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Abstract

Current reading comprehension methods gen-
eralise well to in-distribution test sets, yet
perform poorly on adversarially selected data.
Prior work on adversarial inputs typically stud-
ies model oversensitivity: semantically invari-
ant text perturbations that cause a model’s pre-
diction to change. Here we focus on the com-
plementary problem: excessive prediction un-
dersensitivity, where input text is meaning-
fully changed but the model’s prediction does
not, even though it should. We formulate an
adversarial attack which searches among se-
mantic variations of the question for which a
model erroneously predicts the same answer,
and with even higher probability. We demon-
strate that models trained on both SQuAD2.0
and NewsQA are vulnerable to this attack, and
then investigate data augmentation and adver-
sarial training as defences. Both substantially
decrease adversarial vulnerability, which gen-
eralises to held-out data and held-out attack
spaces. Addressing undersensitivity further-
more improves model robustness on the pre-
viously introduced ADDSENT and ADDONE-
SENT datasets, and models generalise better
when facing train/evaluation distribution mis-
match: they are less prone to overly rely on
shallow predictive cues present only in the
training set, and outperform a conventional
model by as much as 10.9% F1.

1 Introduction

Neural networks can be vulnerable to adversar-
ial input perturbations (Szegedy et al., 2013; Ku-
rakin et al., 2016). In Natural Language Pro-
cessing (NLP), which operates on discrete sym-
bol sequences, adversarial attacks can take a vari-
ety of forms (Ettinger et al., 2017; Alzantot et al.,
2018) including character perturbations (Ebrahimi

∗Now at DeepMind.

et al., 2018), semantically invariant reformula-
tions (Ribeiro et al., 2018b; Iyyer et al., 2018a) or –
specifically in Reading Comprehension (RC) – ad-
versarial text insertions (Jia and Liang, 2017; Wang
and Bansal, 2018). A model’s inability to handle
adversarially chosen input text puts into perspec-
tive otherwise impressive generalisation results for
in-distribution test sets (Seo et al. (2017); Yu et al.
(2018); Devlin et al. (2019); inter alia) and con-
stitutes an important caveat to conclusions drawn
regarding a model’s comprehension abilities.

While semantically invariant text transforma-
tions can remarkably alter a model’s predictions,
the complementary problem of model undersen-
sitivity is equally troublesome: a model’s text in-
put can often be drastically changed in meaning
while retaining the original prediction. In particular,
previous works (Feng et al., 2018; Ribeiro et al.,
2018a; Welbl et al., 2020) show that even after
deletion of all but a small fraction of input words,
models often produce the same output. However,
such reduced inputs are usually unnatural to a hu-
man reader, and it is both unclear what behaviour
we should expect from natural language models
evaluated on unnatural text, and how to use such
unnatural inputs to improve models.

In this work we explore RC model undersensi-
tivity for natural language questions, and we show
that addressing undersensitivity not only makes RC
models more sensitive where they should be, but
also less reliant on shallow predictive cues. Fig. 1
shows an example for a BERT LARGE model (De-
vlin et al., 2019) trained on SQuAD2.0 (Rajpurkar
et al., 2018) that is given a text and a comprehen-
sion question, i.e. What was Fort Caroline renamed
to after the Spanish attack? which it correctly an-
swers as San Mateo with 98% probability. Altering
this question, however, can increase model proba-
bility for this same prediction to 99%, although the
new question is unanswerable given the same con-
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F. Caroline → R.Oppenheimer Spanish → Hungarian
F.Caroline → Fort Knox 

Given Text: The nearby 
Spanish settlement of St. 
Augustine attacked Fort 
Caroline, and killed nearly all 
the French soldiers defending 
it. The Spanish renamed the 
fort San Mateo […]

q

q0
qadv

Adversarial Example (         ):
What was Robert Oppenheimer renamed to after the Spanish attack?  San Mateo (0.99)

qadv

Original Example (   ):
What was Fort Caroline renamed to after the Spanish attack?  San Mateo (0.98)

q

Figure 1: Method Overview: Adversarial search over semantic variations of RC questions, producing unanswerable
questions for which the model retains its predictions with even higher probability.

text. That is, we observe an increase in probability
despite removing relevant question information and
replacing it with new, irrelevant content.

We formalise the process of finding such ques-
tions as an adversarial search in a discrete space
arising from perturbations of the original question.
There are two types of discrete perturbations we
consider, based on part-of-speech tags and named
entities, with the aim of obtaining grammatical and
semantically consistent alternative questions that
do not accidentally have the same correct answer.
We find that SQuAD2.0 and NewsQA models can
be attacked on a substantial proportion of samples.

The observed undersensitivity correlates nega-
tively with in-distribution test set performance met-
rics (EM/F1), suggesting that this phenomenon –
where present – is indeed a reflection of a model’s
lack of question comprehension. When training
models to defend against undersensitivity attacks
with data augmentation and adversarial training,
we observe that they can generalise their robust-
ness to held out evaluation data without sacrificing
in-distribution test set performance. Furthermore,
the models improve on the adversarial datasets pro-
posed by Jia and Liang (2017), and behave more
robustly in a learning scenario that has dataset bias
with a train / evaluation distribution mismatch, in-
creasing performance by up to 10.9%F1.

