
Proceedings of the 1st Joint Workshop on Narrative Understanding, Storylines, and Events, pages 38–45
July 9, 2020. c©2020 Association for Computational Linguistics

38

Extensively Matching for Few-shot Learning Event Detection

Viet Dac Lai1, Franck Dernoncourt2 and Thien Huu Nguyen1

1Department of Computer and Information Science,
University of Oregon, Eugene, Oregon, USA

2Adobe Research, San Jose, CA, USA
{vietl, thien}@cs.uoregon.edu
franck.dernoncourt@adobe.com

Abstract

Current event detection models under super-
vised learning settings fail to transfer to new
event types. Few-shot learning has not been
explored in event detection even though it al-
lows a model to perform well with high gener-
alization on new event types. In this work, we
formulate event detection as a few-shot learn-
ing problem to enable to extend event detec-
tion to new event types. We propose two novel
loss factors that matching examples in the sup-
port set to provide more training signals to the
model. Moreover, these training signals can be
applied in many metric-based few-shot learn-
ing models. Our extensive experiments on the
ACE-2005 dataset (under a few-shot learning
setting) show that the proposed method can im-
prove the performance of few-shot learning.

1 Introduction

Event Detection (ED) is an important task in Infor-
mation Extraction (IE) in Natural Language Pro-
cessing (NLP). Event Detection is the task to detect
event triggers from a given text (e.g. a sentence)
and classify it into one of the event types of interest.
The following sentence is an example of ED:

In 1997, the company hired John D. Idol to take
over as chief executive.

In this example, an ideal event detection sys-
tem should detect the word hired as an event, and
classify it to class of Personnel:Start-Position, as-
suming that Personnel:Start-Position is in the set
of interested classes.

The current works in ED typically employ tra-
ditional supervised learning based on feature en-
gineering (Li et al., 2014; Chen et al., 2017) and
neural networks (Nguyen et al., 2016a; Chen et al.,
2018; Lu and Nguyen, 2018). The main problem
with supervised learning models is that they can
not perform well on unseen classes (e.g. train-
ing a model to classify daily events, then run this

model to classify laboratory operations). As a re-
sult, supervised learning ED can not extend to un-
seen event types. A trivial solution is to annotate
more data for unseen event types, then retraining
the model with newly annotated data. However,
this method is usually impractical because of the
extremely high cost of annotation (Liu et al., 2019).

A human can learn about a new concept with
limited supervision e.g. one can detect and classify
events with 3-5 examples (Grishman et al., 2005).
This motivates the setting we aim for event detec-
tion: few-shot learning (FSL). In FSL, a trained
model rapidly learns a new concept from a few
examples while keeping great generalization from
observed examples (Vinyals et al., 2016). Hence,
if we need to extend event detection into a new
domain, a few examples are needed to activate the
system in the new domain without retraining the
model. By formulating ED as FSL, we can signifi-
cantly reduce the annotation cost and training cost
while maintaining highly accurate results.

In a few shot learning iteration, the model is
given a support set and a query instance. The sup-
port set consists of examples from a small set of
classes. A model needs to predict the label of the
query instance in accordance with the set of classes
appeared in the support set. Typical methods em-
ploy a neural network to embed the samples into a
low-dimension vector space (Vinyals et al., 2016;
Snell et al., 2017), then, classification is done by
matching those vectors based on vector distances
(Vinyals et al., 2016; Snell et al., 2017; Sung et al.,
2018). One potential problem of prior FSL meth-
ods is that the model relies solely on training sig-
nals between query instance and the support set
(Vinyals et al., 2016; Snell et al., 2017; Sung et al.,
2018). Thus, the matching information between
samples in the support set has not been exploited
yet. We believe that this is not an efficient use of
training data because dataset in ED is very small

39

(Grishman et al., 2005). Therefore, in this study,
we propose to train an ED model using matching
information (1) between query instance and the sup-
port set and (2) between the samples in the support
themselves. This is implemented by adding two
auxiliary factors into the loss function to constrain
the learning process.

We apply the proposed training signals to differ-
ent FSL models on the benchmark event detection
dataset (Grishman et al., 2005). The experiments
show that the training signal can improve the perfor-
mance of the examined FSL models. To summarize,
our contributions to this work include:

• We formulate event detection as a few-shot
learning problem to extend ED to new event
types and provide a baseline for this new re-
search direction. To our best knowledge, this
is a new branch of research that has not been
explored.

