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Abstract

In this work, we explore joint energy-based
model (EBM) training during the finetuning
of pretrained text encoders (e.g., Roberta) for
natural language understanding (NLU) tasks.
Our experiments show that EBM training can
help the model reach a better calibration that
is competitive to strong baselines, with little
or no loss in accuracy. We discuss three vari-
ants of energy functions (namely scalar, hid-
den, and sharp-hidden) that can be defined on
top of a text encoder, and compare them in ex-
periments. Due to the discreteness of text data,
we adopt noise contrastive estimation (NCE)
to train the energy-based model. To make
NCE training more effective, we train an auto-
regressive noise model with the masked lan-
guage model (MLM) objective.

1 Introduction

Calibration refers to how well a classification
model’s confidence (reflected by its output pos-
terior probability) aligns with its actual accuracy.
As deep learning models achieve amazing accu-
racy in computer vision (He et al., 2015) or natural
language processing (NLP) (Liu et al., 2019; De-
vlin et al., 2018), more research attention has been
drawn to the calibration aspect of these models. As
shown by Guo et al. (2017), the high accuracy from
deep models does not always lead to better calibra-
tion. This motivates an important line of works
attempting to achieve a better trade-off between
accuracy and calibration.

Most existing calibration methods (Guo et al.,
2017; Kumar et al., 2019; Zadrozny and Elkan,
2001) generally rescale the posterior distribution
predicted from the classifier after training. Such
post-processing methods require a held-out devel-
opment set with a decent number of samples to be
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available. To overcome this constraint, Jung et al.
(2020) uses a penalty term to encourage better cali-
bration during training.

In another line of work, Grathwohl et al. (2019)
shows that one can jointly train an energy-based
model (EBM) during the standard training of a
neural classifier. Although calibration is not explic-
itly addressed during EBM training, the calibration
of the resulting model is shown to be greatly im-
proved. Some intuitions of the underlying reasons
will be given in Section 2.3. However, the training
framework proposed by Grathwohl et al. (2019) is
designed for image classifiers, and it can not be
readily applied to discrete text data.

In this work, we propose a framework that uses
noise contrastive estimation (NCE) to jointly train
an energy-based model during the finetuning of
pretrained text encoders (e.g., BERT (Devlin et al.,
2018) or Roberta (Liu et al., 2019)) for NLU tasks.
We compare several variants of energy functions
that can be defined on top of the encoder. Our
experiments show that the resulting models achieve
competitive calibration results comparing to strong
baselines, with little or no loss in accuracy.

2 Framework

2.1 Notations and Background

We focus on the finetuning of pretrained text en-
coder on NLU tasks. We assume samples from
the data distribution Pp are in the form of (z,y)
pairs, where z usually refers to a single or a pair of
sentences, and y refers to the corresponding label.
The number of classes are denoted by |Y|.

Given input x, we first use a text encoder model
(e.g., BERT or Roberta) to encode it and we denote
this embedding as enc(z). For the target classifica-
tion task, a classifier fcrg, which could be a simple
linear transform or a multi-layer perception (MLP),
will be applied to enc(x). We denote the output
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logits as fcrs(enc(x)), whose dimension is equal
to the number of possible classes |Y|. The y-th
logit is denoted by fcrs(enc(x))[y]. The posterior
distribution Py(y|x) is obtained by applying a soft-
max operation to the logits, where 6 refers to the
parameters in the model.

In standard finetuning, the cross-entropy (CE)
loss and gradient based optimizers are used to train
the classifier:

Lcg = E (— long(y\:c)). (D

x,Y)~Lp
In the next few sections, we discuss how we define
and jointly train an EBM on top of the text encoder.

2.2 Definitions of Energy Function

An energy-based model (LeCun et al., 2006) ex-
presses Py(z) as:

exp(—Ejp(z))
7 )

where Z is the normalization factor, and is usually
intractable to compute. We refer to Fy(x), which
returns a scalar value, as the energy function. We
now define three variants of energy functions.

