
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 6298–6308

August 1–6, 2021. ©2021 Association for Computational Linguistics

6298

Document-level Event Extraction via Parallel Prediction Networks

Hang Yang1,2, Dianbo Sui1,2, Yubo Chen1,2, Kang Liu1,2, Jun Zhao1,2, Taifeng Wang3

1National Laboratory of Pattern Recognition, Institute of Automation,
Chinese Academy of Sciences, Beijing, 100190, China

2School of Artificial Intelligence, University of Chinese Academy of Sciences,
Beijing, 100049, China

3Ant Group, Hangzhou, 310013, China
{hang.yang, dianbo.sui, yubo.chen, kliu, jzhao}@nlpr.ia.ac.cn ,

taifeng.wang@antgroup.com

Abstract

Document-level event extraction (DEE) is
indispensable when events are described
throughout a document. We argue that
sentence-level extractors are ill-suited to the
DEE task where event arguments always scat-
ter across sentences and multiple events may
co-exist in a document. It is a challenging task
because it requires a holistic understanding of
the document and an aggregated ability to as-
semble arguments across multiple sentences.
In this paper, we propose an end-to-end model,
which can extract structured events from a
document in a parallel manner. Specifically,
we first introduce a document-level encoder
to obtain the document-aware representations.
Then, a multi-granularity non-autoregressive
decoder is used to generate events in parallel.
Finally, to train the entire model, a matching
loss function is proposed, which can bootstrap
a global optimization. The empirical results on
the widely used DEE dataset show that our ap-
proach significantly outperforms current state-
of-the-art methods in the challenging DEE
task. Code will be available at https://
github.com/HangYang-NLP/DE-PPN.

1 Introduction

The goal of event extraction (EE) is to identify
events of a pre-specified type along with corre-
sponding arguments from plain texts. A great num-
ber of previous studies (Ahn, 2006; Ji and Grish-
man, 2008; Liao and Grishman, 2010; Hong et al.,
2011; Li et al., 2013; Chen et al., 2015; Nguyen
et al., 2016; Yang and Mitchell, 2016; Chen et al.,
2017; Huang et al., 2018; Yang et al., 2019; Liu
et al., 2020) focus on the sentence-level EE (SEE),
while most of these works are based on the ACE
evaluation (Doddington et al., 2004). 1 However,
these SEE-based methods make predictions within

1https://www.ldc.upenn.edu/
collaborations/past-projects/ace

[S3] On November 1, 2018, Shenzhen 007 Co., Ltd. received a notice
that the corporate shareholder Shanghai Fukong Co., Ltd and the
actual controller Jing Yan were judicial frozen.

[S7] The corporate shareholder holds 150000 shares of the company.
The 10000 shares were frozen by the Shenzhen Intermediate
Peoples Court from October 30, 2018 to October 30, 2019.

[S8] The controller of the company holds 310000 shares of the
company. The 20000 shares were frozen by the Shenzhen Inter -
mediate People's Court on November 1, 2018.

Shanghai Fukong
Co., Ltd

Jing Yan

10000 shares 20000 shares

Shenzhen Intermediate People's Court

October 30, 2018 October 30, 2019

November 1, 2018 \

Figure 1: An example of a document contains two Eq-
uity Freeze type events: Event-1 and Event-2. Words
in bold-faced are arguments that scatter across multiple
sentences.

a sentence and fail to extract events across sen-
tences. To this end, document-level EE (DEE) is
needed when the event information scatters across
the whole document.

In contrast to SEE, there are two specific chal-
lenges in DEE: arguments-scattering and multi-
events. Specifically, arguments-scattering indi-
cates that arguments of an event may scatter across
multiple sentences. For example, As shown in Fig-
ure 1, the arguments of Event-1 are distributed in
different sentences ([S3] and [S7]) and extraction
within an individual sentence will lead to incom-
plete results. So this challenge requires the DEE
model to have a holistic understanding of the entire
document and an ability to assemble all relevant

https://github.com/HangYang-NLP/DE-PPN
https://github.com/HangYang-NLP/DE-PPN
https://www.ldc.upenn.edu/collaborations/past-projects/ace
https://www.ldc.upenn.edu/collaborations/past-projects/ace

6299

arguments across sentences. Furthermore, it will
be more difficult when coupled with the second
challenge: multi-events, where multiple events are
contained in a document.2 As shown in Figure 1,
there are two events Event-1 and Event-2 in a doc-
ument with the same event type and there is no
obvious textual boundary between the two events.
The multi-events problem requires the DEE method
to recognize how many events are contained in a
document and achieve accurate arguments assem-
bling (i.e., assign arguments to the corresponding
event). As a result of these two complications,
SEE methods are ill-suited for the DEE task, which
calls for a model that can integrate document-level
information, assemble relevant arguments across
multiple sentences and capture multiple events si-
multaneously.

To handle these challenges in DEE, previous
works (Yang et al., 2018; Zheng et al., 2019) for-
mulate DEE as an event table filling task, i.e., fill-
ing candidate arguments into a predefined event
table. Specifically, they model the DEE as a se-
rial prediction paradigm, in which arguments are
predicted in a predefined role order and multiple
events are also extracted in predefined event order.
Such a manner is restricted to the extraction of in-
dividual arguments, and the former extraction will
not consider the latter extraction results. As a re-
sult, errors will be propagated and the extraction
performance is under satisfaction.