List of Contributions: i) We propose a new
type of adversarial attack exploiting the undersen-
sitivity of neural RC models to input changes, and
show that contemporary models are vulnerable to it;
ii) We compare data augmentation and adversarial
training as defences, and show their effectiveness
at reducing undersensitivity errors on both held-out
data and held-out perturbations without sacrificing
nominal test performance; iii) We demonstrate that

the resulting models generalise better on the adver-
sarial datasets of Jia and Liang (2017), and in the
biased data setting of Lewis and Fan (2019).

2 Related Work

Adversarial Attacks in NLP Adversarial exam-
ples have been studied extensively in NLP – see
Zhang et al. (2019) for a recent survey. Yet automat-
ically generating adversarial inputs is non-trivial,
as altering a single word can change the seman-
tics of an instance or render it incoherent. Prior
work typically considers semantic-invariant input
transformations to which neural models are over-
sensitive. For instance, Ribeiro et al. (2018b) use a
set of simple perturbations such as replacing Who
is with Who’s. Other semantics-preserving pertur-
bations include typos (Hosseini et al., 2017), the
addition of distracting sentences (Jia and Liang,
2017; Wang and Bansal, 2018), character-level ad-
versarial perturbations (Ebrahimi et al., 2018; Be-
linkov and Bisk, 2018), and paraphrasing (Iyyer
et al., 2018b). In this work, we focus on the com-
plementary problem of undersensitivity of neural
RC models to semantic perturbations of the input.
Our method is based on the idea that modifying,
for instance, the named entities in a question can
completely change its meaning and, as a conse-
quence, the question should become unanswerable
given the context. Our approach does not assume
white-box access to the model, as do e.g. Ebrahimi
et al. (2018) and Wallace et al. (2019).

Undersensitivity Jacobsen et al. (2019) demon-
strated classifier undersensitivity in computer vi-
sion. Niu and Bansal (2018) investigated undersen-
sitivity in dialogue models and addressed the prob-
lem with a max-margin training approach. Ribeiro
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et al. (2018a) describe a general model diagnosis
tool to identify minimal feature sets that are suffi-
cient for a model to form high-confidence predic-
tions. Feng et al. (2018) showed that it is possible
to reduce inputs to minimal input word sequences
without changing a model’s predictions. Welbl et al.
(2020) investigated formal verification against un-
dersensitivity to text deletions. We see our work as
a continuation of these lines of inquiry, with a par-
ticular focus on undersensitivity in RC. In contrast
to Feng et al. (2018) and Welbl et al. (2020) we
consider concrete alternative questions, rather than
arbitrarily reduced input word sequences, and fur-
thermore address the observed phenomenon using
dedicated training objectives, in contrast to Feng
et al. (2018) and Ribeiro et al. (2018a) who simply
highlight it. Gardner et al. (2020) and Kaushik et al.
(2020) also recognise the problem of models learn-
ing shallow but successful heuristics, and propose
counterfactual data annotation paradigms as pre-
vention. The perturbations used in this work define
such counterfactual samples. Their composition
does not require additional annotation efforts, and
we furthermore adapt an adversarial perspective
on the choice of such samples. Finally, one of the
methods we evaluate for defending against under-
sensitivity attacks is a form of data augmentation
that has similarly been used for de-biasing NLP
models (Zhao et al., 2018; Lu et al., 2018).

Concurrent work on model CHECKLIST evalu-
ation (Ribeiro et al., 2020) includes an invariance
test which also examines model undersensitivity.
In contrast to CHECKLIST, our work focuses with
more detail on the analysis of the invariance phe-
nomenon, the automatic generation of probing sam-
ples, an investigation of concrete methods to over-
come undesirably invariant model behaviour, and
shows that adherence to invariance tests leads to
more robust model generalisation.

Unanswerable Questions in RC Rajpurkar
et al. (2018) proposed the SQuAD2.0 dataset, which
includes over 43,000 human-curated unanswerable
questions. NewsQA is a second dataset with unan-
swerable questions, in the news domain (Trischler
et al., 2017). Training on these datasets should
conceivably result in models with an ability to tell
whether questions are answerable or not; we will
however see that this does not extend to adver-
sarially chosen unanswerable questions. Hu et al.
(2019) address unanswerability of questions from a
given text using additional verification steps. Other

approaches have shown the benefit of synthetic
data to improve performance in SQuAD2.0 (Zhu
et al., 2019; Alberti et al., 2019). In contrast to
prior work, we demonstrate that despite improving
performance on test sets that include unanswerable
questions, the problem persists when adversarially
choosing from a larger space of questions.

