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Abstract

In this work, we investigate the human percep-
tion of coherence in open-domain dialogues.
In particular, we address the problem of an-
notating and modeling the coherence of next-
turn candidates while considering the entire
history of the dialogue. First, we create the
Switchboard Coherence (SWBD-Coh) corpus,
a dataset of human-human spoken dialogues
annotated with turn coherence ratings, where
next-turn candidate utterances ratings are pro-
vided considering the full dialogue context.
Our statistical analysis of the corpus indicates
how turn coherence perception is affected by
patterns of distribution of entities previously
introduced and the Dialogue Acts used. Sec-
ond, we experiment with different architec-
tures to model entities, Dialogue Acts and
their combination and evaluate their perfor-
mance in predicting human coherence ratings
on SWBD-Coh. We find that models combin-
ing both DA and entity information yield the
best performances both for response selection
and turn coherence rating.

1 Introduction

Dialogue evaluation is an unsolved challenge in
current human-machine interaction research. This
is particularly true for open-domain conversation,
where compared to task-oriented dialogue (i.e.,
restaurant reservations), we do not have a finite set
of entities and intents, and speakers’ goals are not
defined a priori. In this work, we address the prob-
lem of dialogue evaluation from the perspective of
dialogue coherence and how this concept can be
formalized and evaluated. Our approach could be
applied to both task-oriented and non-task-oriented
dialogue.

Coherence in language, i.e., the property which
determines that a given text is a logical and consis-
tent whole rather than a random collection of sen-
tences, is a complex multifaced concept which has
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been defined in different ways and to which several
factors contribute (Redeker, 2000), e.g., rhetori-
cal structure (Hobbs, 1979), topics discussed, and
grounding (Traum, 1994).

While much recent work has focused on coher-
ence for response generation (Serban et al., 2016;
Lietal., 2016; Yi et al., 2019), we argue that there
is still much to be understood regarding the mecha-
nisms and substructures that affect human percep-
tion of dialogue coherence. In our approach, in
particular, we are interested in studying the pat-
terns of distribution of entities and Dialogue Acts
(DAs), in regards to dialogue coherence.

Approaches to coherence based on entities have
been studied extensively by the Natural Language
Processing literature (Joshi and Kuhn, 1979; Grosz
et al., 1995), especially in text (e.g., news, sum-
maries). Coherence evaluation tasks proposed by
this literature (Barzilay and Lapata, 2008) have
the advantage of using weakly supervised training
methodologies, but mainly considering documents
as-a-whole, rather than evaluating coherence at
the utterance level. The dialogue literature (Sacks
and Jefferson, 1995; Schegloff, 1968), on the other
hand, has focused mainly on coherence in connec-
tion to DAs, a generalized version of intents in
dialogue (e.g., yes-no-question, acknowledgement).
Recent work (Cervone et al., 2018), in particular,
showed the importance of both DAs and entities
information for coherence modeling in dialogue.
However, even in this case dialogue coherence was
rated for entire dialogues rather than studying turn
coherence structures.

In this work, we investigate underlying conver-
sation turn substructures in terms of DA and entity
transitions to predict turn-by-turn coherence in dia-
logue. We start by annotating a corpus of spoken
open-domain conversations with turn coherence rat-
ings, the Switchboard Coherence corpus (SWBD-
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Coh)!, and perform an analysis of the human per-
ception of coherence in regards to DAs and entities.
A multiple regression analysis shows the impor-
tance of both types of information for human rating
of coherence. Secondly, we present novel neu-
ral models for turn coherence rating that combine
DAs and entities and propose to train them using
response selection, a weakly supervised methodol-
ogy. While previous work on response selection
(Lowe et al., 2017; Yoshino et al., 2019) is mainly
based on using the entire text as input, we deliber-
ately choose to use only entities and DAs as input
to our models, in order to investigate entities and
DAs as a signal for turn coherence. Finally, we test
our models on the SWBD-Coh dataset to evaluate
their ability to predict turn coherence scores 2.
The main contributions of this work are:

e creating the Switchboard Coherence corpus,
a novel human-annotated resource with turn
coherence ratings in non-task-oriented open-
domain spoken conversation;

investigating human perception of coherence
in spoken conversation in relation to entities
and DAs and their combination;

e proposing novel neural coherence models for
dialogue relying on entities and DAs;
exploring response selection as a training task
for turn coherence rating in dialogue.