Variant scalar: We introduce another linear
layer gs whose output is a scalar. And we use
it to define the energy function:

Ey(z) = gs(enc(z)). 3)

Variant hidden: As pointed out by Grathwohl
etal. (2019), there’s an EBM “hidden” in every neu-
ral classifier with softmax output, and the energy
function for = can be derived' as:

Ey(z) = —LogSumExpg;l1 (fes(enc(x))[y]).
“4)
Difterent from the scalar variant, here the energy
function directly uses the logits for prediction (vi-
sualized in Figure 1). Hence the impact on the
model’s classification behavior could be larger.
Variant sharp-hidden: The hidden variant has
a potential weakness that, the correlation between
input = and the prediction y is not addressed be-
cause the energy is distributed among all the logits.
Motivated by this potential issue, we propose the
following “sharp” variant:

Ey(x) = —max fevs(enc(z)[y].  (5)

Py(z) = )

Note that (5) can be viewed as an approximation to
(4), and we find it to work well in practice.

"Please see Appendix A for the detailed derivation.

! Ep(x) = —LogSumExp, (fers(enc(x))[y])

Ey(z) = gs(enc(z)) fevs(enc(x))[y] . feus(enc(z))[y)

1§

enc(x) enc(x)

variant scalar variant hidden

Figure 1: Comparison of the scalar and the hidden vari-
ants of energy functions. The modules introduced for
EBM are shaded in green.

Finally, for each variant, we define the energy
function to be Ey(x) = Ey(x)—log P (), where
Py is the noise distribution introduced for NCE.
We will motivate this design choice below.

2.3 NCE Training

‘We use noise contrastive estimation (NCE) (Gut-
mann and Hyvérinen, 2010; Ma and Collins, 2018)
to jointly train the energy model. NCE trains the
model to discriminate between data samples and
noise samples from a given noise distribution Py .
We formulate the NCE loss below:

159(513+)
Pg(er) +K~PN(Q7+)
K~PN(.Z‘_)
Pg(m_) -I—f(~]3]\](x_)7

Lnce= E  —log

T4+ ~PD

(6)
K- E —log

T_~pN

where K is the ratio of noise samples. Note
that Py(z) does not need to be normalized by
construction, therefore we set it to be Py(z) =
exp(—FEp(z)). In our experiments, we mostly re-
port results with noise ratio K = 8, while in some
cases we find that a small ratio of K = 1 works
slightly better. We have also tried with larger ratio
such as 16, but the gain is minimal.

If we directly use the formulations of Fjy(z) de-
fined in last section as the energy function, the
optimization will be difficult because of the Py ()
terms (which could be of very small value) in
the NCE objective. To overcome this issue, we
follow Deng et al. (2020) and define Ey(z) =
Ey(z) — log Py(x). In this way, the Py (z) terms
are canceled, and the objective is simplified to:

1
E —log B +
T4~PD 1+ K -exp(Eo(z4))
K- E -—log K B .
T_~pN K + exp(—FEp(z-))

ACNCE =

@)

In training, we jointly optimize Lcg and LncE
with the Adam optimizer (Kingma and Ba, 2014):

Lioint = LcE + LNCE- (8)
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Intuitively, joint EBM training makes the model
aware of P(x), instead of only focusing on predict-
ing P(y|z) as in standard finetuning. This aware-
ness can potentially help with calibration because
the model can be more conservative when it detects
the input is out-of-distribution.

2.4 Construction of Noise Distribution

For the choice of noise distribution Py, in our pre-
liminary trials, we finetune the GPT-2 language
model (Radford et al., 2019) with samples from the
target training set using the standard LM objective.
However during NCE training, we find that the en-
ergy model can easily discriminate between data
samples and noise samples, which makes training
ineffective. To alleviate this issue, we adopt an
objective similar? to the masked language model
(MLM) loss (Devlin et al., 2018) during the fine-
tuning of the noise model (GPT-2): With a given
mask ratio M, we randomly mask part of x, and
train the model to complete it:

—log Py(z]z™). (9)

r -
MLM Prask (™ |23 M)

xz~Pp,z™~

During noise sample generation, adopting the same
mask ratio M, we feed a masked =™ to the LM
(z is from the training set), and use the generated
sample as the noise sample. In this way, the noise
distribution is made closer to the data distribution.
In our experiments we set M = 0.4. During gener-
ation, we use top-k (Fan et al., 2018) sampling with
k = 20. More details are provided in Appendix B.