In this paper, to avoid the shortage of serial
prediction and tackle the aforementioned chal-
lenges in DEE, we propose an end-to-end model,
named Document-to-Events via Parallel Prediction
Networks (DE-PPN). DE-PPN is based on an
encoder-decoder framework that can extract struc-
tured events from a whole document in a parallel
manner. In detail, we first introduce a document-
level encoder to obtain the document-aware repre-
sentations. In such a way, a holistic understand-
ing of the entire document is obtained. Then, we
leverage a multi-granularity decoder to generate
events, which consists of two key parts: a role de-
coder and an event decoder. The role decoder is
designed for handling the argument-scattering chal-
lenge, which can assemble arguments for an event
based on document-aware representations. For ad-
dressing the challenge of multi-events effectively,
an event decoder is designed to support generating

2According to our statistics, there are about 30% docu-
ments include multiple events in the widely used ChFinAnn
(Zheng et al., 2019)

multiple events. Both of them are based on the
non-autoregressive mechanism (Gu et al., 2018),
which supports the extraction of multiple events in
parallel. Finally, for comparing extracted events
to ground truths, we propose a matching loss func-
tion inspired by the Hungarian algorithm (Kuhn,
1955; Munkres, 1957). The proposed loss function
can perform a global optimization by computing a
bipartite matching between predicted and ground-
truth events.

In summary, our contributions are as follows:

• We propose an encoder-decoder model, DE-
PPN, that is based on a document-level en-
coder and a multi-granularity decoder to ex-
tract events in parallel with document-aware
representations.

• We introduce a novel matching loss function
to train the end-to-end model, which can boot-
strap a global optimization.

• We conduct extensive experiments on the
widely used DEE dataset and experimental
results demonstrate that DE-PPN can signif-
icantly outperform state-of-the-art methods
when facing the specific challenges in DEE.

2 Methodology

Before introducing our proposed approach for DEE
in this section, we first describe the task formal-
ization of DEE. Formally, we denote T and R
as the set of pre-defined event types and role cat-
egories, respectively. Given an input document
comprised of Ns sentences D = {Si}Ns

i=1, the DEE
task aims to extract one or more structured events
Y = {yi}ki=1, where each event yti with event type
t contains a series of roles (r1i , r

2
i , . . . , r

n
i) filled

by arguments (a1i , a
2
i , . . . , a

n
i). k is the number of

events contained in the document, n is the number
of pre-defined roles for the event type t, t ∈ T and
r ∈ R.

The key idea of our proposed model, DE-PPN,
is that aggregate the document-level context to pre-
dict events in parallel. Figure 2 illustrates the ar-
chitecture of DE-PPN, which consists of five key
components: (1) candidate argument recognition,
(2) document-level encoder, (3) multi-granularity
decoder, (4) events prediction, and (5) matching
loss function.

6300

Event Queries

Event Role Queries
Candidate Arguments

Sentence
Position

Document
Sentences

Event type
Classification

Predicted Event Target Event

Non-null Null

Figure 2: The overall architecture of DE-PPN. Given a document, the DE-PPN first encodes each sentence sepa-
rately and recognizes candidate arguments from it. Then a document-level encoder is designed to get the document-
level representations. And a multi-granularity decoder is used to generate events in parallel based on document-
aware representations. Finally, the matching loss function can produce an optimal bipartite matching between
predicted and ground-truth events, which bootstrap a global optimization.

2.1 Candidate Argument Recognition

Given a documentD = {Si}Ns
i=1 withNs sentences,

each sentence Si with a sequence of tokens is first
embedded as [wi,1,wi,2, . . . ,wi,l], where l is the
sentence length. Then, the word embeddings are
fed into an encoder to obtain the contextualized
representation. In this paper, we adopt the Trans-
former (Vaswani et al., 2017) as the primary con-
text encoder. Through the encoder, we can get the
context-aware embedding Ci of sentence Si:

Ci = Transformer-1(Si) (1)

where Ci ∈ Rl×d and d is the size of the hidden
layer, and we represent each sentence in the given
document as {Ci}Ns

i=1.
Finally, following Zheng et al. (2019), we model

the sentence-level candidate argument recognition
as a typical sequence tagging task. Through candi-
date argument recognition, we can obtain candidate
arguments A = {ai}Na

i=1 from the given sentence
Si, where Na is the number of recognized candi-
date arguments.

2.2 Document-level Encoder

To enable the awareness of document-level con-
texts for sentences and candidate arguments, we
employ a document-aware encoder to facilitate the
interaction between all sentences and candidate ar-
guments. Formally, given an argument ai with its
span covering j-th to k-th in sentence Si, we con-
duct a max-pooling operation over the token-level
embedding [ci,j , . . . , ci,k] ∈ Ci to get the local

embedding cai ∈ Rd for it. Similarly, the sentence
embedding csi ∈ Rd can be obtained by the max-
pooling operation over the token sequence repre-
sentation Ci of sentence Si. Then, we employ the
Transformer module, Transformer-2, as the encoder
to model the interaction between all sentences and
candidate arguments by a multi-head self-attention
mechanism. Then we can get the document-aware
representations for sentences and arguments. Note
that we add the sentence representation with sen-
tence position embeddings to inform the sentence
order before feeding them into Transformer-2.

[Ha;Hs] = Transformer-2(ca1...c
a
Na

; cs1...c
s
Ns

)
(2)

since arguments may have many mentions in a
document, we utilize the max-pooling operation
to merge multiple argument embeddings with the
same char-level tokens into a single embedding.
After the document-level encoding stage, we can
obtain the document-aware sentences representa-
tion Hs ∈ RNs×d and candidate arguments A′ =
{ai}N

′
a

i=1 with representation Ha ∈ RN ′
a×d.

Before decoding, we stack a linear classifier
over the document representation by operating the
max-pooling over Hs to conduct a binary classi-
fication for each event type. Then, for the pre-
dicted event type t with pre-defined role types,
DE-PPN learns to generate events according to
the document-aware candidate argument represen-
tations Ha ∈ RN ′

a×d and sentence representations
Hs ∈ RNs×d.