2 Related work

Coherence evaluation in text Coherence mod-
els trained with weakly supervised methodologies
were first proposed for text with applications to the
news domain and summarization (Barzilay and La-
pata, 2008). These models rely on the entity grid,
a model that converts the entities (Noun Phrases)
mentioned in the text to a sentence-by-sentence
document representation in the form of a grid. The
tasks on which coherence models in this line of re-
search are usually evaluated are sentence ordering
(Barzilay and Lapata, 2008), i.e., ranking original
documents as more coherent than the same doc-
uments with the order of all sentences randomly
permuted, and insertion, i.e., ranking original doc-
uments as more coherent than documents with only
one sentence randomly misplaced. These tasks

"The Switchboard Coherence corpus is available
for download at: https://github.com/alecervi/
switchboard-coherence-corpus

>The code for the models presented in this work

can be found at: https://github.com/alecervi/
turn-coherence-rating

163

are still considered standard to this day and found
wide applications, especially for text (Farag et al.,
2018; Clark et al., 2018). Recent models proposed
for these tasks are based on Convolutional Neural
Networks (Nguyen and Joty, 2017), also applied
to thread reconstruction (Joty et al., 2018), while
the current State-of-the-art is based on a combina-
tion of bidirectional Long Short-Term Memory en-
coders and convolution-pooling layers (Moon et al.,
2019). These tasks, however, consider documents
as-a-whole and rely mainly on entities information.
Coherence evaluation in dialogue Models for di-
alogue coherence evaluation have mainly been ex-
plored using supervised approaches, i.e., training
on corpora with human annotations for coherence,
mostly at the turn level (Higashinaka et al., 2014;
Gandhe and Traum, 2016; Venkatesh et al., 2017;
Lowe et al., 2016; Yi et al., 2019). Different ap-
proaches tried to apply the standard coherence tasks
to conversational domains such as dialogue and
threads, but mainly considering the evaluation of
dialogues as-a-whole (Purandare and Litman, 2008;
Elsner and Charniak, 2011; Cervone et al., 2018;
Vakulenko et al., 2018; Joty et al., 2018; Mesgar
et al., 2019; Zhou et al., 2019). In particular, Cer-
vone et al. (2018) found that discrimination might
be over-simplistic for dialogue coherence evalua-
tion when considering Dialogue Act (DA) informa-
tion. In this work, we propose a novel framework to
model entities and DAs information for turn coher-
ence prediction using a weakly supervised training
methodology. Furthermore, our focus is on pre-
dicting coherence of single turns rather than entire
dialogues.

Response Selection As a task, response selection
has become a standard (Lowe et al., 2017; Yoshino
et al., 2019; Kumar et al., 2019) for training both
task-oriented and non-task-oriented retrieval-based
dialogue models. The task proved to be useful for
evaluating models in task-oriented (Ubuntu), so-
cial media threads (Twitter Corpus), and movie
dialogues (SubTle Corpus) (Lowe et al., 2016).
Recently the task has also been proposed for pre-
training models for task-oriented dialogue (Hen-
derson et al., 2019) and for Dialogue Act tagging
(Mehri et al., 2019). In this work, we investigate
response selection as a task for training coherence
rating models for spoken dialogue. Additionally,
while response selection models are usually based
on the entire text as input (Lowe et al., 2017), we
rely solely on entities and DAs information, in or-
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der to investigate their effect on turn coherence
perception.

3 Methodology

In this work, we are interested in the relation be-
tween Dialogue Acts (DAs) and entities and how
they can be modelled to train automatic predictors
of next turn coherence in non-task-based dialogue.

Our hypothesis is that both entities and DAs are
useful to predict the coherence of the next turn. In
order to verify such hypothesis, we first perform
an analysis of entities and DAs patterns of distribu-
tion in the Switchboard Coherence (SWBD-Coh)
corpus, a novel dataset of human-human telephone
conversations from Switchboard annotated with
human coherence ratings per turn.

Secondly, we hypothesize that we can model
entities and DAs to predict next turn coherence
ratings. Rather than using supervised data for co-
herence prediction, we use a weakly supervised
training methodology, i.e. training on the task of
response selection (which proved useful for other
dialogue tasks (Henderson et al., 2019)) and testing
on coherence ratings. In response selection given
a context, i.e. the history of the dialogue up to
the current turn, and a list of next turn candidates,
models are asked to rank candidates according to
their appropriateness with the previous dialogue
history. The positive training samples for this task
are automatically generated by randomly selecting
a given turn in a dialogue, and considering this turn
as a positive (coherent) example with the current
history of the conversation (the context). Negative
samples are generated by selecting other random
dialogue turns, assuming that they will mostly be
not appropriate as the next turn in the dialogue.
In particular, we investigate two methodologies to
generate negative samples from the training data
automatically:

Internal swap: a random turn is selected from a
subsequent part of the same conversation. We as-
sume this task to be harder for coherence evaluation
since typically conversations do not have radical
topic shifts.

External swap: a random turn is selected from
other conversations. We assume this task to be
easier given the probable shifts in topic.

In our first set of experiments, we thus train our
models on response selection. One of the possible
shortcomings of the data generation procedure used
in response selection, however, is the amount of
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Train Dev Test
No. source dialogues 740 184 231
No. insertion points 7400 1840 2310
No. pos/neg pairs 66600 16560 20790

Table 1: Train, development and test data size for re-
sponse selection for both Internal and External Swap.

false negatives. Although it is assumed that the
majority of negative samples generated with this
methodology will not be appropriate for the context,
there could still be cases in which they are.

