complete:
(αaN , β, T) `CO (αaC , β, T)
reduce left:
(αaC1 a

C
2 , β, T) `RL (αaC1 , β, T ∪ {(a1, a2)})

reduce right:
(αaC1 a

N
2 , β, T) `RR (αaN2 , β, T ∪ {(a2, a1)}),

if |α| > 0

Table 2: Shift-reduce dependency parsing enforcing the
left-before-right policy.

label, which is left implicit.3

This form of parsing suffers from spurious ambi-
guity in that left and right children may be attached
in different orders. E.g. if token b has left child a1
and right child a2, then after a shift of a1 and b,
there may be a reduce right followed by a shift
of a2 followed by a reduce left. Or there may be
a shift of a2 followed by a reduce left followed
by a reduce right. This can be resolved by re-
quiring that left children are attached before right
children are. In our framework, this left-before-
right policy can be enforced by introducing a label
C, which is given to a token to signal that it is
‘complete’ with regard to its left children. Initially,
shifted tokens carry label N (for ‘no restriction’).
The 0 token always has label C. This results in
Table 2.

There is a simple one-to-one correspondence be-
tween a computation according to Table 2 and a
computation according to Table 1 satisfying the
left-before-right policy. The difference is merely
an application of complete just before a token
ceases to be a topmost stack element, either be-
cause it is reduced into the token to its left, or
because another token is pushed on top. If a token

3Shift-reduce dependency parsing has been known at least
since Fraser (1989) and Nasr (1995). It is also referred to as
‘arc-standard’ parsing (Nivre, 2008).

2275

shift:
(α, bβ, T) `SH (αb, β, T)
left arc:
(αa, bβ, T) `LA (α, bβ, T ∪ {(b, a)}),

if a 6= 0 ∧ @a′[(a′, a) ∈ T]
right arc:
(αa, bβ, T) `RA (αab, β, T ∪ {(a, b)}),

if @a′[(a′, b) ∈ T]
reduce:
(αa, β, T) `RE (α, β, T),

if ∃a′[(a′, a) ∈ T]

Table 3: Arc-eager parsing (Nivre, 2008, p. 525).

becomes non-topmost and reappears later on top
of the stack, after applications of reduce left that
give it right children, then it will still have label C,
which prevents it from taking further left children.

Table 3 is almost verbatim the formulation of
arc-eager parsing by Nivre (2008), except that we
renamed symbols, and we ignore dependency rela-
tions; the formulations by e.g. Nivre (2003, 2004)
and Nivre et al. (2004) are largely equivalent. It
is easy to see that the condition @a′[(a′, b) ∈ T]
for right arc is redundant, as no tokens in the
remaining input can obtain parents before they are
shifted to the stack.

Taking shift-reduce parsing as starting point,
reduce right corresponds roughly to left arc,
while the role of reduce left is only partly ful-
filled by right arc, which postulates that b is a
right child of a, but without removing b as yet, al-
lowing b to take right children, and only later is
that b removed by reduce. Here shift-reduce pars-
ing would postpone the decision whether that b is
the left or the right child of its parent until all de-
scendants of b have been shifted and reduced into
it.

From the perspective of parsing of artificial lan-
guages (Sippu and Soisalon-Soininen, 1990), this
is counter-intuitive. The conventional wisdom of
deterministic parsing is that one should postpone
commitment to occurrences of grammar rules (or
here, dependency edges) for as long as possible,
until enough information is available to resolve any
local ambiguity, assuming left-to-right processing
of the input string, and the ability to inspect only
the top of the stack and the next k tokens of the
remaining input, for a fixed, small number k.

Two arguments have been given why arc-eager
parsing is nonetheless superior for processing nat-

shift:
(α, bβ, T) `SH (αbL, β, T)
left arc:
(αaL, bβ, T) `LA (α, bβ, T ∪ {(b, a)})
right arc:
(αaX , bβ, T) `RA (αaXbR, β, T ∪ {(a, b)})
reduce:
(αaX1 a

R
2 , β, T) `RE (αaX1 , β, T)

reduce correct:
(αaX1 a

L
2 , β, T) `RC (αaX1 , β, T ∪ {(a1, a2)})

Table 4: Reformulated arc-eager parsing, with X ∈
{R,L}, with an extra fifth transition needed to make it
work in practice.

ural language. The first is that this earlier com-
mitment made by right arc, in terms of the ear-
lier creation of the dependency edge, offers addi-
tional information about the tree under construc-
tion, to better predict the next steps, using some
type of classifier. The second argument in favor
of arc-eager parsing is that the earlier creation of
the dependency edge ensures that the partial tree
under construction remains as connected as pos-
sible, which may help simultaneous syntactic and
semantic processing. See Nivre (2004, 2008) and
Damonte et al. (2017) for related discussions.