6301

2.3 Multi-Granularity Decoder
To effectively address arguments-scattering and
multi-events in DEE, we introduce a multi-
granularity decoder to generate all possible events
in parallel based on document-aware representa-
tions (Ha and Hs). The multi-granularity decoder
is composed of three parts: event decoder, role
decoder, and event-to-role decoder. All of these de-
coders are based on the non-autoregressive mecha-
nism (Gu et al., 2018), which supports the extrac-
tion of all events in parallel.

Event Decoder. The event decoder is designed
to support the extraction of all events in paral-
lel and is used to model the interaction between
events. Before the decoding stage, the decoder
needs to know the size of events to be generated.
We use m learnable embeddings as the input of the
event decoder, which are denoted as event queries
Qevent ∈ Rm×d. m is a hyperparameter that de-
notes the number of the generated events. In our
work, m is set to be significantly large than the
average number of events in a document. Then,
the event query embeddings Qevent are fed into a
non-autoregressive decoder which is composed of
a stack of N identical Transformer layers. In each
layer, there are a multi-head self-attention mecha-
nism to model the interaction among events and a
multi-head cross-attention mechanism to integrate
the document-aware representation Hs into event
queries Qevent. Formally, the m event queries are
decoded into m output embeddings Hevent by:

Hevent = Event-Decoder(Qevent;Hs) (3)

where Hevent ∈ Rm×d.

Role Decoder. The role decoder is designed to
support the filling of all roles in an event in par-
allel and model the interaction between roles. As
the predicted event type t with semantic role types
(r1, r2, . . . , rn), we use n learnable embeddings as
the input of the role decoder, which are denoted
as event queries Qrole ∈ Rn×d. Then, the role
query embeddings Qrole are fed into the decoder,
which has the same architecture as the event de-
coder. Specifically, the self-attention mechanism
can model the relationship among roles, and the
cross-attention mechanism can fuse the informa-
tion of the document-aware candidate argument
representations Ha. Formally, the n role queries
are decoded into n output embeddingsHrole by:

Hrole = Role-Decoder(Qrole;Ha) (4)

where Hrole ∈ Rn×d.

Event-to-Role Decoder. To generate diversiform
events with relevant arguments for different event
queries, an event-to-role decoder is designed to
model the interaction between the event queries
Hevent and the role queries Hrole:

He2r = Event2Role-Decoder(Hrole;Hevent)
(5)

where He2r ∈ Rm×n×d.

2.4 Events Prediction
After the multi-granularity decoding, the m event
queries and n role queries are transformed into m
predicted events and each of them contains n role
embeddings. To filter the spurious event, the m
event queries Hevent are fed into a feed-forward
networks (FFN) to judge each event prediction is
non-null or null. Concretely, the predicted event
can be obtained by:

pevent = softmax(HeventWe) (6)

where We ∈ Rd×2 is learnable parameters.
Then, for each predicted event with pre-defined

roles, the predicted arguments are decoded by fill-
ing the candidate indices or the null value with
(N ′a + 1)-class classifiers:3

Prole = softmax(tanh(He2rW1 +HaW2) ·v1)
(7)

where W1 ∈ Rd×d, W2 ∈ Rd×d and v1 ∈ Rd are
learnable parameters, and Prole ∈ Rm×n×(N ′

a+1).
After the prediction network, we can obtain the

m events Ŷ = (Ŷ1, Ŷ2, . . . , Ŷm) where each event
Ŷi = (P1

i ,P2
i , . . . ,Pni) contains n predicted argu-

ments with role types. Where Pji = Prole[i, j, :] ∈
R(N ′

a+1).

2.5 Matching Loss
The main problem for training is that how to assign
predicted m events with a series of arguments to
the ground truth k events. Inspired by the assign-
ing problem in the operation research (Kuhn, 1955;
Munkres, 1957), we propose a matching loss func-
tion, which can produce an optimal bipartite match-
ing between predicted and ground-truth events.

Formally, we denote predicted and ground
truth events as Ŷ = (Ŷ1, Ŷ2, . . . , Ŷm) and Y =
(Y1, Y2, . . . , Yk), respectively. Where k is the

3Note that we append candidate argument representations
Ha with a learnable embedding to represent the null value.

6302

real number of events in the document and m
is fixed size for generated events. Note that
m > k. The i-th predicted event is denoted as
Ŷi = (P1

i ,P2
i , . . . ,Pni) , where Pji can be calcu-

lated by the Equation 7. And the i-th ground truth
event is denoted as Yi = (r1i , r

2
i , . . . , r

n
i) , where

rji is the candidate argument indix for j-the role
type in i-th target event.

To find a bipartite matching between these two
sets, we search for a permutation of m elements
with the lowest cost:

σ̂ = argmax
σ∈

∏
(m)

m∑
i

Cmatch(Ŷσ(i), Yi) (8)

where
∏
(m) is the space of all m-length permuta-

tions and Cmatch(Ŷσ(i), Yi) is a pair-wise matching
cost between ground truth yi and a prediction Ŷσ(i)
with index σ(i). By taking into account all of the
prediction arguments for roles in an event, we de-
fine Cmatch(Ŷσ(i), Yi) as:

Cmatch(Ŷσ(i), Yi) = −1{judgei 6=φ}
n∑
j=1

Pj
σ(i)(r

j
i))

(9)
where the judgei is the judgement of event i to be
non-null or null that is calculated by the Equation 6.
The optimal assignment σ(i) can be computed ef-
fectively with the Hungarian algorithm. 4 Then for
all pairs matched in the previous step, we define
the loss function with negative log-likelihood as:

L(Ŷ , Y) =
m∑
i=1

1{judgei 6=φ}[
n∑
j=1

−logPj
σ̂(i)(r

j
i)]

(10)
Where σ̂ is the optimal assignment computed in the
Equation 8.