In order to verify the performance of our models
based on DAs and entities to predict real human
coherence judgments, in our second set of exper-
iments models are tested on SWBD-Coh. Anal-
ogously to response selection, in turn coherence
rating models need to rank next turn candidates
given the history of the dialogue. In this case, how-
ever, the ranking is not binary but is rather based on
a graded coherence rating given by humans for next
turn candidates (for further details on the SWBD-
Coh corpus see Section 4).

4 Data

The dataset chosen for our experiments is the
Switchboard Dialogue Act corpus (Stolcke et al.,
2000) (SWBD-DA), a subset of Switchboard an-
notated with DA information. The Switchboard
corpus is a collection of human—human dyadic tele-
phone conversations where speakers were asked to
discuss a given topic. This dataset was chosen both
to ensure comparability with previous work on di-
alogue coherence and because it is open-domain.
Also, this corpus has DA annotations. Interestingly,
SWBD-DA is a real-world (transcribed) spoken
corpus, so we have sudden topic changes, overlap
speech, disfluencies and other typical characteris-
tics of spoken interaction. Since our goal was to
study coherence in a real-world spoken dialogue
setting, rather than removing these features as er-
rors, we considered them an integral part of spoken
conversations and did not remove them.

Response Selection Source dialogues are split
into train, validation, and test sets (see Table 1) us-
ing the same distribution as Cervone et al. (2018).
For each dialogue, we randomly choose ten inser-
tion points. Each insertion point is composed by
a context (dialogue history up to that point) and
the original turn following that context (regarded
as positive). In order to have 10 next turn candi-
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Figure 1: A source dialogue (at the center of the figure) is transformed into a grid representation (left) and into
a linearized representation (right). In the grid representation, entities and Dialogue Acts (DAs) are transformed
into feature vectors and can then be concatenated. Our linearized representation, i.e. the input to our neural models,
shows 3 different possibilities: one where we only consider entity features at the turn level (top-left), another one
which considers only DA features (top-right), and a joined one where DAs and entities are combined (bottom).

dates, for each insertion point 9 adversarial turns
(regarded as negatives) are then randomly selected
either from subsequent parts of the dialogue, i.e.
Internal Swap (IS), or from other dialogues, i.e.
External Swap (ES), within the same data subset,
so that for example external adversarial turns for
training are only taken from other source dialogues
in the training set.

Switchboard Coherence corpus The dataset for
turn coherence rating, the Switchboard Coherence
corpus (SWBD-Coh), was created using as source
dialogues the ones from SWBD-DA which are in
the testset of Cervone et al. (2018). The data were
annotated using Amazon Mechanical Turk (AMT).
1000 insertion points were randomly selected, fol-
lowing the constraints that the context (dialogue
history up to the original turn) could be between
1 and 10 turns length. Since in this task we want
to evaluate the coherence of a given turn with the
previous dialogue history, 1 turn of context was the
minimum required. We set the maximum length
to 10 turns to reduce annotation time. For each in-
sertion point, six adversarial turns were randomly
selected, besides the original one (3 using the IS
methodology, 3 using the ES one) for a total of 7
turn candidates. Overall the SWBD-Coh dataset is
thus composed of 7000 pairs (1000 contexts x 7
turns).

Each context and turns pair was annotated by 5
AMT workers with coherence ratings. More specif-
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ically, for each dialogue workers were presented
with the dialogue history up to the insertion point
and the next turn candidates (randomly shuffled).
Workers were asked to rate on a scale of 1 (not
coherent), 2 (not sure it fits) to 3 (coherent) how
much each response makes sense as the next natural
turn in the dialogue. All workers (37) who anno-
tated the dataset were first evaluated on a common
subset of 5 dialogues where they had an average
Weighted Kappa agreement with quadratic weights
with two gold (internal) annotators of k = 0.659
(min: 0.425, max: 0.809, STD: 0.101) and among
each other an average leave-one-out correlation of
p = 0.78 (i.e. correlating the scores of each worker
with mean scores of all other workers who anno-
tated the same data), following the approach used
in other coherence rating datasets (Barzilay and
Lapata, 2008; Lapata, 2006). 3 Scores for each
candidate turn were then averaged across all an-
notators. Original turns were regarded on average
as more coherent (¢ = 2.6, SD= 0.5) than ad-
versarial turns, while turns generated with IS were
considered more coherent (1 = 1.8, SD= 0.7) than
the ones generated via ES (¢ = 1.4, SD= 0.6).

S Data analysis

In this section, we analyse the Switchboard Coher-
ence (SWBD-Coh) dataset in regards to the dis-

*More details about our data collection procedure are avail-
able in Appendix A.



tribution of Dialogue Acts (DAs) and entities. In
particular, we are interested in analysing which fea-
tures might affect human judgement of coherence
of a given next turn candidate. For entities, we
analyse two features: the number of entities men-
tioned in the next turn candidate that overlap with
entities introduced in the context and the number
of novel entities introduced in the turn. Addition-
ally, we create a binary feature for each DA type
that registers the presence of that DA in the turn
candidate.