3 Methodology

Problem Overview Consider a discriminative
model fθ, parameterised by a collection of vectors
θ, which transforms an input x into a prediction
ŷ = fθ(x). In our task, x = (t, q) is a given text t
paired with a question q about this text. The label
y is the answer to q where it exists, or a NoAnswer
label where it cannot be answered.1

In an RC setting, the set of possible answers
is large, and predictions ŷ should be dependent
on x. And indeed, randomly choosing a different
input (t′, q′) usually changes the model prediction
ŷ. However, there exist many examples where the
prediction erroneously remains stable; the goal of
the attack formulated here is to find such cases.
Formally, the goal is to discover inputs x′ for which
fθ still erroneously predicts fθ(x′) = fθ(x), even
though x′ is not answerable from the text.

Identifying suitable candidates for x′ can be
achieved in manifold ways. One approach is to
search among a large question collection, but we
find this to only rarely be successful; an example is
shown in Table 8, Appendix E. Generating x′, on
the other hand, is prone to result in ungrammatical
or otherwise ill-formed text. Instead, we consider
a perturbation space XT (x) spanned by perturbing
original inputs x using a perturbation function fam-
ily T : XT (x) = {Ti(x) | Ti ∈ T }. This space
XT (x) contains alternative model inputs derived
from x. Ideally the transformation function fam-
ily T is chosen such that the correct label of these
inputs is changed, and the question becomes unan-
swerable. We will later search within XT (x) to
find inputs x′ which erroneously retain the same
prediction as x: ŷ(x) = ŷ(x′).

Part-of-Speech (PoS) Perturbations We first
consider the perturbation space XTP (x) with PoS
perturbations TP of the original question: we swap
individual tokens with other, PoS-consistent alter-
native tokens, drawing from large collections of to-
kens of the same PoS types. For example, we might

1Unanswerable questions are part of, e.g. the SQuAD2.0
and NewsQA datasets, but not SQuAD1.1.
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alter the question “Who patronized the monks in
Italy?” to “Who betrayed the monks in Italy?” by
replacing the past tense verb “patronized” with

“betrayed”. There is however no guarantee that
the altered question will require a different answer
(e.g. due to synonyms). Even more so – there might
be type clashes or other semantic inconsistencies.
We perform a qualitative analysis to investigate the
extent of this problem and find that, while a valid
concern, for the majority of attackable samples
(at least 51%) there exist attacks based on correct
well-formed questions (see Section 5).

Named Entity (NE) Perturbations The space
XTE (x) of the transformation family TE is created
by substituting NE mentions in the question with
different type-consistent NE, derived from a large
set E. For example, a question “Who patronized
the monks in Italy?” could be altered to “Who
patronized the monks in Las Vegas?”, replacing
the geopolitical entity “Italy” with “Las Vegas”,
chosen from E. Altering NE often changes the
question specifics and alters the answer require-
ments, which are unlikely to be satisfied from what
is stated in the given text, given the broad nature
of entities in E. While perturbed questions are not
guaranteed to be unanswerable or require a differ-
ent answer, we will in a later analysis see that for
the large majority of cases (at least 84%) they do.

Undersensitivity Attacks Thus far we have de-
scribed methods for perturbing questions. We will
search in the resulting perturbation spaces XTP (x)
and XTE (x) for inputs x′ for which model predic-
tion remains constant. However, we pose a slightly
stronger and more conservative requirement to rule
out cases where the prediction is retained, but with
lower probability: fθ should assign a higher proba-
bility to the same prediction ŷ(x) = ŷ(x′) than for
the original input:

P (ŷ | x′) > P (ŷ | x) (1)

To summarise, we are searching in a perturbation
space for altered questions which result in a higher
model probability to the same answer as the orig-
inal input question. If we have found an altered
question that satisfies inequality (1), then we have
identified a successful attack, which we will refer
to as an undersensitivity attack.

Adversarial Search in Perturbation Space In
its simplest form, a search for an adversarial at-
tack in the previously defined spaces amounts to a
search over a list of single lexical alterations for the

maximum (or any) higher prediction probability.
We can however repeat the replacement procedure
multiple times, arriving at texts with larger lexi-
cal distance to the original question. For example,
in two iterations of PoS-consistent lexical replace-
ment, we can alter “Who was the duke in the battle
of Hastings?” to inputs like “Who was the duke
in the expedition of Roger?” The space of possi-
bilities grows combinatorially, and with increasing
perturbation radius it becomes computationally in-
feasible to comprehensively cover the full pertur-
bation space arising from iterated substitutions. To
address this, we follow Feng et al. (2018) and apply
beam search to narrow the search space, and seek to
maximise the difference ∆ = P (ŷ | x′)−P (ŷ | x).
Beam search is conducted up to a pre-specified
maximum perturbation radius ρ, but once x′ with
∆ > 0 has been found, we stop the search.