2.6 Optimization

During training, we sum the matching loss for
events prediction with preconditioned steps before
decoding as follows:

Lall = λ1Lsee + λ2Lec + λ3L(Y, Ŷ) (11)

where Lae and Lec are the cross-entropy loss func-
tion for sentence-level candidate argument recogni-
tion and event type classification, respectively. λ1,
λ2 and λ3 are hyper-parameters.

4https://en.wikipedia.org/wiki/
Hungarianalgorithm

3 Experiments and Analysis

In this section, we present empirical studies to an-
swer the following questions:

1. What is the overall performance of our DE-
PPN compared to the state-of-the-art (SOTA)
method evaluated on the DEE task?

2. How does DE-PPN perform when facing the
arguments-scattering and multi-event chal-
lenges in DEE?

3. How does each design of our proposed DE-
PPN matter?

4. What is the influence of setting different num-
bers of the generated events on the results?

3.1 Experimental Setup

Dataset. Following Zheng et al. (2019), we use
the ChFinAnn dataset5 to evaluate our proposed
DEE method. The ChFinAnn is a large-scale DEE
dataset, which contains 32,040 documents in to-
tal and includes five financial event types: Equity
Freeze (EF), Equity Repurchase (ER), Equity Un-
derweight (EU), Equity Overweight (EO) and Eq-
uity Pledge (EP).

Evaluation Metrics. For a fair compari-
son, we adopt the evaluation standard used in
Doc2EDAG (Zheng et al., 2019). Specifically,
for each predicted event, the most similar ground-
truth is selected without replacement to calculate
the Precision (P), Recall (R), and F1-measure (F1-
score). As an event type often includes multiple
roles, micro-averaged role-level scores are calcu-
lated as the final DEE metric.

Implementation Details. For a document as input,
we set the maximum number of sentences and the
maximum sentence length as 64 and 128, respec-
tively. We adopt the basic Transformer, each layer
has 768 hidden units, and 8 attention heads, as the
encoder and decoder architecture. During training,
we employ the AdamW optimizer (Kingma and
Ba, 2014) with the learning rate 1e-5 with batch
size 16. Testing set performance is chosen by the
best development set performance step within 100
epochs. We leave detailed hyper-parameters and
additional results in the Appendix.

5https://github.com/dolphin-zs/
Doc2EDAG/blob/master/Data.zip

https://en.wikipedia.org/wiki/Hungarian algorithm
https://en.wikipedia.org/wiki/Hungarian algorithm
https://github.com/dolphin-zs/Doc2EDAG/blob/master/Data.zip
https://github.com/dolphin-zs/Doc2EDAG/blob/master/Data.zip

6303

Models EF ER EU EO EP
P R F1 P R F1 P R F1 P R F1 P R F1

DCFEE-O 66.0 41.6 51.1 84.5 81.8 83.1 62.7 35.4 45.3 51.4 42.6 46.6 64.3 63.6 63.9
DCFEE-M 51.8 40.7 45.6 83.7 78.0 80.8 49.5 39.9 44.2 42.5 47.5 44.9 59.8 66.4 62.9
GreedyDec 79.5 46.8 58.9 83.3 74.9 78.9 68.7 40.8 51.2 69.7 40.6 51.3 85.7 48.7 62.1
Doc2EDAG 77.1 64.5 70.2 91.3 83.6 87.3 80.2 65.0 71.8 82.1 69.0 75.0 80.0 74.8 77.3
DE-PPN-1 77.8 55.8 64.9 75.6 76.4 76.0 76.4 63.7 69.4 77.1 54.3 63.7 85.5 43.0 57.2
DE-PPN 78.2 69.4 73.5 89.3 85.6 87.4 69.7 79.9 74.4 81.0 71.3 75.8 83.8 73.7 78.4

Table 1: Overall event-level precision (P), recall (R) and F1-score (F1) evaluated on the test set.

Models EF ER EU EO EP Avg.
S. M. S. M. S. M. S. M. S. M. S. M. S.& M.

DCFEE-O 56.0 46.5 86.7 54.1 48.5 41.2 47.7 45.2 68.4 61.1 61.5 49.6 58.0
DCFEE-M 48.4 43.1 83.8 53.4 48.1 39.6 47.1 42.0 67.0 60.0 58.9 47.7 55.7
GreedyDec 75.9 40.8 81.7 49.8 62.2 34.6 65.7 29.4 88.5 42.3 74.8 39.4 60.5
Doc2EDAG 80.0 61.3 89.4 68.4 77.4 64.6 79.4 69.5 85.5 72.5 82.3 67.3 76.3
DE-PPN-1 82.4 46.3 78.3 53.9 82.2 45.6 78.1 39.3 82.8 38.5 80.7 44.7 66.2
DE-PPN 82.1 63.5 89.1 70.5 79.7 66.7 80.6 69.6 88.0 73.2 83.9 68.7 77.9

Table 2: F1-score for all event types and the averaged ones (Avg.) on single-event (S.) and multi-event (M.) sets.

Models ASR60.5 0.56ASR61 ASR>1

DCFEE-M 65.7 53.5 42.2
Doc2EDAG 78.4 74.4 64.4

DE-PPN 79.5 76.1 67.1

Table 3: Averaged F1-score for different ASR intervals.