• We propose two novel training signals for FSL.
These signals can remarkably improve the per-
formance of existing FSL models. As these
signals do not require any additional informa-
tion (e.g. dependency tree or part-of-speech),
they can be applied in any metric-based FSL
models.

2 Related work

Early studies in event detection mainly address fea-
ture engineering for statistical models (Ahn, 2006;
Ji and Grishman, 2008; Hong et al., 2011; Li et al.,
2014, 2015) including semantic features and syn-
tactic features. Recently, due to the advances with
deep learning, many neural network architectures
have been presented for ED, e.g. convolutional
neural networks (CNN) (Chen et al., 2015; Nguyen
and Grishman, 2015, 2016; Nguyen et al., 2016b),
recurrent neural networks (RNN) (Liu et al., 2017;
Chen et al., 2018; Nguyen et al., 2016a; Nguyen
and Nguyen, 2018) and graph convolutional neu-
ral networks (GCN) (Nguyen and Grishman, 2018;
Pouran Ben Veyseh et al., 2019). These methods
formulate ED as a supervised learning problem
which usually fails to predict the labels of new
event types.

By transitioning the symbolic event types to de-
scriptive event types in the form of bags of key-
words (Bronstein et al., 2015; Peng et al., 2016; Lai
and Nguyen, 2019), the adaptibility of event detec-
tion can be formed as a supervised-learning prob-
lem. However, these studies have not examined

FSL as we do in this work. One can also address
this problem in zero-shot learning with data gener-
ated from abstract meaning representation (Huang
et al., 2018) or two-stage pipeline (trigger identifi-
cation and few-shot event classification) based on
dynamic memory network (Deng et al., 2020). A
recent study has employed few-shot learning for
event classification (Lai et al., 2020). Our work is
similar in terms of formulation, however, we con-
sider it in a larger extent of event detection where
the NULL event is also included.

Few-shot learning has been studied early in the
literature (Thrun, 1996). Before the era of the
deep neural network, FSL approaches focused on
building generative models that can transfer priors
across classes. However, these methods are hard
to apply to real applications because they require a
subject-dedicated design such as handwritten char-
acters (Lake et al., 2013; Wong and Yuille, 2015).
As a result, they cannot capture the nature of the
distribution (Salimans et al., 2016). Later stud-
ies, based on deep neural network, proposed met-
ric learning to model the distribution of distance
among classes, (Koch et al., 2015) with many incre-
mental improvements in distance functions such as
cosine similarity (Vinyals et al., 2016), Euclidean
distance (Snell et al., 2017) and learnable distance
function (Sung et al., 2018). Metric-based FSL
presents its advantages in two dimensions. First, it
is based on the well-studied theory in distance func-
tions. Second, the simplicity in architecture and
training processes can encourage its application
in practice. Recently, meta-learning with parame-
ter update strategy is also proposed to enable the
models to learn quickly in few training iterations
(Santoro et al., 2016; Finn et al., 2017).

3 Methodology

Our goal in this work is to formulate ED as a FSL
problem, which has not been done in prior work.
In order to achieve this, this section is divided into
three parts. In the section 3.1 we present the over-
all framework that formulate Event Detection as
an Few-Shot Learning problem. Then, we present
popular models for FSL in the prior work and com-
mon sentence encoders which have been widely
used in ED in section 3.2. Finally, we present two
novel reguarlization technique to further improve
the FSL model for ED in section 3.3.

40

3.1 Event Detection as Few-shot Learning

In few-shot learning, models learn to predict the
label of a query instance x given a support set S (a
set of well-classified instances) and a set of classes
C, which appears in the support set S. Prior studies
in FSL employ N -way K-shot setting, in which
there are N clusters, which represent N classes,
each cluster containsK data points (i.e., examples).

However, this setting is designed for problems
that do not involve the “NULL” class (e.g., image
classification and event classification). In event
detection, the systems need to predict whether a
query instance is an event (positive event type) or
not (negative event type – the “NULL” type) before
it is further classified into one of the classes of
interest. To this end, we propose to extend the N-
way K-shot setting to be N+1-way K-shot setting.
In this setting, the support set contains N clusters
representing N positive event types and 1 cluster
representing the NULL event type. The support set
is denoted as follows:

S ={(s11, a11, t1), . . . , (sK1 , aK1 , t1),
. . .