Relation to Attacks in Prior Work Note that
this type of attack stands in contrast to other at-
tacks based on small, semantically invariant in-
put perturbations which investigate oversensitivity
problems. Such semantic invariance comes with
stronger requirements and relies on synonym dic-
tionaries (Ebrahimi et al., 2018) or paraphrases har-
vested from back-translation (Iyyer et al., 2018a),
which are both incomplete and noisy. Our attack
is instead focused on undersensitivity, i.e. where
the model is stable in its prediction even though
it should not be. Consequently the requirements
are not as difficult to fulfil when defining pertur-
bation spaces that alter the question meaning, and
one can rely on sets of entities and PoS examples
automatically extracted from a large text collection.

4 Experiments: Model Vulnerability

Training and Dataset Details We next conduct
experiments using the attacks laid out above to in-
vestigate model undersensitivity. We attack the
BERT model fine-tuned on SQuAD2.0, and mea-
sure to what extent the model exhibits undersensi-
tivity to adversarially chosen inputs. Our choice
of BERT is motivated by the currently widespread
adoption of its variants across the NLP field, and
empirical success across a wide range of datasets.
SQuAD2.0 per design contains unanswerable ques-
tions; models are thus trained to predict a NoAn-
swer option where a comprehension question can-
not be answered. As the test set is unavailable,
we split off 5% from the original training set for
development purposes and retain the remaining
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(a) Part of Speech perturbations (b) Named Entity perturbations

Figure 2: BERT LARGE on SQuAD2.0: vulnerability to noisy attacks on held out data for differently sized attack
spaces (parameter η) and different beam search depth (perturbation radius ρ).

95% for training, stratified by articles. The original
SQuAD2.0 development set is then used as eval-
uation data, where the model reaches 73.0%EM
and 76.5%F1; we will compute the undersensitivity
attacks on this entirely held out part of the dataset.
Appendix B provides further training details.

Attack Details To compute the perturbation
spaces, we gather large collections of NE and PoS
expressions across types that define the perturba-
tion spaces TE and TP , which we gather from the
Wikipedia paragraphs used in the SQuAD2.0 train-
ing set, with the pretrained taggers in spaCy, and
the Penn Treebank tag set for PoS. This results on
average in 5,126 different entities per entity type,
and 2,337 different tokens per PoS tag. When com-
puting PoS perturbations, we found it useful to dis-
regard perturbations of particular PoS types that of-
ten led to only minor changes or incorrectly formed
expressions, such as punctuation or determiners;
details on these can be found in Appendix A. As
the number of possible perturbations to consider
is potentially very large, we limit the beam search
at each step to a maximum of η randomly chosen
type-consistent entities from E, or tokens from P ,
and re-sample these throughout the search. We use
a beam width of b = 5, resulting in a bound to the
total computation spent on adversarial search of
b · ρ · η model evaluations per sample, where ρ is
the perturbation “radius” (maximum search depth).

We quantify vulnerability to the described at-
tacks by measuring the fraction of evaluation sam-
ples for which at least one undersensitivity attack is
found given a computational search budget, disre-
garding cases where a model predicts NoAnswer.2

2Altering such samples likely retains their unanswerability.

Results Fig. 2 shows plots for adversarial error
rates on SQuAD2.0 for both perturbation types. We
observe that attacks based on PoS perturbations
can already for very small search budgets (η = 32,
ρ = 1) reach more than 60% attack success rates,
and this number can be raised to 95% with a larger
computational budget. For perturbations based on
NE substitution, we find overall lower attack suc-
cess rates, but still find that more than half of the
samples can successfully be attacked with the bud-
gets tested. Note that where attacks were found, we
observed that there often exist multiple alternatives
satisfying inequality 1.

These findings demonstrate that BERT is not
necessarily considering the entire content of a
comprehension question given to it, and that even
though trained to tell when questions are unanswer-
able, the model often fails when facing adversari-
ally selected unanswerable questions.

In a side experiment we also investigated un-
dersensitivity attacks using NE perturbations on
SQuAD1.1, which proves even more vulnerable
with an adversarial error rate of 70% already using
η = 32; ρ = 1 (compared to 34% on SQuAD2.0).
While this demonstrates that undersensitivity is
also an issue for SQuAD1.1, the unanswerable ques-
tion behaviour is not really well-defined, rendering
results difficult to interpret. On the other hand, the
notable drop between the datasets demonstrates the
effectiveness of the unanswerable questions added
during training in SQuAD2.0.

5 Analysis of Vulnerable Samples

Qualitative Analysis of Attacks The attacks are
potentially noisy, and the introduced substitutions
are by no means guaranteed to result in semanti-
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Original / Modified Question Prediction Annotation Scores

What city in Victoria is called the cricket ground of Melbourne valid 0.63 / 0.75
Australia the Delhi Metro Rail Corporation Limited ?

What were the annual every year carriage fees for the channels? £30m same answer 0.95 / 0.97

What percentage of Victorians are Christian Girlish ? 61.1% valid 0.92 / 0.93

Which plateau is the left part achievement of Warsaw on? moraine sem. inconsist. 0.52 / 0.58

Table 1: Example adversarial questions ( original , attack ), together with their annotation as either a valid coun-
terexample or other type. Top 2: Named Entity perturbations. Bottom 2: PoS perturbations.