Next we rephrase arc-eager parsing to use la-
bels to express preconditions, to prepare us for
Section 4. Note that a token is transferred from
the remaining input to the stack by either shift or
right arc. In the former case, it must eventually
become a left child of its parent, and in the latter
case, it becomes a right child. We use labels L
and R for these cases.4 In a configuration with
set T as third element, existence of a stack ele-
ment aL implies @a′[(a′, a) ∈ T] and aR implies
∃a′[(a′, a) ∈ T]. We thereby obtain the first four
transitions in Table 4. Token 0 always has label R,
and cannot be popped by reduce due to the aX1 .
The fifth transition will be discussed later.

Arc-eager parsing in either of the above two for-
mulations cannot work in practice. The problem
is illustrated in Table 5. In the last configuration,
none of the steps is applicable. The situation arises
when the remaining input becomes empty while
there is a L label anywhere in the stack. Assum-
ing the classifier used for predicting the next step
cannot look unboundedly deep in the stack, this
problem is unavoidable.

4L and R are akin to 0 and 1 from Kuhlmann et al. (2011).

2276

(0R , 1 2 3, ∅) `SH

(0R 1L , 2 3, ∅) `RA

(0R 1L 2R , 3, {(1, 2)}) `RA

(0R 1L 2R 3R, , {(1, 2), (2, 3)}) `RE

(0R 1L 2R , , {(1, 2), (2, 3)}) `RE

(0R 1L , , {(1, 2), (2, 3)})

Table 5: Arc-eager parsing is stuck in a configuration
without applicable transitions.

One possible fix is to add the unshift transition
of Nivre and Fernández-González (2014); see also
Honnibal and Johnson (2015). As this causes con-
siderable complications to our framework, we will
solve this in another way, reminiscent of Honnibal
et al. (2013), which also helps to make a connec-
tion with shift-reduce parsing later. Our proposed
fix is to allow a reduce even if the top of stack has
label L, by means of the fifth transition of Table 4,
reduce correct. This transition is not needed
during training if only computations are consid-
ered that most straightforwardly correspond to gold
trees, with left arc applied only on a token that
is to become the left child of its parent. This may
mean however that, in the case of labeled depen-
dency parsing, the trained classifier has no basis to
predict the dependency relation of the edge created
by this transition when applied during testing. This
can be solved by moving the creation of the edge
from right arc to reduce, and by then merging
reduce and reduce correct, as in Table 6.

This formulation at first sight appears to nullify
the property that has been argued to give arc-eager
an advantage over shift-reduce parsing, namely the
early availability of edges connecting a parent and a
right child. However, these edges are still identified
by investigating which tokens in the stack have
labelR: their parent is the token immediately left to
it in the stack. In other words, a classifier predicting
the next step can be made to have access to the
exact same feature values as before.

This formulation of arc-eager parsing, as do the
original formulations (Goldberg and Nivre, 2012,
p. 963), allow the same dependency structure to be
obtained in two different ways; cf. Table 7. There
are few studies that compare parsing accuracy be-
tween the two ways of resolving this, by prefer-
ring either shift before reduce, or reduce be-
fore shift, and some literature suggests the choice
is arbitrary,5 although the results from one study

5Cf. “harmless SHIFT-REDUCE conflicts” (Nivre, 2006, p.

shift:
(α, bβ, T) `SH (αbL, β, T)
left arc:
(αaL, bβ, T) `LA (α, bβ, T ∪ {(b, a)})
right arc:
(αaX , bβ, T) `RA (αaXbR, β, T)
reduce:
(αaX1 a

Y
2 , β, T) `RE (αaX1 , β, T ∪ {(a1, a2)})

Table 6: Corrected arc-eager parsing, with X,Y ∈
{R,L}.

0 1 2 3 4

(0R 1R 2R , 3 4, ∅) `SH

(0R 1R 2R 3L, 4, ∅) `LA

(0R 1R 2R , 4, {(4, 3)}) `RE

(0R 1R , 4, {(1, 2), (4, 3)}) ` . . .
or

(0R 1R 2R , 3 4, ∅) `RE

(0R 1R , 3 4, {(1, 2)}) `SH

(0R 1R 3L , 4, {(1, 2)}) `LA

(0R 1R , 4, {(1, 2), (4, 3)}) ` . . .

Table 7: Same structure obtained in two ways.

(Qi and Manning, 2017) suggest the shift-before-
reduce policy could be slightly better.