3 Experiments

Setting We consider finetuning the Roberta-base
model®, on eight GLUE tasks (Wang et al., 2018).
We do not include results on STS-B because it is a
regression task. To measure calibration error, we
follow Jung et al. (2020); Grathwohl et al. (2019)
and use the expected calibration error (ECE) metric
with B (number of bins) set to 20. To save space,
we defer detailed definition of ECE to Appendix C.

For baseline or NCE training, we follow the rec-
ommended hyper-parameters (learning rate, batch
size, etc.) for Roberta (Liu et al., 2019). Since NCE
training requires more computation (because of the
noise ratio), we have tried finetuning the baseline
with more steps, but we find that gives worse ECE
and very little or no improvement on accuracy.

2The difference is that we still train the model to generate
the full sentence, instead of only the masked words.

*0ur code is based on https://github.com/
huggingface/transformers.
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Figure 2: Visualization of calibration on QNLI and
SST-2. In the histogram plots, we use 10 bins instead
of 20 for better readability. An enlarged version of this
figure is provided in Appendix D.

We compare EBM training with three strong
baselines for calibration: posterior calibrated train-
ing (PosCal) (Jung et al., 2020), temperature scal-
ing (T-Scal) (Guo et al., 2017), and scaling-binning
calibrator (Scal-bin) (Kumar et al., 2019). For
PosCal and Scal-bin, we use the published code.

Scal-bin and T-Scal require a development set
for parameter learning and a test set for evaluation,
but for each GLUE task we only have one labeled
development set available. Therefore, in this work
we treat half of the standard development set as test
set, and keep the other half as development set.

Results In Table 1 and Table 2 we compare test-
set accuracy* and ECE for different methods on the
GLUE tasks. For fair comparison between Scal-
bin / T-Scal and EBM training (which does not use
the development set), we apply them to the whole
training set. We also report their performance when
applied to the development set for reference.

In most tasks, all three EBM variants get substan-
tial improvement in ECE with little or no loss in
accuracy comparing to the (strong) baseline meth-
ods. Moreover, the performance of EBM training
is comparable to Scal-bin / T-Scal applied to the
development set, while their performance degrades
when the development set is not available. Among
the three variants, on average, the sharp-hidden
variant achieves the best accuracy, while the hid-
den variant achieves best calibration. We visualize
the calibration error in Figure 2.

“For CoLA we report with Matthews correlation coeffi-
cient (mcc).
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SST-2 MNLI |MNLI(mm)| QNLI QQP MRPC CoLA Average

Method acc. ECE |acc. ECE |acc. ECE |acc. ECE |acc. ECE|ace. ECE |mcc. ECE |perf. ECE
Baseline 942 .050 [.876 .067 |.872 .068 |[.929 .043 [.904 .034 |.862 .133 |.539 .182].802 .102
Scal-bin(train) |.940 .036 |.872 .051 |.869 .056 |.931 .034 |.904 .035|.843 .092 |.586 .146|.791 .096
T-Scal(train) |.942 .042 |.876 .058 |.872 .060 |.929 .030 [.904 .034 |.862 .126 |.539 .175|.802 .096
PosCal 944 .040 | .876 .067 |.872 .067 |.930 .039 |.905 .032|.867 .129 |.540 .184 |.810 .092
(EBM)scalar |.942 .033 |.871 .038 |.871 .047 |.927 .016 |.899 .034 |.862 .098 |.540 .150 |.801 .073
(EBM)hidden |.956 .032 |.869 .032 |.868 .044 |.923 .016 |.900 .033 |.867 .099 | .545 .131 | .807 .063
(EBM)s-hidden | .947 .038 |.875 .027 |.872 .031 |.930 .016 |.900 .032 |.862 .089 |.563 .133 |.815 .069
Scal-bin(dev) |.944 .019 |.876 .030 [.870 .032 |.931 .021 [.905 .021 [.862 .062 |.557 .048 | .802 .052
T-Scal(dev) |.942 .037 |.876 .024 |.872 .026 |.929 .018 |.904 .026 |.862 .126 |.539 .109 |.802 .072

Table 1: Test-set accuracy and ECE results for different methods on GLUE tasks.