PoS NE

Valid attack 51% 84%
Syntax error 10% 6%

Semantically incoherent 24% 5%
Same answer 15% 5%

Table 2: Analysis of undersensitivity attack samples for
both PoS and named entity (NE) perturbations.

cally meaningful and consistent expressions, or re-
quire a different answer than the original. To gauge
the extent of this we inspect 100 successful attacks
conducted at ρ = 6 and η = 256 on SQuAD2.0,
both for PoS and NE perturbations. We label them
as either: i) Having a syntax error (e.g. What would
platform lower if there were fewer people?). These
are mostly due to cascading errors stemming from
incorrect NE / PoS tag predictions. ii) Semantically
incoherent (Who built the monks?). iii) Questions
that require the same correct answer as the orig-
inal, e.g. due to a paraphrase. iv) Valid attacks:
Perturbed questions that would either demand a
different answer or are unanswerable given the text
(e.g. When did the United States / Tuvalu withdraw
from the Bretton Woods Accord?)

Table 1 shows several example attacks along
with their annotations, and in Table 2 the respective
proportions are summarised. We observe that a
non-negligible portion of questions has some form
of syntax error or incoherent semantics, especially
for PoS perturbations. Questions with the identi-
cal correct answer are comparatively rare. Finally,
about half (51%) of the attacks in PoS, as well as
84% for NE are valid questions that should either
have a different answer, or are unanswerable.

Overall the NE perturbations result in cleaner
questions than PoS perturbations, which suffer
from semantic inconsistencies in about a quarter

(24%) of the cases. While these questions have
some sort of inconsistency (e.g. What year did the
case go before the supreme court? vs. a perturbed
version What scorer did the case go before the
supreme court?), it is remarkable that the model
assigns higher probabilities to the original answer
even when faced with incoherent questions, casting
doubt on the extent to which the replaced question
information is used to determine the answer. Since
NE-based attacks have a substantially larger frac-
tion of valid, well-posed questions, we will focus
our study on these for the remainder of this paper.

Characterising Successfully Attacked Sam-
ples We observe that models are vulnerable to
undersensitivity adversaries, yet not all samples are
successfully attacked. This raises the question of
what distinguishes samples that can and cannot be
attacked. We thus examine various characteristics,
aiming to understand model vulnerability causes.

First, successfully attacked questions produce
lower original prediction probabilities, on aver-
age 72.9% vs. 83.8% for unattackable questions.
That is, there exists a direct inverse link between a
model’s original prediction probability and sample
vulnerability to an undersensitivity attack. The ad-
versarially chosen questions had an average prob-
ability of 78.2% – a notable gap to the original
questions. It is worth noting that search halted
once a single question with higher probability was
found; continuing the search increases the respec-
tive probabilities.

Second, vulnerable samples are furthermore less
likely to be given the correct prediction overall.
Concretely, evaluation metrics for vulnerable ex-
amples are 56.4%/69.6% EM/F1, compared to
73.0%/76.5% on the whole dataset (-16.6% and
-6.9% EM/F1).

Attackable questions have on average 12.3 to-
kens, whereas unattackable ones are slightly shorter
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Undersensitivity Error Rate HasAns NoAns Overall
Adv. budget η @32 @64 @128 @256 EM F1 EM/F1 EM F1

SQ
uA

D BERT LARGE 44.0 50.3 52.7 54.7 70.1 77.1 76.0 73.0 76.5
+ Data Augment. 4.5 9.1 11.9 18.9 66.1 72.2 80.7 73.4 76.5
+ Adv. Training 11.0 15.9 22.8 28.3 69.0 76.4 77.1 73.0 76.7

N
ew

sQ
A BERT BASE 34.2 34.7 36.4 37.3 41.6 53.1 61.6 45.7 54.8

+ Data Augment. 7.1 11.6 17.5 20.8 41.5 53.6 62.1 45.8 55.3
+ Adv. Training 20.1 24.1 26.9 29.1 39.0 50.4 67.1 44.8 53.9

Table 3: Breakdown of undersensitivity error rate overall (lower is better), and standard performance metrics (EM,
F1; higher is better) on different subsets of SQuAD2.0 and NewsQA evaluation data, all in [%].

Figure 3: Named entity type characteristics of attack-
able vs. unattackable samples.

with on average 11.1 tokens.

Next we considered the distribution of differ-
ent question types (What, Who, When, ...) for both
attackable and unattackable samples and did not ob-
serve notable differences apart from the single most
frequent question type What; it is a lot more preva-
lent among the unattacked questions (56.4%) than
among successfully attacked questions (42.1%).
This is by far the most common question type, and
furthermore one that is comparatively open-ended
and does not prescribe particular type expectations
to its answer, as e.g., a Where question would re-
quire a location. A possible explanation for the
prevalence of the What questions among unsuc-
cessfully attacked samples is that the model cannot
rely on type constraints alone to arrive at its pre-
dictions (Sugawara et al., 2018), and is thus less
prone to such exploitation - see Section 6 for a
more in-depth analysis.