3.2 Baselines

We compare our DE-PPN with the SOTA methods
as follows: DCFEE (Yang et al., 2018) proposed
a key-event detection to guide event table filled
with the arguments from key-event mention and
surrounding sentences. There are two versions of
DCFEE: DCFEE-O only extracts one event and
DCFEE-M extracts multiple events from a docu-
ment. Doc2EDAG (Zheng et al., 2019) proposed
an end-to-end model for DEE, which transforms
DEE as directly filling event tables with entity-
based path expending. There is a simple baseline
of Doc2EDAG, named GreedyDec, which only
fills one event table entry greedily. Besides, we fur-
ther introduce a simple baseline of DE-PPN, named
as DE-PPN-1, which only generates one event.

3.3 Main results

DE-PPN vs. SOTA. Table 1 shows the compar-
ison between DE-PPN and baseline methods on
the test set for each event type. Overall, our pro-
posed model DE-PPN significantly outperforms
other baselines and achieves SOTA performance

in all event types. Specifically, DE-PPN improves
3.3, 0.1, 2.6, 0.8, 1.1, 1.6 F1-score over the SOTA
method, Doc2EDAG, on the event type EF, ER, EU,
EO, EP and the average F1-score, respectively. The
improved performance indicates that the encoder-
decoder generative framework of DE-PPN is ef-
fective, which can predict events in parallel with
a global optimization for training. Besides, as
the baseline of our proposed method, DE-PPN-O
can achieve the best performance compared with
DCFEE-O and GreedyDec while all of them only
predict one event for a document, which also proves
the effectiveness of the document-aware end-to-end
modeling of DE-PPN.

Results on Arguments-Scattering. To show the
extreme difficulty of the arguments-scattering chal-
lenge in DEE, we conduct experiments on different
scenarios. We introduce an arguments-scattering
ratio (ASR) to measure the scatter of arguments in
an event for a document. The ASR is calculated by:

ASR = Numments/Numargs (12)

where Numments denotes the number of event men-
tions (i.e., sentences that contains arguments) and
Numargs denotes the number of arguments. The
higher the ASR, the more scattering of the argu-
ments in an event. Table 3 shows the results with
the different intervals of ASR. We can observe
that it is more difficult to extract scattering argu-
ments as the ASR increase. But DE-PPN still

6304

0 1 2 3 4
Number of Event Decoder Layers

60

65

70

75

80

85

90

F1
-S

co
re

 (%
)

75.3

82.5 83.5 82.5 82.6

61.4

68.1 68.6 68.0 68.2

0 1 2 3 4
Number of Role Decoder Layers

60

65

70

75

80

85

90

F1
-S

co
re

 (%
)

79.4
81.3

83.0 82.6
83.9

65.3 66.3
68.7 68.1 68.7

Multi_event
Single_event

Figure 3: F1-score for performance differences of event decoder and role decoder layers.

maintains the best performance and the results indi-
cate that the encoder-decoder framework can better
assemble arguments to the corresponding event
across sentences with the parallel prediction and
the document-aware representations.

Single-Event vs. Multi-Event. To show the ex-
treme difficulty when arguments-scattering meets
multi-events for DEE, we conduct experiments on
two scenarios: single-event (i.e., documents con-
tain one event) and multi-event (i.e., documents
contain multiple events). Table 2 shows the F1-
score on single-event and multi-event sets for each
event type and the averaged (Avg.). We can observe
that multi-events is extremely challenging as the
extraction performance of all models drops signifi-
cantly. But DE-PPN still improves the average F1-
score from 67.3% to 68.7% over the Doc2EDAG.
The results demonstrate the effectiveness of our
proposed method when handling the challenge of
multi-events. This performance improvement ben-
efits from the event decoder which can generate
multiple events in parallel and the matching loss
function which can perform a global optimization.
Besides, the DE-PPN-1 model achieves an accept-
able performance on the scenario of single event
extraction which demonstrates the effectiveness of
our end-to-end model. But DE-PPN-1 only gen-
erates one event and cannot deal with the multi-
events problem, resulting in low performance on
the multi-event sets.

3.4 Ablation Studies
To verify the effectiveness of each component of
DE-PPN, we conduct ablation tests on the next
variants: 1) -DocEnc: removing the Transformer-
based document-level encoder, which can support
the document-aware information for decoding. 2)
-MultiDec: replacing the multi-granularity decoder
module with simple embedding initialization for
event queries and role queries. 3) -MatchingLoss:

Model EF ER EU EO EP Avg.
DE-PPN 73.5 87.4 74.4 75.8 78.4 77.9

-DcoEnc -2.1 -3.4 -1.7 -2.6 -3.2 -2.6
-MultiDec -5.1 -3.8 -4.3 -4.7 -3.6 -4.3

-MatchingLoss -9.2 -12.8 -13.1 -17.5 -14.3 -13.4

Table 4: F1-score of ablation studies on DE-PPN vari-
ants for each event type and the averaged (Avg.).

replacing the matching loss function with normal
cross-entropy loss. The results are shown in Table 4
and we can observe that: 1) the document-level en-
coder is of prime importance that enhances the
document-aware representations for the generative
decoder and contributes +2.6 F1-score on average;
2) the multi-granularity decoder alleviates the chal-
lenges of argument-scattering and multi-events by
assembling arguments and generating events in par-
allel, improving by +4.3 F1-score on average. 3)
the matching loss function is a very important com-
ponent for events extraction with +13.4 F1-score
improvement which indicates that the matching
loss guide a global optimization between predicted
and ground-truth events during training.