“s-hidden” refers to the sharp-

hidden variant. The leading zeros are omitted to save space. Note that T-Scal and Scal-bin are applied to the
training set or the development set, respectively. Due to space constraint, results on RTE and WNLI are deferred to
Table 2. The average value is compute on all nine test sets. For each task, the method that achieves best calibration

without using the development set are shown in bold.

RTE WNLI

Method acc. ECE|acc. ECE
Baseline 124279 |.571 .058
Scal-bin(train) |.717 .271 |.457 .144
T-Scal(train) |.724 .275|.571 .063
PosCal 789 206 |.571 .060
(EBM)scalar |.753 .207 |.542 .033
(EBM)hidden |.797 .148 | .542 .036
(EBM)s-hidden | .811 .182 |.571 .073
Scal-bin(dev) |.731 .042 |.542 .189
T-Scal(dev) |.724 .235|.571 .046

Table 2: (Following Table 1) Main results on RTE and
WNLIL
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Figure 3: (QNLI) Left: How ECE changes during train-
ing. Right: The trade-off between accuracy and ECE
for checkpoints (every 500 iterations) during training.
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Figure 4: The entropy of the posterior (Py(-|z)) versus
energy value Fy(z) for SST-2 test-set samples.

Text: when the film ended, i felt tired and drained and
wanted to lie on my own deathbed. Label: 1

FEy (z): -9.37 Baseline: (.999, .001) — EBM: (.998, .002)
Text: sit through this one, you won’t need a magic watch
to stop time; your dvd player will do it for you. Label: 1
By (z): -7.57 Baseline: (.006, .994) — EBM: (.345, .655)

Table 3: The change of the model’s confidence (poste-
rior distribution) for low and high-energy data samples
of SST-2. The EBM variant shown is sharp-hidden. We
also provide QNLI examples in Appendix D.

In Figure 3, we plot how test-set ECE changes
during training. It is shown as the training reaches
the high-accuracy area, the calibration for baseline
model becomes worse, while EBM training is able
to reach a better trade-off between accuracy and
calibration.

How does the model get better calibration? In
Figure 4, we compute and plot the energy value
Ey(x) versus the entropy of the posterior distribu-
tion H(Py(-|2)) = Y —Po(ylz) log Pa(ylz).
for samples in the SST-2 test set. It is shown
that models trained with the hidden and sharp-
hidden variants tend to assign more conservative
predictions (reflected by higher entropy) for higher-
energy (less likely) samples. We suspect this is due
to the strong coupling between the energy function
and the classification logits. We provide concrete
examples in Table 3. However, we need to mention
that we do not observe this interesting trend (Figure
4) in all datasets (e.g., QNLI).

4 Related Works

Finally, we review applications of NCE or energy-
based models in the NLP literature. Due to its self-
normalizing property, NCE training has been used
for faster inference (Mnih and Teh, 2012; Chen
et al., 2015; Labeau and Allauzen, 2018) of auto-

1757



regressive language models. It has also been used
in an attempt to train a sentence-level bi-directional
LM (He et al., 2016).

More closely related to our work, Deng et al.
(2020) adopts NCE to train an EBM defined on
top of a text encoder (the scalar variant), and uses
it to improve language generation. EBM has also
been recently used in non-autoregressive machine
translation (Tu et al., 2020).