We use multiple regression analysis to verify
how these different features correlate with human
coherence ratings. Table 2, reports the Multiple
Correlation Coefficient (MCC) of regression mod-
els using R squared and Adjusted R squared (Theil,
1961), adjusted for the bias from the number of
predictors compared to the sample size. The results
of our analysis indicate that the best MCC, 0.41
when calculated with the Adjusted R squared, is
achieved when combining all features, both from
entities and DAs. Moreover, in the lower part of
Table 2 we report some of the features that proved
to be the most relevant for predicting human co-
herence ratings. In general, it seems that while the
entities overlapping the previous context seems to
affect positively human coherence judgements, the
DAs that most affect ratings do so in a negative
way and seem to be mostly contentful DAs, such
as statement-opinion, rather than DAs which typi-
cally present no entities, such as acknowledge. Our
interpretation is that, in cases when there are no
overlapping entities with the context, these DAs
might signal explicit examples of incoherence by
introducing unrelated entities.

6 Models

We model dialogue coherence by focusing on two
features that have been closely associated to coher-
ence in previous literature: the entities mentioned
and the speakers’ intents, modelled as Dialogue
Acts (DAs), in a conversation. Our models ex-
plore both the respective roles of entities and DAs
and their combination to predict dialogue coher-
ence. We investigate both standard coherence mod-
els based on Support Vector Machines (SVM) and
propose novel neural ones.

6.1 SVM models

The entity grid model (Barzilay and Lapata, 2008)
relies on the assumption that transitions from one
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MCCR? MCCAR?

Entities 0.27 0.26
DAs 0.34 0.29
All (Entities + DAs) 0.45 0.41
Relevant features in All Coeff. Sign.
Overlapping entities 0.26 ox
DA: decl. yes-no-question ~ -0.48 *
DA: statement-opinion -0.31 ok
DA: statement-non-opinion  -0.30 ok
DA: acknowledge 0.27 ok

Table 2: Multiple Correlation Coefficients (MCC) from
R squared (R?) and Adjusted R squared (AR?) of dif-
ferent multiple regression models that predict human
coherence ratings for candidate turns given a dialogue
context (turn coherence rating task) on the Switchboard
Coherence corpus. Additionally, we report coefficients
and significance (where * denotes .05 >p> .01 and
** 1 < .01) of some relevant features for the best-
performing model (All).

syntactic role to another of the same entities across
different sentences of a text indicate local coher-
ence patterns. This assumption is formalized by
representing a text (in our case, a dialogue) as a
grid, as shown in Figure 1. For each turn of the
dialogue we extract the entities, i.e. Noun Phrases
(NPs), and their respective grammatical roles, i.e.
whether the entity in that turn is subject (.5), direct
object (0O), neither (X), or it is not present (—).
Each row of the grid represents a turn in the dia-
logue, while each column represents one entity (in
Figure 1, for example, the first turn of speaker A
is represented by the first row of the grid O — —).
Using this representation, we can derive feature
vectors to be used as input for Machine Learning
models by extracting probabilities of all role transi-
tions for each column.

More formally, the coherence score of a dialogue
D in the entity grid approach can be modelled as a
probability distribution over transition sequences
for each entity e from one grammatical role r to
another for all turns ¢ up to a given history A (see
Eq. 4 in Lapata and Barzilay (2005)):

1 m n
nt D)~ —— e — e —1),e
DeohEnt (D) m.nggp(”, 7 (t—h),eT(t—1),e)

M

The probabilities for each column (entity) are
normalized by the column length n (number of
turns in the dialogue) and the ones for the entire
dialogue by the number of rows m (number of
entities in the dialogue). In this way, we obtain



the feature vectors shown in Figure 1 where each
possible roles transition of a predefined length (e.g.
O-) is associated with a probability. These feature
vectors are then given as input to a Support Vector
Machine (SVM) in the original model.

Following Cervone et al. (2018), we can use the
same approach to construct similar feature vectors
for DAs information:

n

1
E Hp(dz ‘d(z‘—h)n-d(i—l))

i=1

~
~

PeonpA(D) 2
Here the coherence score of a dialogue is given
by the probability of the entire sequence of DAs
(d) for the whole dialogue, normalized by column
length (n), i.e. the number of DAs for each turn.

The joint model, the one combining entity and
DA information, concatenates feature vectors ob-
tained from both. While other ways of combining
DA and entities have been explored in Cervone et al.
(2018), the authors report that practically a concate-
nation resulted in the best performances across all
tasks, probably due to data sparsity issues.