3.5 Effect of Different Decoder Layers

To investigate the importance of the multi-
granularity decoder, we explore the effect of differ-
ent layers of the event decoder and the role decoder
on the results. Specifically, the number of decoder
layers is set to 0,1,2,3 and 4, where 0 means remov-
ing this decoder. 1) The effect of different event
decoder layers are shown in the left of Figure 3, and
our method can achieve the best average F1-score
when the number of layers is set to be 2. We con-
jecture that more layers of the non-autoregressive
decoder allow for better modeling the interaction
between event queries and generating diversiform
events. However, when the layer is set to be large,
it is easy to generate redundant events. 2) The

6305

effect of different role decoder layers are shown
in the right of Figure 3, and we can observe that
the more decoder layers, the better performance
on the results. We conjecture that more layers of
the decoder with the more self-attention modules
allow for better modeling the relationship between
event roles and more inter-attention modules allow
for integrating information of candidate arguments
into roles.

3.6 Effect of Different Generated Sets

For the training and testing process of the DE-PPN,
the number of generated events is an important
hyperparameter. In this section, we explore the
influence of setting different numbers of gener-
ated events on the results. We divide the develop-
ment set into 5 sub-class where each class contains
1,2,3,4 and > 5 events. Table 5 shows the statistics
of the documents with different annotated events
in the development set. To validate the impact
of the number of generated events on the perfor-
mance, we evaluate DE-PPN with various numbers
of generated events: 1, 2, 5, 10, named DE-PPN-1,
DE-PPN-2, DE-PPN-5, DE-PPN-10, respectively.
The results of DE-PPN with different generated
events are shown in Figure 4, which are also com-
pared with the SOTA model Doc2EDAG. We can
observe that as the number of events increases, it
is more difficult for events prediction, which can
be reflected in the decline of all performance. In
general, DE-PPN almost achieves the best perfor-
mance on the average F1-score when the number
of generated sets is set to be 5. Besides, there is
a performance gap between Doc2EDAG and our
method DE-PPN when the number of annotated
events is large than 2 in a document. It also demon-
strates that our proposed parallel decoder can better
handle the challenge of multi-events in DEE.

Number of Events 1 2 3 4 > 5 Total
Number of Documents 2207 609 203 77 91 3187

Table 5: The statistics about the documents annotated
with different numbers of events in the development
set.

4 Related Work

4.1 Sentence-level Event Extraction

Most work in EE has focused on the sentence
level and is based on the benchmark dataset ACE
2005 (Doddington et al., 2004). Many approaches

1 2 3 4 >=5
Number of Annotated Events

30

40

50

60

70

80

F1
-S

co
re

 (%
)

83.2

73.4

56.2

73.1
69.3
65.3
68.2

42.1

56.4

69.8

61.6

67.3

35.7

50.8

71.3

62.9
65.4

26.4

38.3

62.1
59.6

53.2

DE-PPN-1
DE-PPN-2
DE-PPN-5
DE-PPN-10
Doc2EADG

Figure 4: F1-score for performance differences of gen-
erated events.

have been proposed to improve performance on
this task. These studies are mainly based on hand-
designed features (Li et al., 2013; Kai and Gr-
ishman, 2015) and neural-based to learn features
automatically (Chen et al., 2015; Nguyen et al.,
2016; Björne and Salakoski, 2018; Yang et al.,
2019; Chan et al., 2019; Yang et al., 2019; Liu
et al., 2020). A few methods make extraction de-
cisions beyond individual sentences. Ji and Grish-
man (2008) and Liao and Grishman (2010) used
event type co-occurrence patterns for event detec-
tion. Yang and Mitchell (2016) introduced event
structure to jointly extract events and entities within
a document. Although these approaches make deci-
sions beyond sentence boundary, their extractions
are still done at the sentence level.

4.2 Document-level Event Extraction

Many real-world applications need DEE, in which
the event information scatters across the whole
document. MUC-4 (1992) proposed the MUC-4
template-filling task that aims to identify event role
fillers with associated role types from a document.
Recent works explore the local and additional con-
text to extract the role fillers by manually designed
linguistic features (Patwardhan and Riloff, 2009;
Huang and Riloff, 2011, 2012) or neural-based con-
textual representation (Chen et al., 2020; Du et al.,
2020; Du and Cardie, 2020). Recently, Ebner et al.
(2020) published the Roles Across Multiple Sen-
tences (RAMS) dataset, which contains annotation
for the task of multi-sentence argument linking.
A two-step approach (Zhang et al., 2020) is pro-
posed for argument linking by detecting implicit
argument across sentences. Li et al. (2021) extend
this task and compile a new benchmark dataset

6306

WIKIEVENTS for exploring document-level ar-
gument extraction task. Then, Li et al. (2021)
propose an end-to-end neural event argument ex-
traction model by conditional text generation. How-
ever, these works focused on the sub-task of DEE
(i.e., role filler extraction or argument extraction)
and ignored the challenge of multi-events.

To simultaneously address both challenges for
DEE (i.e., arguments-scattering and multi-events),
previous works focus on the ChFinAnn (Zheng
et al., 2019) dataset and model DEE as an event
table filling task, i.e., filling candidate arguments
into predefined event table. Yang et al. (2018) pro-
posed a key-event detection to guide event table
filled with the arguments from key-event mention
and surrounding sentences. Zheng et al. (2019)
transforms DEE into filling event tables follow-
ing a predefined order of roles with an entity-based
path expanding, which achieved the SOTA for DEE.
However, these methods suffered from a serial pre-
diction which will lead to error propagation and
individual argument prediction.

5 Conclusion and Future Work

In this paper, we propose an encoder-decoder
model, DE-PPN, to extract events in parallel from
a document. For addressing the challenges (i.e.,
arguments-scattering and multi-events) in DEE, we
introduce a document-level encoder and a multi-
granularity decoder to generate events in parallel
with document-aware representations. For training
the parallel networks, we propose a matching loss
function to perform a global optimization. Experi-
mental results show that DE-PPN can significantly
outperform SOTA methods especially facing the
specific challenges in DEE.