(s1N , a
1
N , tN), . . . , (sKN , a

K
N , tN),

(s1N+1, a
1
N+1, tnull), . . . , (s

K
1 , a

K
N+1, tnull)}

where:

• {t1, t2, · · · tN} is the set of positive labels,
which indicate an event

• tnull a special label for non-event.

• (sji , a
j
i , ti) indicates that the aji -th word in the

sentence sji is the trigger word of an event
mention with the event type ti

3.2 Framework

Follow prior studies in FSL (Gao et al., 2019), we
employ the metric-based FSL framework with three
components: instance encoder, prototype encoder,
and classification module.

3.2.1 Instance Encoder
Given a sentence of L words {w1, w2, · · · , wL}
and the event mention wa, which is the a-th word
of the sentence, we first map discrete words to a
continuous high dimensional vector space to facil-
itate neural network using both pre-trained word
embedding and position embedding as follow:

• In order to capture the syntactic and semantic
of the word itself, we map each word in the
sentence to a single vector using pre-trained
word embedding, following previous studies
in ED (Nguyen and Grishman, 2015). Af-
ter this step, we derive a sequence of vectors
{e1, e2, · · · , eL} where ei ∈ Ru.

• To provide a sense of the relative position of
a word regarding the position of the anchor
word, we further provide position embedding.
It is mapped from the relative distance, i− a,
of the i-th word with respect to the anchor
word, a-th word to a single vector pi ∈ Rv.
We randomly initialize this word embedding
and update the embedding during the training
process.

• Following previous work (Nguyen and Grish-
man, 2015), the final embedding of a word
wi is derived by concatenating word embed-
ding and position embedding mi = [ei, pi] ∈
Ru+v.

Once we get the embedding for the whole sen-
tence E(s) = {m1,m2, · · · ,mL}, we employ a
neural network, denoted as f , to encode the in-
formation of an instance (s, a) of the anchor wa

under the context in the sentence s into a single
vector v = f(E(s), a). In this work, consider the
three following neural network architectures for
this encoding purpose:

• Convolution Neural Network (CNN) (Kim,
2014) encodes the sentence by convolution
operation on k consecutive vectors represent-
ing k-gram. Follow (Nguyen and Grish-
man, 2015), we use multiple kernel sizes
k ∈ {2, 3, 4, 5} to cover the context with 150
filters for each kernel size. To squeeze the in-
formation of the sentence, we apply max pool-
ing to the top convolution layer to get a pooled
vector p. We also introduce local embedding
e[a−w,a+w] with window size w = 2. We con-
catenate pooled vector and local embeddings,
and feed them through multiple dense layer to
get the final representation:

v =W [p, e[a−w,a+w]]

• Long Short-Term Memory (LSTM) (Hochre-
iter and Schmidhuber, 1997), at each step i,

41

computes a hidden vector hi from the hid-
den vector of the previous step hi−1 and
the current input vector ei. To capture the
context from both sides a word in the sen-
tence, we employ two separate LSTMs run-
ning on forward and backward directions.
Eventually, we can obtain two sequence of
hidden vector {hforward

i , · · · , hforward
L } and

{hbackward
i , · · · , hbackward

L }. Finally, we con-
catenate the a-th vectors, at the position of
the anchor, to form the representation of the
instance:

v = concat(hforward
a , hbackward

a)

• Graph Convolutional Neural Network features
graph convolution (Kipf and Welling, 2017)
on syntactic dependency graph, which allows
the model to access to the nonconsecutive
words based on the connection on the syn-
tactic dependency tree. Following (Nguyen
and Grishman, 2018), we transform the depen-
dency tree into a syntactic graph by making
it an undirected graph and adding node loops.
The hidden vectors hli of the l-th vector is ob-
tained by feeding hidden vectors of the l−1-th
layer through a GCN layer (Kipf and Welling,
2017). The final representation is the hidden
vector in the top layer at the position of the
trigger hLa whereL = 2 is the number of GCN
layers.

3.2.2 Prototype Encoder
This module computes a representative vector,
called prototype, for each class t ∈ T in the sup-
port set S from its instances’ vectors. We employ
two variants of prototype computation.