Indeed among the limitations of the entity grid,
there is data sparsity: for example for an entity ap-
pearing only in the last turn of a dialogue we need
to add a column to the grid which will be mostly
containing “empty” —— transitions (see friends in
Figure 1). Another problem of this approach is the
fact that the model is not lexicalized since we only
keep role transitions when computing the feature
vectors for the entities. Furthermore, the model
makes the simplifying assumption that columns,
thus entities, are independent from each other.

6.2 Neural models

Our neural coherence models for dialogue are
based on bidirectional Gated Recurrent Units
(biGRU). While other neural coherence models
(Nguyen and Joty, 2017; Joty et al., 2018) rely di-
rectly on the grid representation from Barzilay and
Lapata (2008), we explore a novel way to encode
the dialogue structure. The input to our biGRUs is
a sequential representation of the dialogue.

6.2.1 Sequential input representation

We linearize the structure of a dialogue composed
by entities, DAs and turns into flat representations
for our neural models, as in Figure 1. These rep-
resentations can then be mapped to an embedding
layer and joined via concatenation. We consider
three cases: (i) the case in which we model entity
features; (ii) the one in which we consider DAs
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information; (iii) the one in which we combine
both.

Entities encodings In our approach, entities are
Noun Phrases, as in the entity grid approach. For
each dialogue, we consider the sequence of entities
ordered according to their appearance in the con-
versation (see Figure 1). Entities are represented
either by their grammatical roles ent,,, in the di-
alogue (using the same role vocabulary V,. of the
original grid), their corresponding words ent g
(from a vocabulary V,,,), or by both. Another fea-
ture which can be added to this representation is
the turn (whether A or B is talking). This feature
could be useful to encode the dyadic structure of
the dialogue and how this might be related to entity
mentions. In order to better encode the boundaries
of speaker turns, turns are mapped to the IOB2 for-
mat (where the Outside token is removed because
naturally never used for turns), for a resulting turn
vocabulary V; size of 4 tags (2 speakers x 2 IOB
tags used). Special tokens (<no_ent>) are added
to both V,,, and V. for cases in which turns do not
present any entities.

DAs encodings In case we consider only DAs
features, our input representation becomes a se-
quence of DAs for the whole dialogue history so
far, drawn from a vocabulary V;;. Also, in this case,
turn features can be added to mark the turn-wise
structure of the DA sequence, using the same vo-
cabulary V; previously described.

Entities + DAs encodings We combine entities
and DAs by considering the sequence of entities in
order of their appearance within each DA and en-
coding DAs into IOB2 format, as previously done
for turn features. In this setting, thus, the vocabu-
lary V; has double the size, compared to the setting
where we consider only DAs. Analogously to pre-
vious settings, turn features can be added to encode
turn boundaries.

It can be noticed how our representation is less
sparse compared to both the original grid (Barzilay
and Lapata, 2008) and recently proposed models
(Nguyen and Joty, 2017), which take as input grid
columns directly. Furthermore, compared to the
original grid, our representation is lexicalized.

6.2.2 Architecture

The architecture of our models is shown in Fig-
ure 2. In the first layer of the network each input
feature (entppe, entyomg, DA, turn) is mapped to
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Figure 2: Our proposed architecture based on bidi-
rectional GRUs with input entity word embedding
(entyorg) and grammatical role (ent,,,), Dialogue Act
(DA) and speaker furn features.

a d-dimensional dense vector by looking up into
their respective embedding matrix E, one per fea-
ture type. All features vectors obtained can then
be combined using concatenation. This vector is
then recursively passed to the bidirectional GRU
layers and then to a mean pooling layer. Finally,
the output is passed through a feed-forward neu-
ral network with one hidden layer and ReLLU as
non-linearity.

Our models are trained using a Margin-ranking
loss with a margin of 0.5 using the following equa-
tion:

loss(z,y) = max(0, —y*(x1—x2)+margin) (3)

where x1 and z2 are respectively the original dia-
logue and the adversarial one and y = 1. In this
way, the model is asked to rank the original dia-
logue higher (more coherent) than the adversarial
one. The model is trained by Stochastic Gradient
Descent, using the Adam update rule (Kingma and
Ba, 2015).
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7 Experimental set-up

Preprocessing Entities, i.e. Noun Phrases (NPs),
and their syntactic roles were extracted and prepro-
cessed with Cervone et al. (2018)’s pipeline *. Fol-
lowing the original entity grid formulation (Barzi-
lay and Lapata, 2008), only NPs heads were kept.
The DAs are taken from annotations on SWBD-DA
(using the standard reduction to 42 tags compared
to the DAMSL ones).