One way to enforce the reduce-before-shift pol-
icy is to opt for a different division of labor between
stack and the leftmost token of the remaining in-
put, whereby we must shift a node from remaining
input to stack before it obtains its first left child
or before it is decided whether it is to be a left
child or a right child. Table 8 presents this nor-
malized arc-eager parsing. The shift is now sim-
ply the transfer of a token from remaining input
to stack, without making a commitment whether
it is to become a left or right child, which is in-
dicated by the N label. Where before we had
shift and right arc, we now have left child
and right child, which commit a token on top
of the stack to be a left or right child of its parent,
respectively. Where before we had left arc, we
now have reduce right, and reduce is more ap-
propriately renamed to reduce left. There is a
simple one-to-one correspondence between a com-
putation according to Table 8 and a computation
according to Table 6 satisfying the reduce-before-

98).

2277

shift:
(αaX , bβ, T) `SH (αaXbN , β, T)
left child:
(αaN , β, T) `L (αaL, β, T)
right child:
(αaN , β, T) `R (αaR, β, T)
reduce left:
(αaX1 a

Y
2 , β, T) `RL (αaX1 , β, T ∪ {(a1, a2)})

reduce right:
(αaL1 a

N
2 , β, T) `RR (αaN2 , β, T ∪ {(a2, a1)})

Table 8: Normalized arc-eager parsing, with X,Y ∈
{R,L}.

shift policy. Moreover, the same feature values can
be used, albeit after renaming. Specifically, if the
top of stack has label N , then e.g. a feature refer-
ring to the top of stack in the case of Table 6 should
instead refer to the first element underneath the top
of stack in the case of Table 8.6

One advantage of the normalized formulation is
that it clearly reveals the relation to shift-reduce
parsing. In particular, instead of complete in
Table 2, we have the more specific left child and
right child, of which the latter constitutes the
early commitment of a token to be right child, as
explained before.

4 Calculating the optimal step

Assume there are τ transitions, denoted by `1, . . . ,
`τ . Let ` represent an application of any of these
transitions, and let `∗ denote the reflexive transitive
closure of `. For a given configuration (α, β, T)
for input sentence w with gold tree Tg, there are up
to τ steps (α, β, T) `i (αi, βi, Ti), i = 1, . . . , τ .
For each of these, the score is the maximal ρi =
|T ′i ∩ Tg| with (αi, βi, Ti) `∗ (0R, ε, T ′i) for some
T ′i ; if `i is not applicable on (α, β, T), or if no final
configuration is reachable from (αi, βi, Ti), then
we set ρi = −∞. The task is now to compute that
ρi for each i. This determines which transition to
apply next, to eventually obtain the highest-scoring
tree, irrespective of any ‘incorrect’ steps performed
in the past, that is, steps that were inconsistent with
the gold tree. Because |T ∩ Tg| is the same for all
i, and because the value of |T ′′i ∩ Tg| ≤ 1 with
(α, β, ∅) `i (αi, βi, T ′′i) is easily determined by a
single lookup, the remaining problem is to compute

6The division of labor between stack and remaining input
is also what distinguishes Table 2 from the hybrid model of
Kuhlmann et al. (2011).

the maximal σi = |T ′′′i ∩ Tg| with (αi, βi, ∅) `∗
(0R, ε, T ′′′i).

As shown by Goldberg and Nivre (2012, 2013),
the optimal step can be determined in linear time
for (uncorrected) arc-eager parsing, provided the
gold tree is projective. The procedure is defined in
terms of costs of transitions, rather than in terms of
scores. We revisit this in Section 5.

For normalized arc-eager parsing (Table 8) and
projective gold trees, the problem appears to be
no easier than for shift-reduce parsing, but can
still be solved in linear time, by a straightforward
refinement of the algorithm by Nederhof (2019),
blocking a token from becoming a left child of its
parent if its label is R.

Now assume the gold tree may be non-projective.
For shift-reduce parsing, Nederhof (2019) presents
a cubic-time algorithm for calculating σi, generaliz-
ing the procedure of Goldberg et al. (2014), which
is applicable only on projective trees. The algo-
rithm has a modular design, in terms of a generic
tabular dependency parsing algorithm (Eisner and
Satta, 1999), plus an explicitly ‘split’ bilexical
context-free grammar (Eisner and Satta, 1999; Eis-
ner, 2000; Johnson, 2007) that encodes computa-
tions of shift-reduce parsing. A given configuration
is translated to an input string, and weights between
pairs of input positions are set according to exis-
tence of edges between corresponding tokens in the
gold tree. Exhaustive parsing of the string by the
grammar, using an appropriate semiring, yields σi.

Here we show that the same framework is ap-
plicable on arc-eager parsing. The generic tabular
dependency parsing algorithm remains the same,
but a new grammar is needed to encode compu-
tations of arc-eager parsing. Following Nederhof
(2019), nonterminals are either single symbols or
pairs of symbols, and rules are of one of the forms:
A → (B,C), (B,C) → a, (B′,) → A (B,)
or (, C ′)→ (, C) A, where a is a terminal. The
last two forms are shorthand for any rules obtained
by consistent substitution of the two underscores;
which symbols can be meaningfully substituted is
clear from context, as exemplified below.