Finally, Figure 3 shows a histogram of the 10
most common NE tags appearing in unsuccessfully
attacked samples, and the corresponding fraction of
replaced entities in successfully attacked samples.
Besides one exception, the distributions are remark-
ably similar: Undersensitivity can be induced for
a variety of entity types used in the perturbation.
Notably, questions with geopolitical entities (GPE)

are particularly error-prone. A possible explanation
can be provided by observations regarding (non-
contextualised) word vectors, which cluster geopo-
litical entities (e.g. countries) together, thus making
them harder to distinguish for a model operating
on these embeddings (Mikolov et al., 2013).

6 Robustness to Undersensitivity Attacks

We will now investigate methods for mitigating
excessive model undersensitivity. Prior work has
considered both data augmentation and adversar-
ial training for more robust models; we will con-
duct experiments with both. Adding a robustness
objective can negatively impact standard test met-
rics (Tsipras et al., 2019), and it should be noted
that there exists a natural trade-off between perfor-
mance on one particular test set and performance
on a dataset of adversarial inputs. We perform data
augmentation and adversarial training by adding a
corresponding loss term to the log-likelihood train-
ing objective: LTotal = Lllh(Ω)+λ ·Lllh(Ω′) where
Ω is the standard training data, fit with a discrim-
inative log-likelihood objective, Ω′ either a set of
augmentation data points, or of successful adver-
sarial attacks where they exist, and λ ∈ R+ a hy-
perparameter. In data augmentation, we randomly
sample perturbed input questions, whereas in adver-
sarial training we perform an adversarial search to
identify them. In both cases, alternative data points
in Ω′ will be fit to a NULL label to represent the
NoAnswer prediction – again using a log-likelihood
objective. We continuously update Ω′ throughout
training to reflect adversarial samples with respect
to the current model. We conduct experiments on
both SQuAD2.0 and NewsQA; details on training
and hyperparameters can be found in the appendix.

Experimental Outcomes Results for these ex-
periments can be found in Table 3 for the two da-



1159

tasets, respectively. First, we observe that both
data augmentation and adversarial training substan-
tially reduce the number of undersensitivity errors
the model commits, consistently across adversar-
ial search budgets, and consistently across the two
datasets. This demonstrates that both training meth-
ods are effective defences and can mitigate – but
not eliminate – the model’s undersensitivity prob-
lem. Notably the improved robustness – especially
for data augmentation – is possible without sacrific-
ing performance in the overall standard metrics EM
and F1, even slight improvements are possible. Sec-
ond, data augmentation is a more effective defence
training strategy than adversarial training. This
holds true both for standard and adversarial metrics
and hints at potential adversarial overfitting.

Finally, a closer inspection of how performance
changes on answerable (HasAns) vs. unanswerable
(NoAns) samples of the datasets reveals that models
with modified training objectives show improved
performance on unanswerable samples, while sacri-
ficing some performance on answerable samples.3

This suggests that the trained models – even though
similar in standard metrics – evolve on different
paths during training: the modified objectives pri-
oritise unanswerable questions to a higher degree.

Evaluation on Held-Out Perturbation Spaces
In Table 3 results are computed using the same per-
turbation spaces also used during training. These
perturbation spaces are relatively large, and ques-
tions are about a disjoint set of articles at evalu-
ation time. Nevertheless there is the potential of
overfitting to the particular perturbations used dur-
ing training. To measure the extent to which the
defences generalise also to new, held out sets of
perturbations, we assemble a new, disjoint pertur-
bation space of identical size per NE tag as those
used during training, and evaluate models on at-
tacks with respect to these perturbations. Named
entities are chosen from English Wikipedia using
the same method as for the training perturbation
spaces, and chosen such that they are disjoint from
the training perturbation space. We then execute
adversarial attacks using these new attack spaces
on the previously trained models, and find that both
vulnerability rates of the standard model, as well as
relative defence success transfer to the new attack
spaces. For example, with η = 256 we observe
vulnerability ratios of 51.7%, 20.7%, and 23.8%
on SQuAD2.0 for standard training, data augmen-

3The NoAns threshold is tuned on the respective valid. sets.

Person Date Numerical
EM F1 EM F1 EM F1

BERT w/ bias 55.9 63.1 48.9 58.2 38.7 48.0
+ Data Augm. 59.1 66.6 58.4 65.6 48.7 58.9

BERT w/o bias 69.2 78.1 73.2 81.7 69.6 80.5

Table 4: Robust training leads to improved generalisa-
tion with train/test distribution mismatch (w/ bias). Bot-
tom: control experiment without train/test mismatch.

tation, and adversarial training, respectively. De-
tailed results for different values of η, as well as
for NewsQA can be found in Appendix D.