The first version, proposed in the original Pro-
totypical Network (Snell et al., 2017), considers
all representation vectors are equally important.
To calculate the prototype for a class ti, it aggre-
gates all the representation vectors of the instance
of class ti, and then perform averaging over all
vectors :

ci =
1

K

∑
(sji ,a

j
i ,ti)∈S

f(E(sji), a
j
i) (1)

On the other hand, it was claimed that the sup-
porting vectors are conditionally important with
respect to the query (q, p). Thus, the second ver-
sion computes the prototype as a weighted sum of

the supporting vectors. The weights are obtained
by attention mechanism according to the represen-
tational vector of the query as follow:

ci =
∑

(sji ,a
j
i ,ti)∈S

αijf(E(sji), a
j
i)

where αij =
exp(bij)∑

(ski ,a
k
i ,ti)∈S

exp(bik)
;

bij =
∑[

σ(f(E(sji), a
j
i)� f(E(q), p))

]
;

� denotes the element-wise product.
(2)

3.2.3 Classification Module
This module computes the distribution on all the
event types T of a query instance x = (q, p) using
a distance/similarity function d : R← Rd.

P (y = ti|x, S) =
exp(−d(f(q, p), ci))∑N
j=1 exp(−d(f(q, p), cj))

(3)
where d is a distance/similarity function, and ci
and cj are the prototype vectors obtained in either
Equation (1) or Equation (2) from the support set
S.

In this paper, we examine three kinds of dis-
tance/similarity function with prototype module to
form 4 model as follow:

• Cosine similarity with averaging prototype as
Matching network (Vinyals et al., 2016).

• Euclidean distance with averaging prototype
as Proto network (Snell et al., 2017).

• Euclidean distance with weighted sum proto-
type as Proto+Att network (Gao et al., 2019).

• Learnable distance function with averaging
prototype as Relation network (Sung et al.,
2018).

3.3 Training Objectives
In the literature, a metric-based FSL model is
typically trained by minimizing the negative log-
likelihood as follow:

Lquery(x, S) = − logP (y = t|x, S) (4)

where x, t, S are query instance, ground truth label,
and support set, respectively.

42

Model 5+1-way5-shot 10+1-way 10-shot
Encoder CNN LSTM GCNN CNN LSTM GCNN
Proto 70.85 68.77 71.30 61.43 57.89 62.36
Proto+Att 71.23 69.32 72.76 63.50 59.56 65.08
Relation 54.36 68.33 58.37 41.37 62.85 44.43
Matching 34.71 49.40 32.49 23.05 33.84 21.51

Table 1: F1-score (micro) of models using CNN, LSTM and GCN encoders without proposed losses.

Encoder Model
5+1-way 5-shot 10+1-way 10-shot

Original + Linter + Lintra Original +Linter + Lintra

CNN Proto 70.85 72.07 61.43 62.84
LSTM Proto 68.77 78.09 57.89 72.78
GCN Proto 71.30 71.82 62.36 63.49
CNN Proto+Att 71.23 72.46 63.5 64.38
LSTM Proto+Att 69.32 78.44 59.56 72.94
GCN Proto+Att 72.76 72.92 65.08 66.10

Table 2: F1-score (micro) of models using CNN, LSTM, and GCN. Original columns show the models without
additional training signal. Linter + Lintra columns demonstrate the models with additional inter and intra loss
functions.

This loss function exploits the signal of match-
ing information between the query instance and
the supporting instances. It can work efficiently
in computer vision because the number of sam-
ples in computer vision datasets are typically huge.
However, in NLP tasks, the dataset is commonly
relatively much smaller (e.g. ACE 2005 contains
4000 positive examples). So using this loss func-
tion is not enough to deliver a good system.

Therefore, providing more training signals is cru-
cial to the problem which involves a small dataset.
Fortunately, the support set is a well-classified set
of instances with K examples per class in a total
of N classes. In this paper, we proposed two ways
to exploit this resourceful set as follow:

• Intra-cluster matching: We argue that the rep-
resentational vectors in the same class should
be close to each other. Therefore, we min-
imize the distance between instance in the
same class.

Lintra =
N∑
i=1

K∑
k=1

K∑
j=k+1

mse(vji , v
k
i) (5)

• Inter-cluster information: We also argue that
the clusters should distribute far away from
each other. Hence, their prototypes are also
distant from the other. Hence, we maximize

the distances between pairs of prototypes.