We start with the normalized form (Table 8),
which requires the grammar in Table 9, with the
indicated translation from the configuration to an
input string. The intuition behind this grammar is
similar to the one by Nederhof (2019), but more
cases need to be distinguished due to the labels.
Grammar symbols R and Rt correspond to tokens

2278

1) (R,R) →r
2) (Rt, Rt)→rt
3) (, Rt) →(, R) Rt
4) (, Rt) →(, R) Lt
5) (, Rt) →(, R) N
6) (, Rt) →(, Rt) N
7) R →(R,R)
8) Rt →(R,Rt)
9) Rt →(Rt, Rt)

10) (L,L) →`
11) (Lt, Lt)→`t
12) (, Lt) →(, L) Rt
13) (, Lt) →(, L) Lt
14) (, Lt) →(, L) N
15) (, Lt) →(, Lt) N
16) L →(L,L)
17) Lt →(L,Lt)
18) Lt →(Lt, Lt)

19) (N,N)→n
20) (, N) →(, N) N
21) (N,) →N (N,)
22) (N,) →L (N,)
23) (N,) →Lt (N,)

24) (N,) →Lb (N,)
25) N →(N,N)
26) (Lb, Lb)→`b
27) (, Lb) →(, Lb) N
28) Lb →(Lb, Lb)

Table 9: Grammar for normalized arc-
eager dependency parsing of a string in
{r, `}k−1{rt, `t, `b,n}nm, representing a stack
of length k and a remaining input of length m. A label
R in the top of stack is translated to rt, and other
occurrences of R are translated to r. A label L in the
top of stack is translated to `t, unless the candidate
transition is left child, in which case it is translated
to `b; other occurrences of L are translated to `. A
label N in the top of stack is translated to n.

in the stack with label R, where Rt specifically
means that the token is on top of the stack. Rules
(3)–(4) distinguish the two cases Y ∈ {R,L} of
reduce left with X = R. The rules are best
read from right to left, as here for example “if the
top of stack has label R or L, and if the token
underneath has label R, then the latter keeps its
label R and becomes the top of stack”. Rules (5)–
(6) allow for reduce left with a right child that
was in the remaining input, or that was the top
of stack with label N . In (6), the underscore can
be substituted by R or Rt. In (3)–(5), the only
meaningful substitution is by R. Rules (10)–(18)
are analogous to (1)–(9). Rules (20)–(21) allow
any projective parse of the remaining input (as well
as of the top of stack if that had label N), and (22)–
(24) handle a token in the remaining input taking
a left child in the stack, provided it has label L. In
(20)–(24), the only meaningful substitution of the
underscore is by N .

If a token has already been given label L, then
it becoming a right child by (4) or (13) amounts
to correcting a mistake made earlier, and may be
necessary so the computation does not get stuck
(cf. Table 5). If the next transition to be considered
is left child however, which puts L in the top of

0R 1L 2R | 3

Rt

(R,Rt)

N

(N,N)
Lt

(L,Lt)

Rt

(R,R) (L,L)(Rt,Rt) (N,N)

r ` rt n

Figure 1: Dependency structure and configuration with
stack of height 3 and remaining input of length 1, and
corresponding derivation.

stack, then we do not wish the corresponding token
to become a right child; right child should be
applied instead. Label L is then translated to `b
with b for ‘blocking’ (4) and (13).

Figure 1 exemplifies a derivation encoding a
computation. A formal proof of correctness is by in-
duction, showing that existence of a subderivation
of the grammar implies existence of a correspond-
ing subcomputation with the same score, and vice
versa. Cf. the proof sketch by Nederhof (2019) for
shift-reduce parsing.

Unnormalized arc-eager parsing (Table 6) re-
quires a different approach, due to the different di-
vision of labor between stack and remaining input.
We now need to count the number of right children
of a token in the stack that were themselves in the
stack, up to but not exceeding 1. E.g. rule (5) in
Table 10 counts the first right child, but there is
no further rule with right-hand side (, R1) R to
allow a second right child from among the stack
elements; other children from the remaining input
are allowed, as e.g. by rule (10).

We now also need to observe the chosen policy.
With the shift-before-reduce policy, if the candi-
date transition is reduce, then the first symbol of
the remaining input becomes np (p for ‘policy’).
There is a notable absence of a rule with right-hand
side Np (N,), which means that this token cannot
become a left child without first taking a child from
the stack as by (39) and (43), because if it were, the
policy would be violated: the token should have
been shifted, and reduced into its parent on the
right, preceding the reduce. There is no restric-
tion on the token becoming a right child, as e.g.