Generalisation in a Biased Data Setting Data-
sets for high-level NLP tasks often come with an-
notation and selection biases; models then learn
to exploit shortcut triggers which are dataset but
not task-specific (Gururangan et al., 2018). For
example, a model might be confronted with ques-
tion/paragraph pairs which only ever contain one
type-consistent answer span, e.g. mention one num-
ber in a text with a How many...? question. It is
then sufficient to learn to pick out numbers from
text to solve the task, irrespective of other informa-
tion given in the question. Such a model might then
have trouble generalising to articles that mention
several numbers, as it never learned that it is nec-
essary to take into account other relevant question
information to determine the correct answer.

We test models in such a scenario: a model is
trained on SQuAD1.1 questions with paragraphs
containing only a single type-consistent answer
expression for either a person, date, or numeri-
cal answer. At test time, we present it with ques-
tion/article pairs of the same respective question
types, but now there are multiple possible type-
consistent answers in the paragraph. We obtain
such data from Lewis and Fan (2019), who first
described this biased data scenario. Previous ex-
periments on this dataset were conducted without
dedicated development set, so while using the same
training data, we split the test set with a 40/60%
split into development and test data.4 We then test
both a vanilla fine-tuned BERT BASE transformer
model, and a model trained to be less vulnerable to
undersensitivity attacks using data augmentation.
Finally, we perform a control experiment, where we
join and shuffle all data points from train/dev/test
(of each question type, respectively), and split the

4We also include an experiment with the previous data
setup used by Lewis and Fan (2019), see Appendix G.
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AddSent AddOneSent Dev 2.0
EM F1 EM F1 EM F1

BERT Large 61.3 66.0 70.1 74.9 78.3 81.4
+ Data Augm. 64.0 70.3 70.2 76.5 78.9 82.1

Table 5: Comparison between BERT LARGE and
BERT LARGE + data augmentation using NE perturba-
tions, on two sets of adversarial examples: ADDSENT
and ADDONESENT from Jia and Liang (2017).

dataset into new parts of the same size as before,
which now follow the same data distribution (w/o
data bias setting). Table 4 shows the results. In this
biased data scenario we observe a marked improve-
ment across metrics and answer type categories
when a model is trained with unanswerable sam-
ples. This demonstrates that the negative training
signal stemming from related – but unanswerable –
questions counterbalances the signal from answer-
able questions in such a way, that the model learns
to better take into account relevant information in
the question, which allows it to correctly distin-
guish among several type-consistent answer possi-
bilities in the text, which the standard BERT BASE

model does not learn well.
Evaluation on Adversarial SQuAD We next

evaluate BERT LARGE and BERT LARGE + Aug-
mentation Training on ADDSENT and ADDONE-
SENT, which contain adversarially composed sam-
ples (Jia and Liang, 2017). Our results, summarised
in Table 5, show that including altered samples dur-
ing the training of BERT LARGE improves EM/F1

scores by 2.7/4.3 and 0.1/1.6 points on the two
datasets, respectively.

Transferability of Attacks We train a Ro-
BERTa model (Liu et al., 2019) on SQuAD2.0, and
conduct undersensitivity attacks (ρ = 6; η = 256).
Notably the resulting undersensitivity error rates
are considerably lower for RoBERTa (34.5%) than
for BERT (54.7%). Interestingly then, when con-
sidering only those samples where RoBERTa was
found vulnerable, BERT has an undersensitivity
error rate of 90.7%. That is, the same samples
tend to be vulnerable to undersensitivity attacks
in both models. Even more, we find that concrete
adversarial inputs x′ selected with RoBERTa trans-
fer when evaluating them on BERT for 17.5% of
samples (i.e. satisfy Inequality 1).

7 Conclusion

We have investigated undersensitivity: a problem-
atic behaviour of RC models, where they are overly

stable in their predictions when given semantically
altered questions. A model’s robustness to un-
dersensitivity attacks can be drastically improved
with appropriate defences without sacrificing nom-
inal performance, and the resulting models become
more robust also in other adversarial data settings.
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SQuAD2.0 Undersensitivity Error Rate
Adv. budget η @32 @64 @128 @256

BERT LARGE 40.7 45.2 48.6 51.7
+ Data Augment. 4.8 7.9 11.9 20.7
+ Adv. Training 9.2 12.2 16.5 23.8

Table 6: Breakdown of undersensitivity error rate on
SQuAD2.0 with a held-out attack space (lower is bet-
ter).

NewsQA Undersensitivity Error Rate
Adv. budget η @32 @64 @128 @256

BERT BASE 32.8 33.9 35.0 36.2
+ Data Augment. 3.9 6.5 11.9 17.5
+ Adv. Training 17.6 20.7 25.4 28.5

Table 7: Breakdown of undersensitivity error rate on
NewsQA with a held-out attack space (lower is better).

A Appendix: PoS Perturbation Details.

We exclude these PoS-tags when computing per-
turbations: ‘IN’, ‘DT’, ‘.’, ‘VBD’, ‘VBZ’, ‘WP’,

‘WRB’, ‘WDT’, ‘CC’, ‘MD’, ‘TO’.