Linter = 1−
N∑
i=1

N∑
j=i+1

cosine(ci, cj) (6)

In this work, we train our model using a combi-
nation of the loss functions in equations 4, 5,6. We
control the contribution of the additional losses by
two hyperparameters β and γ as follow:

L = Lquery + βL̂intra + γL̂inter (7)

where L̂intra and L̂inter are scaled losses with re-
spect to Lquery, and β and γ are the trade-off pa-
rameters.

4 Experiments

4.1 Data

We use the ACE-2005 dataset to evaluate all of the
models in this study. ACE-2005 is a benchmark
dataset in event detection with 33 positive event
subtypes, which are grouped into 8 event types
Business, Contact, Conflict, Justice, Life, Move-
ment, Personnel, and Transaction. Although the
dataset is split into training, development, and test-
ing sets, we cannot use these splits directly because,
in FSL, the set of event types in the training set and
testing sets are disjoint. Therefore, we further split
these datasets to satisfy three conditions for FSL:

43

• The set of event types in the training set T train

are disjoint to those in the development and
the testing set:

T dev ≡ T test;T train ∩ T test = ∅;

• In order to run FSL with the 10-way 10-shot
setting, the set of event subtypes should con-
tain at least 10 subtypes.

• The training set should contain as many sam-
ples as possible.

Based on these criteria, we use all samples be-
longing to 4 event types: Business, Contact, Con-
flict and Justice as the training set. While the rest
(Life, Movement, Personnel and Transaction) are
used for the development and testing sets. We split
the sample by ratio 50:50 in every subtype to en-
sure the balance of the development and the testing
set. Finally, since there are event types that have
less than 15 examples, we eliminate all of these
from the training, development, and testing set.

4.2 Hyper-parameters
We evaluate using 5+1-way 5-shot and 10+1-way
10-shot FSL settings. Although it was seen that the
higher number of classes we have during the train-
ing time, the better performance on testing (Snell
et al., 2017), we avoid feeding all event types in
every iteration during training time. We manage to
sample 20 positive classes (over 21 in the training
set) in each training iteration.

We initialize the embedding vectors with 300-
dimension GLoVe embedding, trained from 6 bil-
lion tokens. We use 50-dimension position embed-
ding and initialize it randomly. These embedding
vectors are updated during training time.

We train Proto, Proto+Att, and Matching using
Stochastic Gradient Decent (SGD) optimizer while
Relation is trained with AdaDelta optimizer be-
cause SGD hardly converges with Relation net-
work. The learning rate is initialized to 0.03 and
decays after every 500 iterations. We trained our
models in 2500 iterations and evaluation at every
200 iterations.

In order to find the best set of β and γ, we do grid
search with with (β, γ) ∈ {0.0, 0.1, 0.2, 0.3}2.

4.3 Result
In this section, we perform our experiment in three
steps:(1) find the best FSL models among Proto,
Proto+Att, Matching, Relation models; (2) evalu-
ate the proposed additional training factors and (3)

analyze the effectiveness of each training factor in
an ablation study.

Table 1 shows the F-scores of four models using
three kinds of sentence encoders on the ACE-2005
dataset under 5+1-way 5-shot and 10+1-way 10-
shot FSL settings without our proposed losses. As
can be seen from the Table 1, the performance
of the models on 5+1-way 5-shot is always bet-
ter than 10+1-way 10-shot because the number of
classes needs to be classified in the 10+1-way set-
ting is almost twice as much of in 5+1-way setting.
Second, we can see that Prototypical-based (Proto
and Proto+Att) models outperform the Matching
network and the Relation network on both FSL
settings. Among Prototypical network models,
Proto+Att is slightly better than Proto with a 0.8%
performance gap in the 10+1-way 10-shot setting.

Most importantly, Table 2 presents the F-scores
of Proto and Proto+A with the proposed loss func-
tions (i.e., Lintra, Linter). As we can see from the
table, the proposed loss functions can significantly
improve the performance of Proto and Proto+Att
models over different encoders (i.e., CNN, LSTM,
and GCN), clearly demonstrating the benefits of the
intra and inter-similarity constraints in this work.

4.4 Ablation Study

In this study, we introduce two penalization factors,
presented in Equations 5 and 6.