2279

by (4).
A strict reduce-before-shift policy implies that

a token in the stack should not be reduced into the
token to its right if other tokens were previously
shifted on top, unless it is to obtain more right chil-
dren. This is because by the policy, the reduction
should have happened earlier. Alternatively we
may opt for a non-strict reduce-before-shift policy
that allows us to correct mistakes made earlier. Ei-
ther variant uses rp, `p, Rp and Lp to enforce the
policy. E.g. there are no rules with Rp in the right-
hand side, effectively blocking a derivation. Here
rules (7)–(9) are needed to give an R-labeled stack
element at least one right child, which by (14)–(15)
allows the token to participate in a full derivation.

In order to compute the score for arc-eager pars-
ing without our correction (starting in Table 4
with reduce correct), one should omit the rules
from Table 10 that correspond to L-labeled tokens
becoming right children, i.e. (6), (9), (22), (25).
Whether the unshift from Nivre and Fernández-
González (2014) and Honnibal and Johnson (2015)
can be handled in our framework requires further
study.

5 Calculation for projective trees

If the gold tree is projective, then the problem
becomes much easier. Here we assume the for-
mulation of arc-eager parsing as in Table 6. The
number σi, as defined in Section 4, for a configura-
tion with stack αi = a1 · · · ak and remaining input
βi = b1 · · · bm, can be calculated by counting in
the first instance:

• the number of gold edges (ap−1, ap), where
1 < p ≤ k, plus

• the number of gold edges (ap, bq), plus

• the number of gold edges (bp, aq), such that
aq has label L, plus

• the number of gold edges (bp, bq),

but discounting a number of these, as follows. First,
consider the case of the candidate transition be-
ing shift. If m = 0, the score becomes −∞,
as there is no available parent for the shifted to-
ken. If m > 0, we discount a possible gold edge
(ak, bp) if the rightmost descendant of bp is bm, be-
cause no projective tree exists in which ak is a left
child while its descendants include the end of the
input. We further discount a possible gold edge

1) (R,R) →r
2) (Rp, Rp)→rp
3) (, R) →(, R) N
4) (, R) →(, R) Np

5) (, R1) →(, R) R
6) (, R1) →(, R) L
7) (, R) →(, Rp) N
8) (, R1) →(, Rp) R
9) (, R1) →(, Rp) L
10) (, R1) →(, R1) N
11) (, R1) →(, R1) Np

12) R →(R,R)
13) R →(R,R1)
14) R →(Rp, R)
15) R →(Rp, R1)
16) Rp →(Rp, Rp)

17) (L,L) →`
18) (Lp, Lp)→`p
19) (, L) →(, L) N
20) (, L) →(, L) Np

21) (, L1) →(, L) R
22) (, L1) →(, L) L
23) (, L) →(, Lp) N
24) (, L1) →(, Lp) R
25) (, L1) →(, Lp) L
26) (, L1) →(, L1) N
27) (, L1) →(, L1) Np

28) L →(L,L)
29) L →(L,L1)
30) L →(Lp, L)
31) L →(Lp, L1)
32) Lp →(Lp, Lp)

33) (N,N) →n
34) (Np, Np)→np

35) (, N) →(, N) N
36) (, Np) →(, Np) N
37) (N,) →N (N,)
38) (N,) →L (N,)
39) (N,) →L (Np,)
40) (N,) →Lp (N,)

41) (N,) →Lb (N,)
42) N →(N,N)
43) N →(N,Np)
44) Np →(Np, Np)
45) (Lb, Lb)→`b
46) (, Lb) →(, Lb) N
47) Lb →(Lb, Lb)

Table 10: Grammar for unnormalized arc-eager de-
pendency parsing. With reduce-before-shift, the string
is in r{r, rp, `, `p}k−2{r, rp, `, `p, `b}nm, for stack
length k and remaining input length m. Now `b is
used if the candidate transition is shift, and a non-
bottommost symbol to the left of that becomes rp or
`p. For a strict reduce-before-shift policy moreover,
the second to the k − 2-th symbols become rp or `p,
and furthermore the k − 1-th becomes rp or `p if the
candidate transition is left arc or reduce, and further-
more the k-th becomes rp or `p if the candidate tran-
sition is left arc; otherwise, these symbols are r or `.
With shift-before-reduce, the string does not contain rp
or `p, and the first n is replaced by np if the candidate
transition is reduce.

(ak−1, ak), because if ak is to become a right child
of ak−1, then the correct step is right arc in place
of shift.