Acknowledgements

We thank the anonymous reviewers for their con-
structive and insightful comments. This work is
supported by the National Natural Science Foun-
dation of China (No. U1936207, No. 61922085
and No. 61806201), Beijing Academy of Arti-
ficial Intelligence (No. BAAI2019QN0301), the
Key Research Program of the Chinese Academy of
Sciences (No. ZDBS-SSW-JSC006), independent
research project of National Laboratory of Pattern
Recognition and a grant from Ant Group.

References
David Ahn. 2006. The stages of event extraction. In

Proceedings of the Workshop on Annotating and
Reasoning about Time and Events, pages 1–8.

Jari Björne and Tapio Salakoski. 2018. Biomedi-
cal event extraction using convolutional neural net-
works and dependency parsing. In Proceedings of
the BioNLP 2018 workshop, pages 98–108, Mel-
bourne, Australia. Association for Computational
Linguistics.

Yee Seng Chan, Joshua Fasching, Haoling Qiu, and Bo-
nan Min. 2019. Rapid customization for event ex-
traction. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics: System Demonstrations, pages 31–36, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Pei Chen, Hang Yang, Kang Liu, Ruihong Huang,
Yubo Chen, Taifeng Wang, and Jun Zhao. 2020. Re-
constructing event regions for event extraction via
graph attention networks. In Proceedings of the 1st
Conference of the Asia-Pacific Chapter of the Associ-
ation for Computational Linguistics and the 10th In-
ternational Joint Conference on Natural Language
Processing, pages 811–820, Suzhou, China. Associ-
ation for Computational Linguistics.

Yubo Chen, Shulin Liu, Xiang Zhang, Kang Liu, and
Jun Zhao. 2017. Automatically labeled data genera-
tion for large scale event extraction. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 409–419.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and
Jun Zhao. 2015. Event extraction via dynamic multi-
pooling convolutional neural networks. In Proceed-
ings of the ACL.

George R Doddington, Alexis Mitchell, Mark A Przy-
bocki, Lance A Ramshaw, Stephanie M Strassel, and
Ralph M Weischedel. 2004. The automatic content
extraction (ace) program-tasks, data, and evaluation.
In Lrec, volume 2, page 1. Lisbon.

Xinya Du and Claire Cardie. 2020. Document-level
event role filler extraction using multi-granularity
contextualized encoding. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 8010–8020, Online. Asso-
ciation for Computational Linguistics.

Xinya Du, Alexander Rush, and Claire Cardie. 2020.
Document-level event-based extraction using gener-
ative template-filling transformers. arXiv preprint
arXiv:2008.09249.

Seth Ebner, Patrick Xia, Ryan Culkin, Kyle Rawlins,
and Benjamin Van Durme. 2020. Multi-sentence ar-
gument linking. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 8057–8077, Online. Association for
Computational Linguistics.

https://doi.org/10.18653/v1/W18-2311
https://doi.org/10.18653/v1/W18-2311
https://doi.org/10.18653/v1/W18-2311
https://doi.org/10.18653/v1/P19-3006
https://doi.org/10.18653/v1/P19-3006
https://www.aclweb.org/anthology/2020.aacl-main.81
https://www.aclweb.org/anthology/2020.aacl-main.81
https://www.aclweb.org/anthology/2020.aacl-main.81
https://doi.org/10.18653/v1/2020.acl-main.714
https://doi.org/10.18653/v1/2020.acl-main.714
https://doi.org/10.18653/v1/2020.acl-main.714
https://doi.org/10.18653/v1/2020.acl-main.718
https://doi.org/10.18653/v1/2020.acl-main.718

6307

Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK
Li, and Richard Socher. 2018. Non-autoregressive
neural machine translation. In International Confer-
ence on Learning Representations.

Yu Hong, Jianfeng Zhang, Bin Ma, Jianmin Yao,
Guodong Zhou, and Qiaoming Zhu. 2011. Using
cross-entity inference to improve event extraction.
In Proceedings of the 49th annual meeting of the as-
sociation for computational linguistics: human lan-
guage technologies, pages 1127–1136.

Lifu Huang, Heng Ji, Kyunghyun Cho, Ido Dagan, Se-
bastian Riedel, and Clare Voss. 2018. Zero-shot
transfer learning for event extraction. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 2160–2170, Melbourne, Australia. As-
sociation for Computational Linguistics.

Ruihong Huang and Ellen Riloff. 2011. Peeling back
the layers: detecting event role fillers in secondary
contexts. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human Language Technologies-Volume 1, pages
1137–1147. Association for Computational Linguis-
tics.

Ruihong Huang and Ellen Riloff. 2012. Bootstrapped
training of event extraction classifiers. In Proceed-
ings of the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 286–295. Association for Computational Lin-
guistics.

Heng Ji and Ralph Grishman. 2008. Refining event ex-
traction through cross-document inference. In Pro-
ceedings of ACL-08: Hlt, pages 254–262.

Xiang Li Thien Huu Nguyen Kai and Cao Ralph Gr-
ishman. 2015. Improving event detection with ab-
stract meaning representation. ACL-IJCNLP 2015,
page 11.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Harold W Kuhn. 1955. The hungarian method for the
assignment problem. Naval research logistics quar-
terly, 2(1-2):83–97.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event
extraction via structured prediction with global fea-
tures. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 73–82.

Sha Li, Heng Ji, and Jiawei Han. 2021. Document-
level event argument extraction by conditional gener-
ation. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 894–908, Online. Association for Com-
putational Linguistics.

Shasha Liao and Ralph Grishman. 2010. Using doc-
ument level cross-event inference to improve event
extraction. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics,
pages 789–797.