Besides the FSL formulation for event detection,
a major contribution in this work involves the two
loss functions Lintra and Linter to improve the rep-
resentation vectors for the models. To evaluate
the contribution of these terms, Table 3 shows the
performance of the FSL models with different com-
binations of loss functions on the development set.
In particular, we focus on the prototypical-based
FSL model on the 5+1-way 5-shot setting in this
analysis (although the similar trends of the perfor-
mance are also observed for the other models and
settings). The “Original” column corresponds to
the models where both Linter and Lintra are not ap-
plied. The other columns, on the other hand, report
the performance of the models when the combina-
tions Linter, Lintra, and Linter+Lintra of the loss
terms are introduced.

It is clear from the table that both loss terms are
important for the FSL models for ED as eliminat-
ing any of them would significantly hurt the perfor-
mance excepting the Proto+Att model with GCN
encoder. The best performance is achieved with

44

Encoder FSL Model Original +Inter +Intra +Intra+Inter
CNN Proto 67.92 68.78 68.83 69.37
LSTM Proto 65.94 65.28 72.07 77.56
GCN Proto 69.28 70.05 69.49 70.11
CNN Proto+Att 69.90 70.23 70.06 70.43
LSTM Proto+Att 67.26 67.48 72.00 77.81
GCN Proto+Att 71.65 71.75 71.56 71.18

Table 3: Ablation study: F1-score (micro) of Prototypical-based models on dev set with 5+1-way 5-shot FSL
setting

both loss terms are applied, thus testifying to the
benefits of the proposed regularization techniques
in this work.

5 Conclusion

In this paper, we address the problem of extending
event detection to unseen event types through few-
shot learning. We investigate four metric-based
few-shot learning models with different encoder
types (CNN, LSTM, and GCN). Moreover, we
propose two novel loss functions to provide more
training signals to the model exploiting domain-
matching information in the support set. Our exten-
sive experiments show that our method increases
the efficiency of using training data, resulting in bet-
ter classification performance. Our ablation study
shows that both intra-cluster matching and inter-
cluster matching contributes to the improvement.

Acknowledgments

This research is based upon work supported in part
by the Office of the Director of National Intelli-
gence (ODNI), Intelligence Advanced Research
Projects Activity (IARPA), via IARPA Contract
No. 2019-19051600006 under the Better Extrac-
tion from Text Towards Enhanced Retrieval (BET-
TER) Program. The views and conclusions con-
tained herein are those of the authors and should
not be interpreted as necessarily representing the
official policies, either expressed or implied, of
ODNI, IARPA, the Department of Defense, or the
U.S. Government. The U.S. Government is autho-
rized to reproduce and distribute reprints for gov-
ernmental purposes notwithstanding any copyright
annotation therein. This document does not contain
technology or technical data controlled under either
the U.S. International Traffic in Arms Regulations
or the U.S. Export Administration Regulations.

References
David Ahn. 2006. The stages of event extraction. In

Proceedings of the Workshop on Annotating and
Reasoning about Time and Events.

Ofer Bronstein, Ido Dagan, Qi Li, Heng Ji, and Anette
Frank. 2015. Seed-based event trigger labeling:
How far can event descriptions get us? In ACL-
IJCNLP.

Yubo Chen, Shulin Liu, Xiang Zhang, Kang Liu, and
Jun Zhao. 2017. Automatically labeled data genera-
tion for large scale event extraction. In ACL.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and
Jun Zhao. 2015. Event extraction via dynamic multi-
pooling convolutional neural networks. In ACL-
IJCNLP.

Yubo Chen, Hang Yang, Kang Liu, Jun Zhao, and Yan-
tao Jia. 2018. Collective event detection via a hier-
archical and bias tagging networks with gated multi-
level attention mechanisms. In EMNLP.

Shumin Deng, Ningyu Zhang, Jiaojian Kang, Yichi
Zhang, Wei Zhang, and Huajun Chen. 2020. Meta-
learning with dynamic-memory-based prototypical
network for few-shot event detection. In Proceed-
ings of the 13th International Conference on Web
Search and Data Mining, pages 151–159.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In ICML.

Tianyu Gao, Xu Han, Zhiyuan Liu, and Maosong Sun.
2019. Hybrid attention-based prototypical networks
for noisy few-shot relation classification. In AAAI.

Ralph Grishman, David Westbrook, and Adam Meyers.
2005. Nyu’s english ace 2005 system description.
In ACE 2005 Evaluation Workshop.

Sepp Hochreiter and Jurgen Schmidhuber. 1997. Long
short-term memory. In Neural Computation.