Second, if the candidate transition is reduce,
we discount up to one gold edge in case of the shift-
before-reduce policy, as follows, and as illustrated
by Figure 2. Let r be largest such that, for some
p > 1, there is a gold edge (bp, ar) where ar has
label L, or there is a gold edge (ar, bp); if no such
gold edge exists, let r = 1. If there is no s (r <
s ≤ k) such that as has label L and (as−1, as) is
not a gold edge, then we discount any gold edge

2280

ar as−1 aLs ak | b1 bq bp

Figure 2: Discounting of (bq, b1) if s does not exist.

(bq, b1). The rationale is that if b1 can be given
a child from among the tokens in the stack (by a
gold edge or otherwise, and without discounting
another gold edge elsewhere), then this justifies
postponing the shift until after the reduce. If it
cannot be, then b1 becoming a left child violates
the shift-before-reduce policy.

Lastly, if the candidate transition is shift, we
discount further gold edges in case of the non-strict
reduce-before-right policy, which requires ak−1 to
either become a child of some bp or take some bp
as child, to justify it not having been reduced into
ak−2 before the shift.7 From among the cases to be
distinguished, we choose the one that discounts the
fewest edges. First, if the label of ak−1 is L, we can
let it become a left child, but should then discount
a possible gold edge (ak−2, ak−1). Second, if there
is a gold edge (ak−1, bp), then no edges need be
discounted. Otherwise, we need to find a child bp
of ak−1, for which there are five options, illustrated
in Figure 3: (A) The first option is applicable if
ak has descendants among the remaining input or
has a parent bq (q > 1) among the remaining input.
In the former case, choose bp to be the rightmost
among the descendants (but let p = m − 1 if the
rightmost descendant is bm), and in the latter case
choose p = 1. In effect we assume non-gold edges
(ak−1, bp) and (bp, ak), and consequently we dis-
count any gold edge (bq, bp) and any gold edge to
ak. (B1) If ak has a parent bq in the remaining input,
choose bp to be bq. In effect we assume non-gold
edge (ak−1, bq), and consequently we discount any
gold edge (ar, bq) with r ≤ k− 2 or any gold edge
(br, bq), as well as any gold edges (bq, as) with
s ≤ k − 2. (B2) If ak does not have a parent in the
remaining input, let bq be the token immediately to
the right of the rightmost descendant of ak among
the remaining input (but let q = m if the rightmost
descendant is bm), and let q = 1 if ak has no de-
scendants among the remaining input. As in (B1),
we in effect assume non-gold edge (ak−1, bq), and
discount any gold edge (ar, bq) with r ≤ k − 2 or

7The strict reduce-before-right policy is more difficult to
realize, and discussion is omitted for space reasons.

(A)
ak−1 aLk | • • bp bq

(B1)
ak−1 aLk | bq

(B2)
ak−1 aLk | • • bq

(C1)
ak−1 aLk | bq bu bp

(C2)
ak−1 aLk | • • bq bu bp

Figure 3: Non-strict reduce-before-shift policy. Bold
edges are gold. Dashed edges are discounted. Dotted
edges are non-gold.

any gold edge (bu, bq), as well as any gold edges
(bq, as) with s ≤ k − 2.

(C1) and (C2) are similar to (B1) and (B2), but
bp is chosen to be the first ancestor of bq that does
not have a parent in the remaining input (but it may
have in the stack). Much as before, we discount
any gold edge (ar, bp) with r ≤ k − 2, as well as
any gold edges (bu, as) with s ≤ k − 2, where bu
is bq or bp or any other token on the path of gold
edges from bq to bp. One can show that choices of
bp other than in (A), (B1), (B2), (C1), (C2) would
entail discounting of at least as many edges.

Aufrant et al. (2018) propose approximating the
calculation of the optimal step for a non-projective
gold tree, by a procedure defined in terms of costs
of transitions, analogous to the procedure by Gold-
berg and Nivre (2012, 2013), but without taking
full account of edges that violate projectivity. Sim-
ilarly, if the above procedure to calculate scores is
applied on a non-projective tree, then an approxi-
mation is obtained. The advantage is the simplicity
and the linear time complexity.

6 Empirical results

The advantage of ‘dynamic oracles’ for improving
parsing accuracy has been demonstrated before.
Our experiments have therefore concentrated on

2281

0 20 40 60 80 100

10−2

10−1

100

101

102

103

k +m

m
ea

n
ru

nn
in

g
tim

e
pe

rs
te

p
(m

s)

shift-before-reduce
non-strict reduce-before-shift

Figure 4: Mean running time per (exact) calculation of
the optimal step (milliseconds) against the total length
k +m of configurations.

two obvious questions, viz. whether the cubic-time
calculation is feasible in practice, and whether the
higher time costs are rewarded with a more accurate
output, relative to a linear-time approximation of
the kind discussed in Section 5.