Jian Liu, Yubo Chen, Kang Liu, Wei Bi, and Xiaojiang
Liu. 2020. Event extraction as machine reading com-
prehension. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1641–1651, Online. Associa-
tion for Computational Linguistics.

MUC-4. 1992. Fourth Message Uunderstanding
Conference (MUC-4). In In Proceedings of
FOURTH MESSAGE UNDERSTANDING CON-
FERENCE (MUC4), McLean, Virginia.

James Munkres. 1957. Algorithms for the assignment
and transportation problems. Journal of the society
for industrial and applied mathematics, 5(1):32–38.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Gr-
ishman. 2016. Joint event extraction via recurrent
neural networks. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 300–309.

Siddharth Patwardhan and Ellen Riloff. 2009. A uni-
fied model of phrasal and sentential evidence for in-
formation extraction. In Proceedings of the 2009
Conference on Empirical Methods in Natural Lan-
guage Processing: Volume 1-Volume 1, pages 151–
160. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Bishan Yang and Tom M. Mitchell. 2016. Joint extrac-
tion of events and entities within a document context.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 289–299, San Diego, California. Association
for Computational Linguistics.

Hang Yang, Yubo Chen, Kang Liu, Yang Xiao, and Jun
Zhao. 2018. Dcfee: A document-level chinese finan-
cial event extraction system based on automatically
labeled training data. In Proceedings of ACL 2018,
System Demonstrations, pages 50–55.

Sen Yang, Dawei Feng, Linbo Qiao, Zhigang Kan,
and Dongsheng Li. 2019. Exploring pre-trained lan-
guage models for event extraction and generation. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5284–
5294.

Zhisong Zhang, Xiang Kong, Zhengzhong Liu, Xuezhe
Ma, and Eduard Hovy. 2020. A two-step approach

https://doi.org/10.18653/v1/P18-1201
https://doi.org/10.18653/v1/P18-1201
https://www.aclweb.org/anthology/2021.naacl-main.69
https://www.aclweb.org/anthology/2021.naacl-main.69
https://www.aclweb.org/anthology/2021.naacl-main.69
https://doi.org/10.18653/v1/2020.emnlp-main.128
https://doi.org/10.18653/v1/2020.emnlp-main.128
https://www.aclweb.org/anthology/M92-1000
https://www.aclweb.org/anthology/M92-1000
https://doi.org/10.18653/v1/N16-1033
https://doi.org/10.18653/v1/N16-1033
https://doi.org/10.18653/v1/2020.acl-main.667

6308

for implicit event argument detection. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 7479–7485,
Online. Association for Computational Linguistics.

Shun Zheng, Wei Cao, Wei Xu, and Jiang Bian. 2019.
Doc2EDAG: An end-to-end document-level frame-
work for Chinese financial event extraction. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 337–
346, Hong Kong, China. Association for Computa-
tional Linguistics.

A Appendix

In the appendix, we incorporate the following de-
tails that are omitted in the main body due to the
space limit.

• Section A.1 introduce the Hungarian Algo-
rithm.

• Section A.2 complements additional evalua-
tion results for event classification and candi-
date arguments extraction.

• Section A.3 show the hyper-parameter setting.

A.1 Hungarian Algorithm

The linear sum assignment problem is also known
as minimum weight matching in bipartite graphs.
A problem instance is described by a matrix C,
where each Ci,j is the cost of matching vertex i of
the first partite set (a “worker”) and vertex j of the
second set (a “job”). The goal is to find a complete
assignment of workers to jobs of minimal cost.

Formally, let X be a boolean matrix where
Xi,j = 1 if row i is assigned to column j. Ci,j
is the cost matrix of the bipartite graph. Then the
optimal assignment has cost:

min
∑
i

∑
j

Ci,jXi,j (13)

s.t. each row is assignment to at most one column,
and each column to at most one row. This func-
tion can also solve a generalization of the classic
assignment problem where the cost matrix is rect-
angular. If it has more rows than columns, then
not every row needs to be assigned to a column,
and vice versa. The method used is the Hungarian
algorithm, also known as the Munkres or Kuhn-
Munkres algorithm.

A.2 Additional Results
Table 6 shows the results of event type classifica-
tion and candidate argument extraction. They are
the two preceding sub-tasks for decoder to predict
events with corresponding arguments in parallel.
We can observe that: 1) the document-level event
type classification can achieve a good performance
which proves that event classification is not a dif-
ficult problem in this task. 2) how to assemble
candidate arguments to corresponding events is the
key challenge for DEE.

P R F1
Equity Freeze 100.0 99.6 99.8

Equity Repurchase 100.0 99.5 99.8
Equity Underweight 98.0 98.1 98.0
Equity Overweight 97.5 94.9 96.1

Equity Pledge 99.5 99.9 99.7

Candidate Argument Recognition 90.0 89.5 89.7

Table 6: Evaluation results of candidate argument ex-
traction and event type classification on the test set.

A.3 Hyperparameter setting
The detail hyperparameter is shown in Table 7

Hyper-parameter Value
number of generated events 5

Embedding size 768
Hidden size 768

tagging scheme BIO (Begin, Inside, Other)
Layers of Transformer-1 4
Layers of Transformer-2 4
Layers of event decoder 2
Layers of role decoder 4

Layers of event-to-role decoder 2
Optimizer AdamW

Learning rate for encoder 1e−5

Learning rate for decoder 2e−5

Batch size 16
λ1 0.1
λ2 0.4
λ3 0.5

Dropout 0.1
Training epoch 100

Table 7: The hyper-parameter setting.

https://doi.org/10.18653/v1/2020.acl-main.667
https://doi.org/10.18653/v1/D19-1032
https://doi.org/10.18653/v1/D19-1032