Yu Hong, Jianfeng Zhang, Bin Ma, Jianmin Yao,
Guodong Zhou, and Qiaoming Zhu. 2011. Using
cross-entity inference to improve event extraction.
In ACL.

45

Lifu Huang, Heng Ji, Kyunghyun Cho, and Clare R
Voss. 2018. Zero-shot transfer learning for event ex-
traction. In ACL, pages 2160–2170.

Heng Ji and Ralph Grishman. 2008. Refining event ex-
traction through cross-document inference. In ACL.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In ICLR.

Gregory Koch, Richard Zemel, and Ruslan Salakhutdi-
nov. 2015. Siamese neural networks for one-shot im-
age recognition. In ICML deep learning workshop,
volume 2.

Viet Dac Lai, Franck Dernoncourt, and Thien Huu
Nguyen. 2020. Exploiting the matching information
in the support set for few shot event classification.
In PAKDD.

Viet Dac Lai and Thien Huu Nguyen. 2019. Extending
event detection to new types with learning from key-
words. In Proceedings of the 5th Workshop on Noisy
User-generated Text (W-NUT 2019).

Brenden M Lake, Ruslan R Salakhutdinov, and Josh
Tenenbaum. 2013. One-shot learning by inverting a
compositional causal process. In NIPS.

Qi Li, Heng Ji, Yu Hong, and Sujian Li. 2014. Con-
structing information networks using one single
model. In EMNLP.

Xiang Li, Thien Huu Nguyen, Kai Cao, and Ralph Gr-
ishman. 2015. Improving event detection with Ab-
stract Meaning Representation. In Proceedings of
the First Workshop on Computing News Storylines.

Shulin Liu, Yubo Chen, Kang Liu, and Jun Zhao. 2017.
Exploiting argument information to improve event
detection via supervised attention mechanisms. In
ACL.

Shulin Liu, Yang Li, Feng Zhang, Tao Yang, and Xin-
peng Zhou. 2019. Event detection without triggers.
In NAACL:HLT, pages 735–744.

Weiyi Lu and Thien Huu Nguyen. 2018. Similar but
not the same: Word sense disambiguation improves
event detection via neural representation matching.
In EMNLP.

Thien Nguyen and Ralph Grishman. 2018. Graph con-
volutional networks with argument-aware pooling
for event detection. In AAAI.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Gr-
ishman. 2016a. Joint event extraction via recurrent
neural networks. In NAACL.

Thien Huu Nguyen, Lisheng Fu, Kyunghyun Cho, and
Ralph Grishman. 2016b. A two-stage approach for
extending event detection to new types via neural
networks. In Proceedings of the 1st ACL Workshop
on Representation Learning for NLP (RepL4NLP).

Thien Huu Nguyen and Ralph Grishman. 2015. Event
detection and domain adaptation with convolutional
neural networks. In ACL-IJCNLP.

Thien Huu Nguyen and Ralph Grishman. 2016. Mod-
eling skip-grams for event detection with convolu-
tional neural networks. In EMNLP.

Trung Minh Nguyen and Thien Huu Nguyen. 2018.
One for all: Neural joint modeling of entities and
events. In AAAI.

Haoruo Peng, Yangqiu Song, and Dan Roth. 2016.
Event detection and co-reference with minimal su-
pervision. In EMNLP.

Amir Pouran Ben Veyseh, Thien Huu Nguyen, and De-
jing Dou. 2019. Graph based neural networks for
event factuality prediction using syntactic and se-
mantic structures. In ACL.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba,
Vicki Cheung, Alec Radford, and Xi Chen. 2016.
Improved techniques for training gans. In NIPS.

Adam Santoro, Sergey Bartunov, Matthew Botvinick,
Daan Wierstra, and Timothy Lillicrap. 2016. Meta-
learning with memory-augmented neural networks.
In ICML.

Jake Snell, Kevin Swersky, and Richard Zemel. 2017.
Prototypical networks for few-shot learning. In
NIPS.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang,
Philip HS Torr, and Timothy M Hospedales. 2018.
Learning to compare: Relation network for few-shot
learning. In CVPR.

Sebastian Thrun. 1996. Is learning the n-th thing any
easier than learning the first? In NIPS.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap,
Daan Wierstra, et al. 2016. Matching networks for
one shot learning. In NIPS.

Alex Wong and Alan L Yuille. 2015. One shot learning
via compositions of meaningful patches. In ICCV.