Evaluation For evaluating response selection,
we use pairwise Accuracy, the metric used in stan-
dard coherence tasks, which evaluates the ability
of the model to rank original turns higher than each
adversarial one. However, this metric is not indica-
tive of the global ranking of all candidate turns for a
given context. For this reason, we add two ranking
metrics to evaluate our models: Mean Reciprocal
Rank (MRR), which evaluates the average of recip-
rocal ranks of all candidate turns for a context, and
Recall at One (R@1) and Two (R@2), also used in
previous work on response selection (Lowe et al.,
2017; Zhou et al., 2018) to assess the ability of the
model to rank original turns respectively within the
first or second rank among all candidates.
Compared to response selection, where we have a
binary choice between coherent and negative turns,
in turn coherence rating, we have a set of candidate
turns each associated to a coherence score. In this
case, we use Accuracy, MRR, R@1 and Normal-
ized Discounted Cumulative Gain (nDCG) to eval-
uate our models. Accuracy was computed only for
cases in which the rating of the turn was not iden-
tical across two candidate turns. MRR and R@1
were computed dynamically, that is considering the
turn with the highest score within that particular
context as the best one in the rank. The nDCG met-
ric (Jarvelin and Kekéldinen, 2002) assesses the
gain of a candidate according to its rank among all
candidates. Compared to previous metrics, nDCG
allows taking into account the relevance (in our
case, the coherence score) of candidates. For all
metrics considered, if our models predicts the same
score for two candidates, we always assume mod-
els made a mistake, i.e. among candidates with the
same predicted score positive examples are ranked
after the negative ones.

Models’ settings Grid models, based on SVMs,
were trained with default parameters using

*https://github.com/alecervi/
Coherence-models-for-dialogue
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Internal Swap

External Swap

Acc. MRR R@1 R@2 | Acc. MRR R@1 R@2
Random 50.0 0.293 0.099 0.198 | 50.0 0.293 0.099 0.198
SVM ent,,, (Entity Grid) 36.6 0.260 0.103 0.178 | 39.5 0.246 0.096 0.126
SVM DA (Cervone et al., 2018) 60.6 0.398 0.206 0.335| 61.3 0.403 0.212 0.346
SVM ent,y, + DA (Cervone et al., 2018) 62.7 0.417 0.222 0.365 | 64.3 0.437 0.251 0.380
biGRU ent,,, 41.8 0.294 0.120 0.217 | 45.5 0.293 0.117 0.210
biGRU ent,,, + turn 433 0295 0.120 0.214| 459 0.293 0.115 0.211
biGRU ent,y,4 47.8 0324 0.151 0.252| 564 0397 0.236 0.337
biGRU ent,,,,4 + turn 49.0 0.331 0.162 0.255| 569 0.400 0.241 0.341
biGRU ent,j. + entypq + turn 48.6 0.327 0.156 0.253 | 56.1 0.394 0.232 0.338
biGRU DA 72.4 0484 0.276 0.443 | 72.6 0.486 0.278 0.447
biGRU DA + turn 74.0 0501 0.297 0.464 | 74.1 0.508 0.305 0.475
biGRU ent,,,;s + DA + turn 751 0520 0.321 0.484 | 77.3 0.550 0.355 0.530
biGRU all 75.0 0.521 0.321 0.489 | 77.2 0549 0.354 0.529

Table 3: Average (5 runs) of Accuracy (Acc.), Mean Reciprocal Rank (MRR) and Recall at one (R@1) and
two (R@2) for response selection using both data generation methodologies (Internal and External Swap) on

Switchboard.

SV Mlight preference kernel (Joachims, 2002)) as
in the original model (Barzilay and Lapata, 2008).
For saliency, i.e. the possibility of filtering enti-
ties according to their frequency, and transitions
length we follow the default original grid param-
eters (saliency:1, transitions length:2). For neu-
ral models, implemented in Pytorch (Paszke et al.,
2019), parameters were kept the same across all
models to ensure comparability. The learning rate
was set to 0.0005, batch size to 32, with two hid-
den biGRU layers of size 512. Embedding sizes
for all features were set to 50—dimensions, except
for word embeddings which had dimension 300.
Models run for a maximum of 30 epochs with early
stopping, based on the best MRR score on the de-
velopment set.

8 Results

In this section, we report the results of our models
for response selection. The best performing models
on response selection are then evaluated on the
turn coherence rating task using the Switchboard
Coherence (SWBD-Coh) corpus as testset. For
both tasks we compare our models to a random
baseline. All reported results for neural models are
averaged across 5 runs with different seeds.

Response selection The results for response se-
lection are reported in Table 3. Neural models seem
to capture better turn-level coherence compared to
classic grid SVM-based approaches. In both data
generation methodologies, Internal (IS) and Exter-
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Train Acc. MRR R@1 nDCG

Random 50.0 0.479 0.234 0.645
biGRU IS 427 0.395 0.174 0.621
entyppg + turn ES 50.4 0.444 0.229 0.679
biGRU IS 56.0 0.553 0.326 0.717
DA + turn ES 56.0 0.558 0.337 0.725
biGRU IS 585 0.575 0.358 0.738
entyos + DA +turn ES  61.1 0.583 0.369 0.760