Considered here is unnormalized arc-eager pars-
ing. The classifier, implemented in Java and DL4J,
uses simple features (gold POS of the three right-
most elements of the stack and three leftmost el-
ements of the remaining input, and leftmost and
rightmost dependency relations in the topmost two
stack elements).

The parser was first trained on configurations
corresponding to projectivized gold trees from the
German (GSD) corpus of Universal Dependencies
v2.2. The trained parser was then applied on the
unprojectivized trees, and the optimal step was cal-
culated for each configuration thus visited.

6.1 Running time

Figure 4 presents running time, on a laptop with an
Intel i7-7500U processor (4 cores, 2.70 GHz) with
8 GB of RAM. The larger context-free grammar
of Table 10, relative to the one for shift-reduce
parsing, leads to a higher constant factor in the
time complexity. Nonetheless, the calculation is
feasible even for long sentences.

6.2 Accuracy of the approximation

In 8.0% and 8.1% of the visited configurations, one
or more of the values ρ1, . . . , ρ4 for the four transi-
tions differed between the exact calculation (Sec-
tion 4) and the approximation (Section 5), for the
shift-before-reduce and non-strict reduce-before-

exact SH-b.-RE approximation proportion
{SH,RA} {SH} 29.4%
{SH,LA} {SH} 20.5%
{SH,RA,RE} {SH} 10.8%
{SH,RA,RE} {RE} 7.5%
{SH,RA,LA,RE} {SH,LA} 6.0%
{SH,RA,LA,RE} {LA,RE} 4.3%
{LA,RE} {SH,RA,LA,RE} 3.2%

exact n.-s. RE-b.-SH approximation proportion
{SH,RA} {SH} 31.4%
{SH,LA,RE} {SH} 17.9%
{RA,RE} {RE} 16.2%
{RA,LA,RE} {LA,RE} 6.6%
{SH,RA,LA,RE} {SH} 4.0%
{LA,RE} {SH,RA,LA,RE} 3.0%
{RE} {SH,RA,RE} 2.9%

Table 11: Proportions of the seven most frequent errors
made by the approximation of the optimal transition(s).

shift policies respectively. However, we are less
interested in the absolute values of the scores than
in which of them is highest. Note further that more
than one may be equal to their maximum. By com-
paring the sets of transitions with the maximum
calculated score, we found that the true set and the
approximate set differed for only 0.4% and 0.5%
of the total number of configurations, for the two
policies respectively. The most frequent errors are
listed in Table 11. Somewhat surprisingly, in the
great majority of cases, the approximate set was
contained in the true set; these cases sum to 89.0%
and 87.8% of the total number of errors, respec-
tively. The implication is that if a parser trained
with a ‘dynamic oracle’ does arbitrary tie breaking
between multiple optimal transitions, then there
are few immediate prospects to improve parsing
accuracy by incorporating the exact calculation.
The situation may change if future research reveals
better alternatives to arbitrary tie breaking.

7 Conclusions

Our exact calculation of the optimal step solves an
open problem in parsing theory. Further research
into the application of ‘dynamic oracles’ is needed
to determine whether this can be exploited to im-
prove parsing accuracy.

Acknowledgements

Many thanks go to the reviewers, whose reports
were very detailed and helpful.

2282

References
L. Aufrant, G. Wisniewski, and F. Yvon. 2018. Exploit-

ing dynamic oracles to train projective dependency
parsers on non-projective trees. In Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, volume 2, pages 413–419, New Orleans,
Louisiana.

M. Damonte, S.B. Cohen, and G. Satta. 2017. An in-
cremental parser for Abstract Meaning Representa-
tion. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computa-
tional Linguistics, volume 1, pages 536–546, Valen-
cia, Spain.

J. Eisner. 2000. Bilexical grammars and their cubic-
time parsing algorithms. In H. Bunt and A. Nijholt,
editors, Advances in Probabilistic and other Parsing
Technologies, chapter 3, pages 29–61. Kluwer Aca-
demic Publishers.

J. Eisner and G. Satta. 1999. Efficient parsing for
bilexical context-free grammars and head automaton
grammars. In 37th Annual Meeting of the Associa-
tion for Computational Linguistics, Proceedings of
the Conference, pages 457–464, Maryland, USA.

D. Fernández-González and C. Gómez-Rodrı́guez.
2018. A dynamic oracle for linear-time 2-planar
dependency parsing. In Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
volume 2, pages 386–392, New Orleans, Louisiana.

N. Fraser. 1989. Parsing and dependency grammar.
UCL Working Papers in Linguistics, 1:296–319.

Y. Goldberg and J. Nivre. 2012. A dynamic oracle for
arc-eager dependency parsing. In The 24th Inter-
national Conference on Computational Linguistics,
pages 959–976, Mumbai, India.