5 Conclusion

In this work, we explore joint EBM training dur-
ing the finetuning of pretrained text encoders with
noise contrastive estimation. We find that joint
EBM training can greatly improve the calibration
of NLU models, with little or no loss on accuracy.
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Appendices
A Derivation of the hidden Variant

Remember from Section 2.1, the posterior distribu-
tion is obtained from a softmax operation on the
logits, in other words:

Py(ylz)oc exp(fevs(enc(z))[y]).  (10)

Without changing any parameters, one can re-
use the logits to define an energy based model of
the joint distribution of data point x and labels y
via:

exp( fers(enc())[y])

P9($,y) = Z(G) )

(11)

where Z(0) is the normalizing factor. Note that
Equation 11 is consistent with Equation 10 in the
sense that Equation 10 is a direct consequence of
Equation 11.

Now by marginalizing out y, we get:

Zy | exp(fers (enc(z))[y])

Fy(x) = 76 .12
which is equivalent to
_ exp(—=FEp(z))
Pg(l‘) = W; (13)
where
Ey(z) = —LogSumExp, ( fcLs (enc(x))[y]).
(14)

For more intuition behind this derivation we refer
readers to Grathwohl et al. (2019).

B Details About the Noise Distribution

We show some examples of generated noise sam-
ples and the masking in Table 4. Note that the
masks could be applied to a consecutive span of
words (Masking is applied to each token indepen-
dently with probability M).

Input: absolutely and completely <M> (ridiculous)
Gen: absolutely and completely hilarious

Input: <M> (as a) young <M> (woman) of great charm,
<M> (generosity) and diplomacy

Gen: of a young man with a great charm, wit and
diplomacy

Table 4: Example of generated noise samples on SST-2.
The original words that are masked are also shown.

Another possible way to get noise samples is that
we can sample from BERT or Roberta with masked

input. However, due to the nature of masked lan-
guage modeling and the architecture of BERT /
Roberta, the sampled tokens will be independent
of each other, which could result in unnatural noise
samples. That is why we choose to utilize an auto-
regressive LM (e.g., GPT-2).

C Definition of ECE

Given an input sample z, for each label y, we say
that the model predicts that = belongs to label y
with confidence Py(y|z). Assuming the test-set
contains n samples, we will have n x |Y'| predic-
tions.

ECE first partitions all predictions into B
equally-spaced bins by its confidence. Following
Jung et al. (2020); Grathwohl et al. (2019), we set
B = 20, which means the width of each bin is
0.05. For example, the first bin contains all predic-
tions that have confidence in the range of [0, 0.05).
Then for each bin ECE computes how the average
of confidence is different from its actual accuracy:

Y| B
1
ECE = Gl Z Z Byl lacc(Bys) — conf(Bys)|, (15)
y=1b—1

where n is the number of samples in the test set,
and acc(Byy,) is simply the ratio of samples (z)
whose true label is indeed y in By,

D Auxiliary Results and Examples

Examples of the model’s confidence for low and
high-energy data samples in QNLI are shown in
Table 5.

The histogram of energy values Eg(x) for sam-
ples in the test set of QNLI and SST-2 are shown
in Figure 5.

In Figure 6, we provide an enlarged version of
Figure 2.
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Text: Q: What city north of New York was settled by
Huguenots? A: Huguenot immigrants did not disperse

or settle in different parts of the country, but rather,
formed three societies or congregations; one in the city of
New York, another 21 miles north of New York

in a town which they named New Rochelle, and

a third further upstate in New Paltz. Label: 1

Eo (z): -8.48 Baseline: (.997, .003) — EBM: (.995, .005)
Text: Q: What is the source of oxygen production through
electrocatalytic means? A: A similar method is the
electrocatalytic O2 evolution from oxides

and oxoacids. Label: 1

Ey (z): 4.22 Baseline: (.252, .748) — EBM: (.472, .527)

Table 5: The change of the model’s confidence (posterior distribution) for low and high-energy data samples in the
test set of QNLI. The EBM variant shown is sharp-hidden.

QNLI SST2
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Figure 5: The histogram of energy values Ey (x) for samples in the test set of QNLI and SST-2.
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Figure 6: Visualization of calibration on QNLI and SST-2. Enlarged version.
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