Table 4: Average (5 runs) of Accuracy (Acc.), Mean
Reciprocal Rank (MRR), Recall at one (R@1) and Nor-
malized Discounted Cumulative Gain (nDCG) for turn
coherence rating for models trained using either Inter-
nal (IS) or External Swap (ES) on the Switchboard Co-
herence corpus.

nal Swap (ES), SVM coherence models are outper-
formed by neural ones for all metrics considered.
As expected, entity features (ent,y, ent,,,q) play
a more prominent role in ES compared to IS. In
both cases, entity features seem to be better cap-
tured by neural models relying on our proposed
input representation. When considering lexical in-
formation (ent,,,,4), however, ent,,;, features seem
less relevant. This might be due to the fact that
spoken dialogue has usually less complex syntactic
structures compared to written text. Furthermore,
parsers are usually trained on written text, and thus
might be more error-prone when applied to dia-
logue where there are disfluencies, sudden changes
of topics, etc. We notice that DAs alone (without
entity information) play an important role in both
IS and ES. Turn features capturing speaker infor-



mation seem helpful for both DAs and entities.

In general, the combination of DAs and entities
gives the best results both in SVM and neural mod-
els for both tasks, with the best performing one
being the model combining ent,,,,;, DA and turn
features and without ent,,,.. Additionally, if we
compare the IS setting to ES in terms of best MRR,
Accuracy and Recall, the former seems more diffi-
cult. This confirms our expectations that IS might
be an harder task for coherence.

Turn coherence rating A selection of best per-
forming models for entities, DAs and their com-
bination were tested on the SWBD-Coh dataset.
Table 4 shows models’ results under both training
conditions, i.e. either using IS or ES data. The low-
est performing model seems to be the one based
solely on entity features (ent,,,,y + turn), while
models combining DA with entities information
(enty,os + DA + turn) are the best performing ones.
Additionally, models trained on ES data perform
better than those trained on IS across all conditions.

9 Conclusions

In this work, we investigate how entities and Dia-
logue Acts (DAs) are related to human perception
of turn coherence in dialogue. In order to do so, we
create a novel dataset, the Switchboard Coherence
(SWBD-Coh) corpus, of transcribed open-domain
spoken dialogues annotated with turn coherence rat-
ings. A statistical analysis of the corpus confirms
how both entities and DAs affect human judge-
ments of turn coherence in dialogue, especially
when combined. Motivated by these findings, we
experiment with different models relying on enti-
ties and DAs to automatically predict turn coher-
ence, i.e. standard coherence models and novel
neural ones. In particular, we propose a less sparse
alternative, compared to the entity grid, to encode
entities and DAs information. Rather than using
data annotated explicitly for the task, i.e. coher-
ence prediction, we explore two response selection
methodologies for training. We find that our newly
proposed architecture outperforms standard ones
in response selection. Finally, we test our models
on the SWBD-Coh corpus in order to evaluate their
ability to predict real human turn coherence ratings.
Crucially, we find that the combination of DAs and
entities gives the best performances.

For the future work, it would be interesting to
investigate how to apply large pretrained models to
our task, such as BERT (Devlin et al., 2019). While

pretrained models have recently been successfully
explored for text-based response selection (Kim
et al., 2019; Henderson et al., 2019), integrating
them with our proposed input representation is not
a straightforward task since such models typically
rely on the whole textual context, while our models
do not.

While there is still much to understand regarding
turn coherence in dialogue, we believe our work
could be a first step towards uncovering the relation
between DAs and entities in open-domain spoken
dialogue. Moreover, we believe that the SWBD-
Coh corpus could become a useful resource for
the community to study coherence in open-domain
spoken dialogue.
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A Appendix A: Switchboard Coherence
corpus data collection procedure

Coherence rating is an inherently subjective task
and could be challenging especially for a dataset of
transcribed real-world open-domain human-human
conversation like Switchboard, where we have pos-
sible interruptions, overlaps and disfluencies nat-
urally occurring. Hence, in order to ensure we
collected reliable judgements for turn coherence,
we followed a multi-step procedure to build the
Switchboard Coherence (SWBD-Coh) corpus us-
ing Amazon Mechanical Turk (AMT).

A.1 Experiment with internal annotators

First we performed a small-scale annotation exper-
iment to evaluate the feasibility of the task. Two
internal annotators, both with Linguistics educa-
tion, were asked to rate a set of 150 different di-
alogues randomly selected from the testset from
(Cervone et al., 2018). The 150 annotation pairs
(context + set of candidate turns) were generated
using the same procedure described in Section 4 of
the paper. The coherence scale was divided into 1
(not coherent), 2 (not sure it fits) and 3 (coherent).
Since we wanted to capture a general perception of
coherence, rather than bias annotators towards our
own intuitions, in the guidelines annotators the task
was described as: “Your task is to rate each candi-
date on a scale of how much it is coherent with the
previous dialogue context, that is how much that
response makes sense as the next natural turn in
the dialogue”.