Y. Goldberg and J. Nivre. 2013. Training determinis-
tic parsers with non-deterministic oracles. Transac-
tions of the Association for Computational Linguis-
tics, 1:403–414.

Y. Goldberg, F. Sartorio, and G. Satta. 2014. A tabu-
lar method for dynamic oracles in transition-based
parsing. Transactions of the Association for Compu-
tational Linguistics, 2:119–130.

C. Gómez-Rodrı́guez and D. Fernández-González.
2015. An efficient dynamic oracle for unrestricted
non-projective parsing. In 53rd Annual Meeting of
the Association for Computational Linguistics and
7th International Joint Conference on Natural Lan-
guage Processing, volume 2, pages 256–261, Bei-
jing.

C. Gómez-Rodrı́guez, F. Sartorio, and G. Satta.
2014. A polynomial-time dynamic oracle for non-
projective dependency parsing. In Conference on

Empirical Methods in Natural Language Process-
ing, Proceedings of the Conference, pages 917–927,
Doha, Qatar.

M. Honnibal, Y. Goldberg, and M. Johnson. 2013. A
non-monotonic arc-eager transition system for de-
pendency parsing. In Proceedings of the Seven-
teenth Conference on Computational Natural Lan-
guage Learning, pages 163–172, Sofia, Bulgaria.

M. Honnibal and M. Johnson. 2015. An improved non-
monotonic transition system for dependency parsing.
In Conference on Empirical Methods in Natural Lan-
guage Processing, Proceedings of the Conference,
pages 1373–1378, Lisbon, Portugal.

M. Johnson. 2007. Transforming projective bilexi-
cal dependency grammars into efficiently-parsable
CFGs with Unfold-Fold. In 45th Annual Meeting of
the Association for Computational Linguistics, Pro-
ceedings of the Conference, pages 168–175, Prague,
Czech Republic.

M. Kuhlmann, C. Gómez-Rodrı́guez, and G. Satta.
2011. Dynamic programming algorithms for
transition-based dependency parsers. In 49th An-
nual Meeting of the Association for Computational
Linguistics, Proceedings of the Conference, pages
673–682, Portland, Oregon.

M. de Lhoneux, S. Stymne, and J. Nivre. 2017. Arc-
hybrid non-projective dependency parsing with a
static-dynamic oracle. In 15th International Confer-
ence on Parsing Technologies, pages 99–104, Pisa,
Italy.

A. Nasr. 1995. A formalism and a parser for lex-
icalised dependency grammars. In Fourth Inter-
national Workshop on Parsing Technologies, pages
186–195, Prague and Karlovy Vary, Czech Repub-
lic.

M.-J. Nederhof. 2019. Calculating the optimal step in
shift-reduce dependency parsing: From cubic to lin-
ear time. Transactions of the Association for Com-
putational Linguistics, 7:283–296.

J. Nivre. 2003. An efficient algorithm for projective
dependency parsing. In 8th International Workshop
on Parsing Technologies, pages 149–160, LORIA,
Nancy, France.

J. Nivre. 2004. Incrementality in deterministic depen-
dency parsing. In Proceedings of the Workshop
on Incremental Parsing: Bringing Engineering and
Cognition Together, Held in cooperation with ACL-
2004, pages 50–57, Barcelona, Spain.

J. Nivre. 2006. Inductive Dependency Parsing.
Springer-Verlag.

J. Nivre. 2008. Algorithms for deterministic incremen-
tal dependency parsing. Computational Linguistics,
34(4):513–553.

2283

J. Nivre and D. Fernández-González. 2014. Arc-eager
parsing with the tree constraint. Computational Lin-
guistics, 40(2):259–267.

J. Nivre, J. Hall, and J. Nilsson. 2004. Memory-based
dependency parsing. In Proceedings of the Eighth
Conference on Computational Natural Language
Learning, pages 49–56, Boston, Massachusetts.

P. Qi and C.D. Manning. 2017. Arc-swift: A novel
transition system for dependency parsing. In 55th
Annual Meeting of the Association for Computa-
tional Linguistics, Proceedings of the Conference,
volume 2, pages 110–117, Vancouver, Canada.

S. Sippu and E. Soisalon-Soininen. 1990. Parsing The-
ory, Vol. II: LR(k) and LL(k) Parsing, volume 20 of
EATCS Monographs on Theoretical Computer Sci-
ence. Springer-Verlag.

M. Straka, J. Hajič, J. Straková, and J. Hajič, jr. 2015.
Parsing universal dependency treebanks using neu-
ral networks and search-based oracle. In Proceed-
ings of the Fourteenth International Workshop on
Treebanks and Linguistic Theories, pages 208–220,
Warsaw, Poland.