B Appendix: BERT Training Details -
SQuAD2.0

We first train a BERT LARGE model on the
full training set for 2 epochs, where it reaches
78.32%EM and 81.44%F1, largely comparable to
results (78.7%EM and 81.9%F1) reported by De-
vlin et al. (2019). We then however choose a differ-
ent training setup as we would like to conduct ad-
versarial attacks on data inaccessible during train-
ing: we split off 5% from the original training set
for development purposes and retain the remaining
95% for training, stratified by articles. We use this
development data to tune hyperparameters and per-
form early stopping, evaluated every 5,000 steps
with batch size 16 and patience 5, and tune hyper-
parameters for defence on it.

C Appendix: Adversarial Defence
Experiments

SQuAD2.0 We train the BERT LARGE

model, tuning the hyperparameter λ ∈
{0.0, 0.01, 0.1, 0.25, 0.5, 0.75, 1.0, 2.0}, and
find λ = 0.25 to work best for both defences.
We tune the threshold for predicting NoAnswer
based on validation data and report results on
the test set (the original SQuAD2.0 Dev set). All
experiments are executed with batch size 16, NE

Figure 4: Vulnerability to undersensitivity attacks on
NewsQA.

perturbations are used for the defence methods,
and adversarial attacks with η = 32 and ρ = 1 in
adversarial training. Where no attack is found for
a given question sampled during SGD training,
we instead consider a different sample from the
original training data. We evaluate the model on
its validation data every 5,000 steps and perform
early stopping with a patience of 5.

NewsQA Following the experimental protocol
for SQuAD, we further test a BERT BASE model
on NewsQA, which – like SQuAD2.0 – contains
unanswerable questions. As annotators often do not
fully agree on a single annotation in NewsQA, we
opt for a conservative choice and filter the dataset,
such that only samples with the same majority an-
notation are retained, following the preprocessing
pipeline of Talmor and Berant (2019).

D Appendix: Generalisation to Held-out
Perturbations

Vulnerability results for new, held-out perturbation
spaces, disjoint from those used during training,
can be found in Table 6 for SQuAD2.0, and in
Table 7 for NewsQA.

E Appendix: Adversarial Example from
a Question Collection

Searching in a large collection of (mostly unrelated)
natural language questions, e.g. among all ques-
tions in the SQuAD2.0 training set, yields several
cases where the prediction of the model increases,
compared to the original question, see Table 8 for
one such example. These cases are however rela-
tively rare, and we found the yield of this type of
search to be very low.
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F Appendix: Attack Examples

Table 9 shows more examples of successful adver-
sarial attacks on SQuAD2.0.

G Appendix: Biased Data Setup

For completeness and direct comparability, we also
include an experiment with the data setup of Lewis
and Fan (2019) (not holding aside a dedicated vali-
dation set). Results can be found in Table 10. We
again observe improvements in the biased data set-
ting. Furthermore, the robust model outperforms
GQA (Lewis and Fan, 2019) in two of the three
subtasks.

H Appendix: Vulnerability Analysis on
NewsQA

Fig. 4 depicts the vulnerability of a BERT LARGE

model on NewsQA under attacks using NE pertur-
bations.
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Given Text [...] The Normans were famed for their martial spirit and eventually for their
Christian piety, becoming exponents of the Catholic orthodoxy [...]

Q (orig) What religion were the Normans? 0.78
Q (adv.) IP and AM are most commonly defined by what type of proof system? 0.84

Table 8: Drastic example for lack of specificity: unrelated questions can trigger the same prediction (here: Catholic
orthodoxy), and with higher probability.

Original / Modified Question Prediction Annotation Scores

What ethnic neighborhood in Fresno Kilbride had Chinatown valid 0.998
primarily Japanese residents in 1940? 0.999

The Mitchell Tower MIT is designed to look Magdalen valid 0.96
like what Oxford tower? Tower 0.97

What are some of the accepted general principles of fundamental valid 0.59
European Union Al-Andalus law? rights [...] 0.61

What does the EU’s legitimacy digimon rest on? the ultimate valid 0.38
authority of [...] 0.40

What is Jacksonville’s hottest recorded 104◦F valid 0.60
temperature atm ? 0.62

Who leads the Student commissioning Government? an Executive same answer 0.61
Committee 0.65

Table 9: Example adversarial questions ( original , attack ), together with their annotation as either a valid coun-
terexample or other type. Top 3 rows: Named entity (NE) perturbations. Bottom 3 rows: PoS perturbations.

Person Date Numerical
EM F1 EM F1 EM F1

GQA (Lewis and Fan, 2019) 53.1 61.9 64.7 72.5 58.5 67.6

BERT BASE - w/ data bias 66.0 72.5 67.1 72.0 46.6 54.5
+ Robust Training 67.4 72.8 68.1 74.4 56.3 64.5

Table 10: Robust training leads to improved generalisation under train/test distribution mismatch (data bias).