Since in this case we only have two annotators,
we were able to measure their inter-annotator agree-
ment using a weighted kappa score with quadratic
weights (since our categories are ordinal). The
inter-annotator agreement was of 0.657 (which can
be regarded as substantial (Viera et al., 2005)).
Then, we averaged scores for each candidate turn
from both annotators. As shown in Table 5, original
turns had higher coherence scores (1 = 2.66) com-
pared to adversarial turns, while turns generated
with Internal Swap were considered more coherent
(u = 1.78) than the ones generated via External
Swap (= 1.45).

A.2 Experiment with AMT

After having assessed the feasibility of the task,
we then proceeded to set up the data collection
procedure on AMT.
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Orig IS ES
w score 150 2.7(0.5) 1.8(0.7) 1.4(0.7)
 score SWBD-Coh 2.6 (0.5) 1.8 (0.7) 1.4 (0.6)

Table 5: Comparison of human annotation results for
the experiment with two internal annotators (150 dia-
logues) and the Switchboard Coherence (SWBD-Coh)
dataset. Mean scores (and standard deviation) are re-
ported for each candidates group: originals (Orig), in-
ternal swap (IS) and external swap (ES).

In order to select workers for our coherence an-
notation task we first set up a qualification task
on AMT. The qualification task consisted of 5 di-
alogues (taken from the 150 internally annotated)
with 7 turn candidates using the same coherence
rating scale as in the gold annotation. In order to
pass the qualification task a worker had to have a
weighted kappa score higher than 0.4 with both our
gold annotators. This threshold was decided em-
pirically by first running a small scale experiment
with other 4 internal annotators on the qualification
task. 37 workers passed the qualification task. The
average weighted kappa agreement with the two
gold annotators was 0.659 (min: 0.425, max: 0.809,
STD: 0.101). In order to calculate the agreement
among all the 37 workers on this batch we employ
leave-one-out resampling. For each worker who
annotated the data we calculate the correlation of
her/his scores with the mean ones of all other anno-
tators in the batch. This is repeated for all workers
and then averaged. This technique has been used in
other coherence annotation experiments (Barzilay
and Lapata, 2008; Lapata and Barzilay, 2005).

Workers who passed the qualification test could
then proceed to annotate the SWBD-Coh data. The
data, consisting of 1000 dialogues, was divided
into 100 batches of 10 dialogues each. Each batch
was annotated by at least 5 workers. In order to
remove possible workers who did not perform well
on a given batch, we employed a combination of
techniques including leave-one-out resampling and
average scores given to original turns. The aver-
age leave-one-out correlation per batch for turn
coherence rating achieved with this data collection
procedure was: p =0.723 (min: 0.580, max: 0.835,
STD: 0.055). Interestingly, as shown in Table 5,
the average scores per candidate group (original,
Internal swap, External swap) match closely the
ones obtained in our gold 150 annotation data.



Models ranks

Context Score Candidates Ent DA Ent+DA

A: Okay. 3.0 Ididn’t know anyone ever moved from California to Iowa? 1 4 1
B: Well, if you are from Iowa, 26 Anyway, we are supposed to be talking about crafts. Do you, um, 2 2
you must be very artsy crafty. " do you have any hobbies that, that you do things with your hands
Everyone I've ever known from the Midwest| 2.2 Right. 4 3 3
can do everything with their hands. 2.2 Uh-huh. 4 3 3
A: Oh, well, actually I'm from California 2.0 Oh, sure. 4 3 3
and before then I was from Utah. So. 1.2 bags some, their most recent, uh, needle craft 3 4 4

1.0 at least at the end. 5 1 5

Table 6: Example of how different models relying only on entities (biGRU ent,,,,; + turn), only on DAs (biGRU
DA + turn) or both (biGRU ent,,,,s + DA + turn) rank the same group of candidates for a given context.

B Appendix B Models output example

Table 6 shows an example of the ranking given by
different models to the same context-candidates
pairs in the SWBD-Coh corpus, compared to the
average coherence score given by annotators. In
particular, we report the ranking given by a model
based solely on entities information (biGRU ent,,,,4
+ turn), another one considering only DAs (biGRU
DA + turn) and a third one considering both types
of information (biGRU ent,,,,s + DA + turn). All
models were trained on response selection using the
External Swap methodology. The models output is
reported in terms of position in the rank. Entities
appearing in the text are highlighted in bold.

In this example we notice entities overlap in-
formation with the previous context proves rather
important in order to rank candidates according
to coherence. For example, to rank the candidate
with the highest coherence as the first one (I didn’t
know anyone ever moved from California to lowa?)
information regarding the overlapping entities Cal-
ifornia and lowa allows the models encoding enti-
ties information to assign the correct rank, while
the model relying only on DAs gives the candidate
the fourth position in the rank. We also notice how
both annotators and all models assign very close or
the same middle rank scores to three very similar
candidates (Right, Uh-huh and Oh, sure.), which
indeed all have the same DA (“acknowledgment”).
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